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PREFACE

This second edition is a corrected, revised, and reprinted version of our original textbook. We

are particularly grateful to readers who have sent in suggestions for corrections. Among them

we owe a huge debt to R. B. Burckel (Kansas State University). Many of his corrections and
suggestions are incorporated in this new edition. Thanks too to Keith Yates (Manchester Metropoli-
tan University) who, while working on some of the more difficult problems, found some further
errors.

Preface to the second edition

Original Preface to first edition

In teaching first courses in real analysis over the years, we have found increasingly that the
classes form rather heterogeneous groups. It is no longer true that most of the students are
first-year graduate students in mathematics, presenting more or less common backgrounds for
the course. Indeed, nowadays we find diverse backgrounds and diverse objectives among stu-
dents in such classes. Some students are undergraduates, others are more advanced. Many stu-
dents are in other departments, such as statistics or engineering. Some students are seeking
terminal master’s degrees; others wish to become research mathematicians, not necessarily in
analysis.



xxiv Preface

We have tried to write a book that is suitable for students with minimal backgrounds, one
that does not presuppose that most students will eventually specialize in analysis.

We have pursued two goals. First, we would like all students to have an opportunity to ob-
tain an appreciation of the tools, methods, and history of the subject and a sense of how the
various topics we cover develop naturally. Our second objective is to provide those who will
study analysis further with the necessary background in measure, integration, differentiation,
metric space theory, and functional analysis.

To meet our first goal, we do several things. We provide a certain amount of historical per-
spective that may enable a reader to see why a theory was needed and sometimes, why the re-
searchers of the time had difficulty obtaining the “right” theory. We try to motivate topics be-
fore we develop them and try to motivate the proofs of some of the important theorems that
students often find difficult. We usually avoid proofs that may appear “magical” to students in
favor of more revealing proofs that may be a bit longer. We describe the interplay of various
subjects—measure, variation, integration, and differentiation. Finally, we indicate applications
of abstract theorems such as the contraction mapping principle, the Baire category theorem,
Ascoli’s theorem, Hahn-Banach theorem, and the open mapping theorem, to concrete settings
of various sorts.

We consider the exercise sections an important part of the book. Some of the exercises do
no more than ask the reader to complete a proof given in the text, or to prove an easy result
that we merely state. Others involve simple applications of the theorems. A number are more
ambitious. Some of these exercises extend the theory that we developed or present some related
material. Others provide examples that we believe are interesting and revealing, but may not
be well known. In general, the problems at the ends of the chapters are more substantial. A few
of these problems can form the basis of projects for further study. We have marked exercises



Preface XXV

that are referenced in later parts of the book with a ¢ to indicate this fact.

When we poll our students at the beginning of the course, we find there are a number of
topics that some students have seen before, but many others have not. Examples are the rudi-
ments of metric space theory, Lebesgue measure in IR, Riemann-Stieltjes integration, bounded
variation and the elements of set theory (Zorn’s lemma, well-ordering, and others). In Chap-
ter 1, we sketch some of this material. These sections can be picked up as needed, rather than
covered at the beginning of the course. We do suggest that the reader browse through Chap-
ter 1 at the beginning, however, as it provides some historical perspective.

Text Organization

Many graduate textbooks are finely crafted works as intricate as a fabric. If some thread is
pulled too severely, the whole structure begins to unravel. We have hoped to avoid this. It is
reasonably safe to skip over many sections (within obvious limitations) and construct a course
that covers your own choice of topics, with little fear that the student will be forced to cross
reference back through a maze of earlier skipped sections.

A word about the order of the chapters. The first chapter is intended as background read-
ing. Some topics are included to help motivate ideas that reappear later in a more abstract
setting. Zorn’s lemma and the axiom of choice will be needed soon enough, and a classroom
reference to Sections 1.3, 1.5 and 1.11 can be used.

The course can easily start with the measure theory of Chapter 2 and proceed from there.
We chose to cover measure and integration before metric space theory because so many impor-
tant metric spaces involve measurable or integrable functions. The rudiments of metric space
theory are needed in Chapter 3, however, so we begin that chapter with a short section contain-
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ing the necessary terminology.

Instructors who wish to emphasize functional analysis and reach Chapter 9 quickly can do
so by omitting much of the material in the earlier chapters. One possibility is to cover Sections
2.1 to 2.6, 4.1, 4.2, and Chapter 5 and then proceed directly to Chapter 9. This will provide
enough background in measure and integration to prepare the student for the later chapters.

Chapter 6 on the Fubini and Tonelli theorems is used only occasionally in the sequel (Sec-
tions 8.4 and 13.9). This is presented from the outer measure point of view because it fits bet-
ter with the philosophy developed in Chapters 2 and 3. One can substitute any treatment in
its place. Chapter 11 on analytic sets is not needed for the later chapters, and is presented as
a subject of interest on its own merits. Chapter 13 on the L,-spaces can be bypassed in favor
of Chapter 14 or 15 except for a few points. Chapter 14 on Hilbert space could be undertaken
without covering Chapters 12 and 13 since all material on the spaces £ and Lo is repeated as
needed. Chapter 15 on Fourier series does not need the Hilbert space material in order to work,
but, since it is intended as a showplace for many of the methods, it does draw on many other
chapters for ideas and techniques.

The dependency chart gives a rough indication of how chapters depend on their predeces-
sors. A strong dependency is indicated by a bold arrow, a weaker one by a fine arrow. The ab-
sence of an arrow indicates that no more than peripheral references to the earlier chapters are
involved. Even when a strong dependency is indicated, the omission of certain sections near the
en d of a chapter should not cause difficulties in later chapters. In addition, we have provided
a number of concrete applications of abstract theorems. Many of these applications are not
needed in later chapters. Thus an instructor who wishes to include material from all chapters
in a year course for reasonably prepared students can do so by
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Background and motivational
material that can be picked up

as needed.

’ Chapter 3 F% Chapter 2 ‘

’ Chapter 6 F% Chdpter 5 H Chdpter 9 % Chapter 11 ‘

Chdpter 7

|

’ Chapter 8 ‘ Chapter 12 \

’ Chapter 13 Chapter 14

Depends to some extent
Chapter 15 . g
on many earlier sections.

Section 10.1 gcztltl)SSG ‘

1. Omitting some of the less central material such as 3.8 to 3.10, 5.10, 7.6 to 7.8, 8.4 to 8.7,
9.14 to 9.15, 10.2 to 10.6, and various material from the remaining chapters.

2. Sampling from the applications in Sections 9.8, 9.12, 9.14, 10.2 to 10.6, and 12.6.
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3. Pruning sections from chapters from which no arrow emanates.
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Chapter 1

BACKGROUND AND PREVIEW

In this chapter we provide a review and historical sampling of much of the background needed
to embark on a study of the theory of measure, integration, and functional analysis. The setting
here is the real line. In later chapters we place most of the theory in an abstract measure space
or in a metric space, but the ideas all originate in the situation on the real line. The reader will
have a background in elementary analysis, including such ideas as continuity, uniform conti-
nuity, convergence, uniform convergence, and sequence limits. The emphasis at this more ad-
vanced level shifts to a study of sets of real numbers and collections of sets, and this is what we
shall address first in Sections 1.1 and 1.2.

Some of the basic ideas from set theory needed throughout the text are introduced in this
chapter. The rudiments of cardinal and ordinal numbers appear in Sections 1.3 to 1.5. At cer-
tain points in the text we make extensive use of cardinality arguments and transfinite induc-
tion. The axiom of choice and its equivalent versions, Zermelo’s theorem and Zorn’s lemma,
are discussed in Sections 1.3, 1.5, and 1.11. This material should be sufficient to justify these
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ideas, although a proper course of instruction in these concepts is recommended. We have tried
to keep these considerations both minimal and intuitive. Our business is to develop the analysis
without long lingering on the set-theoretic methods that are needed.

In Sections 1.7 to 1.10 we present two contrasting and competing theories of measure on the
real line: the theory of Peano—Jordan content and the theory of Lebesgue measure. They serve
as an introduction to the general theory that will be developed in Chapters 2 and 3. All the
material here receives its full expression in the later chapters with complete proofs in the most
general setting. The reader who works through the concepts and exercises in this introductory
chapter should have an easier time of it when the abstract material is presented.

The notion of category plays a fundamental role in almost all aspects of analysis nowadays.
In Section 1.6 the basics of this theory on the real line are presented. We shall explore this in
much more detail in Chapter 10.

Borel sets and analytic sets play a key role in measure theory. These are covered briefly in
Sections 1.12 and 1.13. The latter contains only a report on the origins of the theory of analytic
sets. A full treatment appears in Chapter 11.

Sections 1.15 to 1.21 present the basics of integration theory on the real line. A quick review
of the integral as viewed by Newton, Cauchy, Riemann, Stieltjes, and Lebesgue is a useful pre-
lude to an approach to the modern theory of integration. We conclude with a generalized ver-
sion of the Riemann integral that helps to complete the picture on the real line. We will return
to these ideas in Section 5.10.

A brief study of functions of bounded variation appears in Section 1.14. This material, of-
ten omitted from an undergraduate education, is essential background for the student of general
measure theory and, in any case, cannot be avoided by anyone wishing to understand the differ-
entiation theory of real functions.
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The exercises are designed to allow the student to explore the technical details of the sub-
ject and grasp new methods. The chapter can be read superficially without doing many exer-
cises as a fast review of the background that is needed in order to appreciate the abstract the-
ory that follows. It may also be used more intensively as a short course in the basics of analysis
on the real line.

1.1 The Real Numbers

The reader is presumed to have a working knowledge of the real number system and its elemen-
tary properties. We use IR to denote the set of real numbers. The natural numbers (positive in-
tegers) are denoted as IN, the integers (positive, negative, and zero) as Z, and the rational num-
bers as Q. The complex numbers are written as C and will play a role at a number of points in
our investigation, even though the topic is called real analysis.

The extended real number system IR, that is, IR with the two infinities +0c0 and —oo ap-
pended, is used extensively in measure theory and analysis. One does not try to extend too
many of the real operations to R U {4+00} U {—00}: we shall write, though,

c+o0o=+00 and ¢—o00=—00

for any ¢ € IR.
Limits of sequences in IR are defined using the metric

p(z,y) =lz—yl (z,y €R).
This metric has the properties that one expects of a distance, properties that shall be used later
in Chapter 9 to develop the concept of an abstract metric space.

1. 0 < p(x,y) < 400, (z,y € R).
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2. p(z,y) =0 if and only if z = y.
3. p(z,y) = p(y, ).

4. p(z,y) < p(x,2) + p(2,y), (z,y,2 € R).

We recall that sequence convergence in IR means convergence relative to this distance. Thus

xn — x means that p(z,,x) = |z, — x| — 0. A sequence {z,} is convergent if and only if
that sequence is Cauchy, that is, if lim,, ;00 p(Zm, 2n) = 0. On the real line, sequences that
are monotone and bounded are necessarily convergent. Virtually all the analysis on the real line
develops from these fundamental notions.

1.1.1 Sets of real numbers

In the theory to be studied here, we require an extensive language for classifying sets of real
numbers. The reader is familiar, no doubt, with most of the following concepts, which we present
here to provide an easy reference and review. All these concepts will be generalized to an ab-
stract metric space in Chapter 9.

Set notation throughout is standard. Thus union and intersection are written A U B and
AN B. Set difference is written A \ B, and so the complement of a set A C IR will be written
IR \ A. It is convenient to have a shorthand for this sometimes and we use A as well for this.
The union and intersection of a family of sets A will appear as

UA and ﬂA.

Ae A AeA
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o A limit point of a set E or point of accumulation of a set F is any number that can be
expressed as the limit of a convergent sequence of distinct points in E.

e The closure of a set E is the union of E together with its limit points. One writes E for
the closure of F.

e An interior point of a set E is a point contained in an interval (a,b) that is itself entirely
contained in F.

e The interior of a set E is the set of interior points of E. One writes E° or perhaps int(E)
for the interior of FE.

e An isolated point of a set is a member of the set that is not a limit point of the set.

e A boundary point of a set is a point of accumulation of the set that is not also an interior
point of the set.

o A set GG of real numbers is open if every point of G is an interior point of G.
e A set F of real numbers is closed if I’ contains all its limit points.
e A set of real numbers is perfect if it is nonempty, closed, and has no isolated points.

e A set of real numbers is scattered if it is nonempty and every nonempty subset has at
least one isolated point.

e A set F of real numbers is dense in a set Ejy if every point in Ej is a limit point of the set
E.
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e A set E of real numbers is nowhere dense if for every interval (a,b) there is a subinterval
(¢,d) C (a,b) containing no points of E. (This is the same as asserting that E is dense in
no interval.)

e A set F of real numbers is a Cantor set if it is nonempty, bounded, perfect, and nowhere
dense.

In elementary courses one learns a variety of facts about these kinds of sets. We review
some of the more important of these here, and the exercises explore further facts. All will play
a role in our investigations of measure theory and integration theory on the real line.

1.1.2 Open sets and closed sets

To begin, one observes that the interval
(a,b) ={z:a <z <b}
is open and that the interval
[a,b] ={z:a <z < b}
is closed. The intervals
[a,b) ={z:a <z <b} and (a,b]={z:a <z <b}

are neither open, nor closed.

It is nearly universal now for mathematicians to lean toward the letter “G” to express open
sets and the letter “F” to represent closed sets. The folklore is that the custom came from the
French (fermé for closed) and the Germans (Gebiet for region). The following theorem de-
scribes the fundamental properties of the families of open and closed sets.
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Theorem 1.1: Let G denote the family of all open subsets of the real numbers and F the fam-
ily of all closed subsets of the real numbers. Then

1. FEach element in G is the complement of a unique element in F, and vice versa.
2. G is closed under arbitrary unions and finite intersections.
3. F is closed under finite unions and arbitrary intersections.

4. Every set G in G is the union of a sequence of disjoint open intervals (called the compo-
nents of G).

5. Given a collection C C G, there is a sequence {G1,G2,Gs, ...} of sets from C so that
Ue=Ja.
aeC =1

Much more complicated sets than merely open sets or closed sets arise in many questions in
analysis. If C is a class of sets, then frequently one is led to consider sets of the form

e e
=1

for a sequence of sets C; € C. We shall write C, for the resulting class. Similarly, we shall write
Cs for the class of sets of the form
(e.e]
E=(\Ci
i=1
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for some sequence of sets C; € C. The subscript o denotes a summation (i.e., union) and ¢ de-
notes an intersection (from the German word Durchschnitt).
Continuing in this fashion, we can construct classes of sets of greater and greater complexity

Ca C(S; Caa 060'7 Ca5> 660'67 CO’(SO’?"')

which may play a role in the analysis of the sets C.

These operations applied to the class G of open sets or the class F of closed sets result in
sets of great importance in analysis. The class G5 and the class F, are just the beginning of a
hierarchy of sets that form what is known as the Borel sets:

G CGs CGs6 CGsos C Gs060 - - -
and

FCFoe CFos C Foso CFosos----

A complete description of the class of Borel sets requires more apparatus than this might sug-
gest, and we discuss these ideas in Section 1.12 along with some historical notes. Some elemen-
tary exercises now follow that will get the novice reader started in thinking along these lines.

Exercises

1:1.1 The classical Cantor ternary set is the subset of [0, 1] defined as

oo

C’z{xé[O,l]:sz;Zforin:OOrQ}.

n=1
Show that C' is bounded, perfect, and nowhere dense (i.e., C'is a Cantor set in the terminology of
this section).
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1:1.2 List the intervals complementary to the Cantor ternary set in [0, 1] and sum their lengths.

1:1.3 Let

S dn
D= 0,1 : z = for j, =0or 1 ,.
{x €[0,1]: x ”E=1 gn for J or }
Show D+ D = {z+vy : z,y € D} = [0,1]. From this deduce, for the Cantor ternary set C, that

C+C=10,2|.
1:1.4 Criticize the following “argument” which is far too often seen:

“If G = (a,b) then G = [a,b]. Similarly, if G = [J;2,(as,b;) is an open set, then
G = U2, lai, b;]. It follows that an open set G and its closure G differ by at most a
countable set.” (?)

[Hint: Consider G = (0,1) \ C where C is the Cantor ternary set.]
1:1.5 Show that a scattered set is nowhere dense.
1:1.6 If f: IR — IR is continuous, then show that the set
f7HC) ={a: fla) =y e C}
is closed for every closed set C.
1:1.7 If f is continuous, then show that the set
f7UG) ={z: fla) =y € G}
is open for every open set G.
1:1.8) We define the oscillation of a real function f at a point = as

wy(e) = nf sup {|f(y) - f(2)] 19,2 € (@ =,z + )}

Show that f is continuous at z if and only if wy(z) = 0.
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1:1.9 Show that the set {z : ws(x) > €} is closed for each € > 0.

1:1.10 For an arbitrary function f, show that the set of points where f is discontinuous is of type F,.
1:1.11 For an arbitrary function f, show that the set of points where f is continuous is of type Gs.
1:1.12 Prove the elementary parts (1, 2, and 3) of Theorem 1.1.

1:1.13 Prove part 4 of Theorem 1.1. Every open set G is the union of a unique sequence of disjoint
open intervals, called the components of G.

1:1.14 Prove part 5 of Theorem 1.1 (Lindelof’s theorem). Given any collection C of open sets, there is a
sequence {G1,G2,Gs, ...} of sets from C so that

Ua= [j Gi.
ceC o=l

1:1.15 Show that every open interval may be expressed as the union of a sequence of closed intervals
with rational endpoints. Thus every open interval is a F,. (What about arbitrary open sets?)

1:1.16 What is G N F?

1:1.17 Show that F C Gs.

1:1.18 Show that G C F,.

1:1.19 Show that the complements of sets in G4 are in F,, and conversely.
1:1.20 Find a set in G5 N F, that is neither open nor closed.

1:1.21 Show that the set of zeros of a continuous function is a closed set. Given any closed set, show
how to construct a continuous function that has precisely this set as its set of zeros.
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1:1.22 A function f is upper semicontinuous at a point z if for every € > 0 there is a § > 0 so that if
|z —y| < § then f(y) > f(x) —e. Show that f is upper semicontinuous everywhere if and only if
for every real a the set {z : f(x) > a} is closed.

1:1.23 Formulate a version of Exercise 1:1.22 for the notion of lower semicontinuity. [Hint: It should
work in such a way that f is lower semicontinuous at a point if and only if — f is upper semicon-
tinuous there.]

1:1.24< Prove that, if f,, — f at every point, then

(o ol olNe 9]

{z: f@)>a} = |J U Nie: fule) > a+1/m}.

m=1r=1n=r

1:1.25 Let {f,} be a sequence of real functions. Show that the set E of points of convergence of the
sequence can be written in the form

E=1U N N {&:1f@ = fnl@) <

k=1 N=1n=N m=N

}.

Bl

1:1.26 Let {f,} be a sequence of continuous real functions. Show that the set of points of convergence
of the sequence is of type Fs.

1:1.27 Show that every scattered set is of type Gs.
1:1.28 Give an example of a scattered set that is not closed nor is its closure scattered.

1:1.29 Show that every set of real numbers can be written as the union of a set that is dense in itself
(i.e., has no isolated points) and a scattered set.

1:1.30 Show that the union of a finite number of Cantor sets is also a Cantor set.
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1.2 Compact Sets of Real Numbers

A closed, bounded set of real numbers is said to be compact. The concept of compactness plays
a fundamental role in nearly all aspects of analysis. On the real line the notions are particularly
easy to grasp and to apply. A basic theorem, often ascribed to Cantor (1845-1918), leads easily
to many applications.

Theorem 1.2 (Cantor) If {[a;,b;]} is a nested sequence of closed, bounded intervals whose

lengths shrink to zero, then the intersection
o

(i, bi]
i=1
contains a unique point.

Here the sequence of intervals is said to be nested if, for each n,

[an+17 bn+1] C [ana bn]
The easy proof of this theorem can be obtained either by using the fact that monotone, bounded
sequences converge (and hence a, and b, must converge) or by using the fact that Cauchy se-

quences converge (a sequence of points z,, chosen so that each z,, € [an,b,] must be Cauchy).
See Exercises 1:2.1 and 1:2.2.

1.2.1 Cousin covering theorem

Our next theorem is less well known. It was apparently first formulated by Pierre Cousin at
the end of the nineteenth century. It asserts that a collection of intervals that contains all suf-
ficiently small ones can be used to form a partition of any interval. The term partition, used
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often in elementary accounts of integration theory, here means a subdivision of an interval [a, b]
by points

a=xpg<x1<---<xp=0>

so that [x;—1,2;] (i = 1,2,...,n) are nonoverlapping subintervals of [a,b] whose union is all of
[a, b].

Theorem 1.3 (Cousin) Let C be a collection of closed subintervals of [a,b] with the property
that for every x € |a,b] there is a § > 0 so that C contains all intervals [c,d] C [a,b] that contain
x and have length smaller than 6. Then there are points

a=xp<r1<--<xTp=>0

from [a,b] so that each interval [x;—1,x;] € C for alli=1,2,...,n.

A proof is sketched in Exercises 1:2.3. Note that it can be made to follow from the Cantor
theorem. We introduce some language that is useful in applying this theorem. Let us say that
a collection of closed intervals C is full if it has the property of the theorem that it contains all
sufficiently small intervals at any point z. Let us say that C is additive if whenever [c,d] and
[d, e] are in C it follows that [c,e] € C. Then Cousin’s theorem implies that any collection C of
closed intervals that is both additive and full must contain all intervals.

1.2.2 Heine-Borel and Bolzano-Weierstrass theorems

Our remaining theorems are all consequences of the Cantor theorem or the Cousin theorem.
The most economical approach to proving each is apparently provided by the Cousin theorem.
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In each case, define a collection C of closed intervals, check that it is full and additive, and con-
clude that C contains all intervals. The exercises give the necessary hints on how to start as
well as explain the terminology.

Theorem 1.4 (Heine—Borel) FEuvery open covering of a closed and bounded set of real num-
bers has a finite subcover.

Theorem 1.5: Fvery collection of closed, bounded sets of real numbers that has the finite inter-
section property, has a nonempty intersection.

Theorem 1.6 (Bolzano—Weierstrass) A bounded, infinite set of real numbers has a limit
point.

By a compactness argument in the study of sets and functions on IR, we understand any
application of one of the theorems of this section. Often one can recognize a compactness ar-
gument most clearly in the process of reducing open covers to finite subcovers (Heine—Borel)
or passing from a sequence to a convergent subsequence (Bolzano—Weierstrass). The reader
is encouraged to try for a variety of proofs of the exercises that ask for a compactness argu-
ment. Hints are given that allow an application of Cousin’s theorem. But one should develop
the other techniques too, especially since in more general settings (metric spaces, topological
spaces) a version of Cousin’s theorem may not be available, and a version of the Heine—Borel
theorem or the Bolzano—Weierstrass theorem may be.

Exercises

1:2.1 If {[a;, b;]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection ﬂfil[ai, b;] contains a unique point. Prove this by showing that both lima; and lim b;
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exist and are equal.

1:2.2 If {[a;, b;]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection (;, [a;, b;] contains a unique point. Prove this by selecting a point z; in each [a;, b;]
and showing that {z;} is Cauchy.

1:2.3 Prove Theorem 1.3. [Hint: If there is no partition of [a, b], then either there is no partition of
[a, 3(a + b)] or else there is no partition of [ (a + b),b]. Construct a nested sequence of intervals
and obtain a contradiction.

1:2.4 Prove Theorem 1.3. [Hint: Consider the set S of all points z € (a, b] for which there is a partition
of [a,t] whenever t < z. Write zo = sup S. Then 2z € S (why?), zo > a (why?), and zg < b is
impossible (why?). Hence zp = b and the theorem is proved.]

1:2.5 Prove the Heine—Borel theorem: Let S be a collection of open sets covering a closed set E. Then,
for every interval [a,b], there is a finite subset of S that covers E N [a,b]. [Hint: Let C be the col-
lection of closed subintervals I of [a,b] for which there is a finite subset of S that covers E N I.]

1:2.6 Prove Theorem 1.5 directly from the Heine-Borel theorem. Here a family of sets has the finite in-
tersection property if every finite subfamily has a nonempty intersection. [Hint: Take complements
of the closed sets.]

1:2.7 Prove the Bolzano—Weierstrass theorem: If a set S has no limit points, then S N [a, b] is finite for
every interval [a,b]. [Hint: If z is not a limit point of S, then S N [¢, d] is finite for small intervals
containing .|

1:2.8 Show that if a function f : IR — IR is continuous, then it is uniformly continuous on every closed
bounded interval. [Hint: Let € > 0 and let C denote the set of intervals I such that, for some ¢ >
0, z,y € I and |z — y| < 0 implies |f(z) — f(y)| < e. Try also for other compactness arguments
than Cousin’s theorem.]
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1:2.9 If f is continuous it is bounded on every closed bounded interval. [Hint: Let C denote the set of
intervals I such that, for some M > 0 and all x € I, |f(z)| < M ]

1:2.10 Prove the intermediate-value property: If f is continuous and never vanishes, then it is either al-
ways positive or always negative. [Hint: Let C denote the set of intervals [a, b] such that f(b)f(a) >
0.]

1:2.11 If f : R — IR is continuous and K C IR is compact, show that f(K) is compact. Is f~!(K) also
necessarily compact?

1:2.12 [Dini] Suppose that f, : IR — IR is continuous for each n = 1,2,3,..., and fi(z) > fa(z) >
fa(z) > ... and lim,, ., f(x) = 0 at each point. Prove that the convergence is uniform on every
compact interval. [Hint: Consider all intervals [a, b] such that there is a p so that, for all n > p and
all x € [a,b], fn(x) <el]

1.3 Countable Sets

The cardinality of a finite set is merely the number of elements that the set possesses. For infi-
nite sets a similar notion was made available by the fundamental work of Cantor in the 1870s.
We can say that a finite set S has cardinality n if the elements of S can be placed in a one-one
correspondence with the elements of the set {1,2,3,4,...,n}.

Similarly, we say an infinite set S has cardinality N if the elements of S can be placed in a
one-one correspondence with the elements of the set IN of natural numbers. More simply put,
this says that the elements of S can be listed:

S = {81,52,83,...}.

A set is countable (some authors say it is “at most countable”) if it has finite cardinality or car-
dinality Ng. A set is uncountable if it is infinite but does not have cardinality Ng. The choice of
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the first letter in the Hebrew alphabet (aleph, X) to represent the transfinite cardinal numbers
was made quite carefully by Cantor himself, and the notation is standard today.

To illustrate that these notions are not trivial, Cantor showed that any interval of real num-
bers is uncountable. Thus the points of an interval cannot be written in a list. The easiest and
clearest proof is based on the fact that a nested sequence of intervals shrinks to a point. Cantor
based his proof on a diagonal argument.

Theorem 1.7 (Cantor) No interval [a,b] is countable.

Proof. Suppose not. Then the elements of [a,b] can be arranged into a sequence ¢y, co, s, . . ..
Select an interval [a;, b1] C [a,b] so that ¢; &€ [a1,b1] and so that by — a1 < 1/2. Continuing
inductively, we find a nested sequence of intervals {[a;, b;]} with lengths b; — a; < 2% — 0 and
with ¢; & [a;, b;] for each i.

By Theorem 1.2, there is a unique point ¢ € [a,b] common to each of the intervals. This
point cannot be equal to any ¢; and this is a contradiction, since the sequence ¢y, ¢, c3,... was
to contain every point of the interval [a, b]. |

A comment must be made here about the method of proof. It is undoubtedly true that
there is an interval [a;, b;] with the properties that we require. It is also true that there is an
interval [ag, ba] with the properties that we require. But is it legitimate to make an infinite
number of selections? One way to justify this is to make explicit in the rules of mathematics
that we can make such infinite selections. This is provided by the axiom of choice that can be
invoked when needed.
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1.3.1 The axiom of choice

1.8 (Axiom of Choice) Let C be any collection of nonempty sets. Then there is a function f
defined on C so that f(F) € E for each E € C.

The function f is called a choice function. That such a function exists is the same for us as
the claim that an element can be chosen from each of the (perhaps) infinitely many sets. The
original wording (translated from the German) of E. Zermelo from 1904 is instructive:

For every subset M’', imagine a corresponding element m/, which is itself a member
of M’ and may be called the “distinguished” [ausgezeichnete] element of M’.

We can invoke this axiom in order to justify the proof we have just given. Alternatively, we
can puzzle over whether, in this specific instance, we can obtain our proof without using this
principle. Here is how to avoid using the axiom of choice in this particular instance, replacing it
with an ordinary inductive argument. Suppose that 17, s, I3, ...is a list of all the closed inter-
vals with rational endpoints. (See Exercise 1:3.7.) Then in our proof we announce a recipe for
the choice of [a;, b;] at each stage. At the kth step in the proof we simply find the first interval
I, in the sequence Iy, I, I3, ...that has the three properties that

1. Ip C [ak_l,bk_l],
2. ¢ & Ip, and

3. the length of I, is less than U,
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Then we set [ay, by] = I,. Since, at each stage, only a finite number of intervals need be consid-
ered in order to arrive at our interval I, we need much less than the full force of the axiom of
choice to make the determination for us.

In most aspects of real analysis the use of the axiom of choice is unavoidable and is under-
taken without apology (or perhaps even without explicit mention). Later, in Section 1.10, when
we construct a nonmeasurable set we shall have to invoke the axiom of choice; there we shall
mention the fact quite clearly and comment on what is known about the situation if the axiom
of choice were not to be allowed. In many other parts of this work we shall follow the usual cus-
tom of real analysts and apply the axiom when needed without much concern as to whether it
can be avoided or not. This attitude has taken some time to develop. The early French analysts
Baire, Borel, and Lebesgue relied on the axiom implicitly in their early works and then, after
Zermelo gave a formal enunciation, reacted negatively. For most of his life Lebesgue remained
deeply opposed, on philosophical grounds, to its use.!

Further material on the axiom of choice appears in Section 1.11. This axiom is known to
be independent of the rest of the axioms of set theory known as ZF (Zermelo—Fraenkel set the-
ory, without the axiom of choice). Kurt Godel (1906-1978) showed that the axiom of choice is
consistent with the remaining axioms provided one assumes that the remaining axioms are con-
sistent themselves. (This is something that cannot be proved, only assumed.)

! For an interesting historical essay on the subject, see G. H. Moore, “Lebesgue’s measure problem and Zer-
melo’s axiom of choice: the mathematical effect of a philosophical dispute,” Ann. N. Y. Acad. Sci., 412 (1983),
pp- 129-154.
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Exercises
1:3.1 Show Theorem 1.7 using a diagonal argument (or find a proof in a standard text).
1:3.2 Prove that every subset of a countable set is countable.

1:3.3 Let S be countable and let S* (k € IN) denote the set of all sequences of length k formed of ele-
ments of S. Show that S* is countable.

1:3.4 Prove that a union of a sequence of countable sets is countable.

1:3.5 Let S be countable. Show that the set of all sequences of finite length formed of elements of S is
countable.

1:3.6 Show that the set of rational numbers is countable.

1:3.7{ Show that the set of intervals with rational numbers as endpoints is countable.
1:3.8 Show that the set of algebraic numbers is countable.

1:3.9 Show that every subset of a countable Gs set is again a countable Gs set.

1:3.10 Show that scattered sets are countable. [Hint: Consider all intervals (a,b) with rational end-
points such that S N (a,b) is countable.]

1:3.11 Show that every Cantor set is uncountable.

1:3.12 Prove that every infinite set contains a subset that is infinite and countable. [Hint: Use the ax-
iom of choice.]

1:3.13 (Cantor-Bendixson) Show that every closed set C' of real numbers can be written as the union of
a perfect set and a countable set. Moreover, there is only one decomposition of C' into two disjoint
sets, one perfect and the other countable.
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1:3.14 Show that the set of discontinuities of a monotone, nondecreasing function f is (at most) count-
able. [Hint: Use the fact that the right-hand and left-hand limits f(z 4+ 0) and f(z — 0) must both
exist. Consider the sets

{z: f(x+0)— f(z —0) < 1/n}.

1:3.15 Let C be any countable set. Show that there is a monotone function f such that C' is precisely
the set of discontinuities of f. [Hint: Write C' = ¢1,¢a,¢3,... and construct f(z) =3, _,27"]

1:3.16 Show that the family of all finite subsets of a countable set is countable.

1:3.17 Let E C IR and let A consist of the right-isolated points of E (that is, x € A if z € F and there
exists some y > x so that (z,y) N E = (). Show that A is countable.

1:3.18¢ Let S be a collection of nondegenerate closed intervals covering a set £ C IR. Prove that there
is a countable subset of S that also covers E. Show by example that there need not be a finite
subset of S that covers E. [Hint: You may wish to use Exercise 1:3.17.]

1.4 Uncountable Cardinals

Every set can be assigned a cardinal number that denotes its size. So far we have listed just the
cardinal numbers

0,1,2,3,4,...,Ng, (1)
and we recall that the set of real numbers must have a cardinality different from these since it
is infinite and is uncountable.

To handle cardinality questions for arbitrary sets, we require the following definitions and
facts that can be developed from the axioms of set theory. If the elements of two sets A and B
can be placed into a one-one correspondence, then we say that A and B are equivalent and we
write A ~ B. For any two sets A and B, only three possibilities can arise:
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1. A is equivalent to some subset of B and, in turn, B is equivalent to some subset of A.
2. A is equivalent to some subset of B, but B is equivalent to no subset of A.
3. B is equivalent to some subset of A, but A is equivalent to no subset of B.

The other possibility that might be imagined (that A is equivalent to no subset of B and B is
equivalent to no subset of A) can be proved not to occur. In the first of these three cases, it can
be proved that A ~ B (Bernstein’s theorem). These facts allow us to assign to every set A a
symbol called the cardinal number of A. Then, if a is the cardinal number of A and if b is the
cardinal number of B, cases 1, 2, and 3 can be described by the relations

1. a=b.

2. a<hb.

3. a>b.

This orders the cardinal numbers and allows us to extend the list (1) above. We write X; for
the next cardinal in the list,

0<1<2<3<4<--- <Ny <Ny,

and we write ¢ for the cardinality of the set IR. That the cardinals can be, in fact, written in
such a list and that there is a “next” cardinal is one of the most important features of this sub-
ject. (This is called a well-order and is discussed in the next section.)

Cantor presumed that ¢ = Ny but, despite great effort, was unable to prove it. It has since
been established that this cannot be determined within the axioms of set theory and that those
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axioms are consistent if it is assumed and also consistent if it is negated. (More precisely, if the
axioms of set theory are consistent, then they remain consistent if ¢ = Ny is added or if ¢ > Ny
is added.) The assumption that ¢ = R; is called the continuum hypothesis (abbreviated CH)
and is often assumed in order to construct exotic examples. But in all such cases one needs to
announce clearly that the construction has invoked the continuum hypothesis.

Here are some of the rudiments of cardinal arithmetic, adequate for all the analysis that we
shall pursue.

1. Let a and b be cardinal numbers for disjoint sets A and B. Then a + b denotes the cardi-
nality of the set AU B.

2. Let a and b be cardinal numbers for sets A and B. Then a - b denotes the cardinality of
the Cartesian product set A x B.

3. Let a; (¢« € I) be cardinal numbers for mutually disjoint sets A; (i € I). Then >, ; a;
denotes the cardinality of the set (J;c; 4i.

4. Let b be the cardinal number for a set B; then 2° denotes the cardinality of the set of all
subsets of B.

5. Finally, let a and b be cardinal numbers for sets A and B. Then a’ denotes the cardinal-
ity of the set of all functions mapping B into A.

For finite sets A and B, it is easy to count explicitly the sets in (iv) and (v). There are 2°
distinct subsets of B and there are a® distinct functions mapping B into A. Note that with
A = {0, 1}, so that a = 2, these two meanings in (iv) and (v) give the same cardinal in general.
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(That is, the set of all subsets of B is equivalent to the set of all mappings from B — {0,1}.
See Exercise 1:4.5.)

This suggests a notation that we shall use throughout. By A® we mean the set of func-
tions mapping B into A. Hence by 2P we mean the set of all subsets of B (sometimes called
the power set of B).

One might wish to know the following theorems:

Theorem 1.9: For every cardinal number a, 2% > a.
Theorem 1.10: Ny - Ny = Np.

Theorem 1.11: c+ Ny =c andc+c=c.
Theorem 1.12: c-c=c.

Theorem 1.13: 280 = ¢,

In particular, the continuum hypothesis can then be written as
CH: 2N0 = Nl

which is its most familiar form.

Exercises
1:4.1 Prove that (0,1) ~ R.
1:4.2 (Bernstein’s theorem) If A~ By C B and B ~ A; C A, then A ~ B. (Not at all an easy theorem.)
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1:4.3 Prove that any open interval is equivalent to any closed interval without invoking Bernstein’s the-
orem.

1:4.4 Show that every Cantor set has cardinality c.

1:4.5 Show that the set of all subsets of B is equivalent to the set of all mappings from B — {0,1}.
[Hint: Consider x , for any A C B.]

1:4.6 Show that the class of functions continuous on the interval [0, 1] has cardinality c. [Hint: If two
continuous functions agree on each rational in [0, 1], then they are identical.]

1:4.7{ Show that the family of all closed subsets of IR has cardinality c.

1.5 Transfinite Ordinals

The set IN of natural numbers is the simplest, nontrivial example of what we shall call a well-

ordered set. The usual order (that is, m < n) on the natural numbers has the following proper-
ties.

1. For any n € IN, it is not true that n < n.
2. For any distinct n,m € IN, either m < n or n < m.
3. For any n, m, p € IN, if n < m and m < p, then n < p.

4. Every nonempty subset S C IN has a first element (i.e., there is an element ng € S so that
no < s for every other element s of S).

It is precisely this set of properties that allows mathematical induction. Let P be a set of
integers with the following properties:
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1. 1eP.
2. For all n € IN, m € P for each m < n implies that n € P.

Then P = IN. Indeed, if P is not IN, then P’ = IN'\ P is nonempty and so has a first element
ng. That element cannot be 1. All predecessors of ngy are in P, which, by property (ii), implies
that ng € P, which is not possible.

Mathematical induction can be carried out on any set that has these four properties, and
so we are not confined to induction on integers. We say that a set X is linearly ordered and
that “<” is a strict linear order on X if properties (i), (ii), and (iii) hold for this set and this
relation. We say that X is well-ordered if all four properties (i)—(iv) hold. If X is well-ordered
and x¢ is in X, then the set of all elements that precede xg is called an initial segment of X.

The following two facts are fundamental. The first can be proved from the axiom of choice
and is, in fact, equivalent to the axiom of choice. The second essentially defines the countable
ordinals.

1.14 (Well-ordering principle) Fuvery set can be well-ordered. That is, for any nonempty
set X there is a relation < that is a strict linear order on X making it a well-ordered set.

1.15 (Countable ordinals) There exists an uncountable, well-ordered set X with an order
relation < so that

1. X has a last element denoted ().

2. For every xg € X with xg # Q) the initial segment
{reX: x <z}
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1s countable.

3. There is an element w € X such that
{reX:z<w}=1{0,1,2,3,...}

and < has its usual meaning in the set of nonnegative integers.

Thus the set {0,1,2,3,...} of nonnegative integers is an initial segment of X. We can think
of X as looking like a long list starting with 0 and continuing just until uncountably many ele-
ments have been listed:

0<1<2< - <w<wH+l<w+2< - <w?<w?4+1<---<Q.

We call all the elements of X ordinals. Each element prior to w is called a finite ordinal. Each
element from then, but prior to the last one 2, is called a countable ordinal. The element 2 is
called the first uncountable ordinal.

We can identify an element & with the initial segment consisting of the elements that pre-
cede it. Thus each element of X can be thought of as a subset of X, and we see that each ele-
ment (other than the last element ) is finite or countable considered as a set. The first infinite
ordinal is w and the first uncountable ordinal is Q2. The cardinality of Q (i.e., the cardinality of
X \ {2} or, the same thing, the cardinality of X) is X;. Unless we assume the continuum hy-
pothesis, we do not know if this is c.

One can develop a bit of intuition about this situation by making the following observation.
Any finite collection of finite ordinals &1, &9, ... &, will stay away from w in the sense that there
is a finite ordinal £ so that, for each 7,

& <€ <w.
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The reason for this is that a finite union of finite sets is again finite. Similarly any countable
collection of countable ordinals &1, &, ... will stay away from €2 in the sense that there is a
countable ordinal £ so that, for each i,

&< E<Q.

The reason for this is that a countable union of countable sets is again countable. This observa-
tion is most useful.

If we do assume the continuum hypothesis (CH), then the real numbers (or any set of car-
dinality 2%0) can be well-ordered as described above. If we do not wish to assume CH, we can
still perform a transfinite induction. In this case the version of Theorem 1.15 that we shall use
is the following:

Lemma 1.16: Any set X of cardinality 280 can be well-ordered in such a way that for each x €
X the set of all predecessors of x has cardinality strictly less than 20,

Every element, except the last, of a well-ordered set has an immediate successor defined as
the first element of the set of all later elements; for any x € X, if z is not the last element then
the immediate successor of  can be written as x + 1. Note, however, that elements need not
have immediate predecessors. Any element (w and € in Theorem 1.15 are examples) that does
not have an immediate predecessor is called a limit ordinal. We shall later define ordinals as
even and odd in a way that extends the usual meaning. The first element 0 and every limit or-
dinal is thought of as even, a successor of an even is odd, and a successor of an odd is even. In
this way every ordinal is designated as either odd or even.

This is admittedly a very sketchy introduction to the ordinals, but adequate for our pur-
poses. The serious reader will take a course in transfinite arithmetic or consult textbooks that
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take the time to develop this subject from first principles.

1.5.1 A transfinite covering argument

As an illustration of the method of transfinite induction, let us prove a simple covering property
of intervals using the ideas. We show that from a certain family of subintervals [z,y) C [a,b) a
disjoint subcover can be selected. The argument is, perhaps, the most transparent and intuitive
use of a transfinite sequence.

Lemma 1.17: Let C be a family of subintervals of [a,b) such that for every a < x < b there ex-
ists y, © < y < b so that [x,y) € C. Then there is a countable disjoint subfamily € C C so that

U [zy) =la,0).
[zy)e€

Proof. Set xg = a. By the hypotheses, we can choose an interval [zg,x1) € C and then an in-
terval [x1,z2) € C and, once again, [z, 23) € C, and so on. If z,, — b, then take & = {[x;_1,2;)}
and we are done. Otherwise, x,, — ¢ with ¢ < b. Then we can carry on with [¢,y1), [y1,y2), and
so on, until we eventually reach b.

Well not quite! The idea seems sound, but a proper expression of this requires a transfinite
sequence and transfinite induction. Set 2o = a and choose x1 < b so that [xg,x1) € C. Suppose
that for each ordinal a we have chosen z3 < b in such a way that [zg,241) € C for every
for which § 4+ 1 < a. Then we can choose z,, as follows: (i) If « is a limit ordinal, take x, =
SUPgq T3- (ii) If v is not a limit ordinal, let oy be the immediate predecessor of o and suppose
that o, < b. Take 2, < b so that [x4,,24) € C. The process stops if x4, = b.
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Inside each interval [z,_1,2,) We can choose distinct rationals. Hence this process must
stop in a countable number of steps. The family € = {[zo—1,24)} is a countable disjoint sub-
family of C so that U[x y)eg[:c,y) = [a, b). [ |

Exercises

1:5.1 Prove the assertion 1.17 without using transfinite induction.

[Hint: Say that a point z > a can be reached if there is a countable disjoint subfamily € C C so
that U[x ne€l®,y) O a, z). Take the sup of all points that can be reached.]

1:5.2 Define a “natural” order on IN x IN and determine if it is a well-ordering.

1:5.3 Let A and B be linearly ordered sets. A natural order (the lexicographic order) on A x B is de-
fined as (a,b) < (¢,d) if a X corif a = ¢ and b < d. Show that this is a linear order. If A, B are
well-ordered, then is this a well-ordering of A x B? Describe the initial segments of A x B.

1:5.4 A limit ordinal is an ordinal with no immediate predecessor. Show that w and €2 are limit ordi-
nals.

1.6 Category

Recall that a set E of real numbers is nowhere dense if for every open interval (a,b) there is a
subinterval (¢,d) C (a,b) that contains no points of E. That is, it is nowhere dense if it is dense
in no interval. Loosely, a nowhere dense set is shot full of holes.

A set is first category if it can be expressed as a union of a sequence of nowhere dense sets.
Any set not of the first category is said to be of the second category. Nowhere dense sets are, in
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a certain sense, very small. Thus first category sets are, in the same sense, merely small. Sec-
ond category sets are then not small. The complement of a first category set must apparently
be quite large; such sets are said to be residual. Here, this notion of smallness should be taken
as merely providing an intuitive guide to how these concepts can be interpreted.

1.6.1 The Baire category theorem on the real line

A fundamental theorem of René Baire (1874-1932) proved in 1899 asserts that every interval

is second category. (It was proved too by W. F. Osgood two years earlier, but credit is almost
always assigned to Baire.) Note that the proof here is nearly identical with the proof of the fact
that intervals are uncountable; indeed, this theorem contains Theorem 1.7.

Theorem 1.18 (Baire) No interval [a,b] is first category.

Proof. Suppose not. Then [a, b] can be written as the union of a sequence of sets C1,Co,Cs, . ..
each of which is nowhere dense. Select an interval [a1,b1] C [a, b] so that C1 N [a1,b1] = 0 and so
that by — a; < 1/2. Continuing inductively, we find a nested sequence of intervals {[a;, b;]} with
lengths b; — a; < 27% — 0 and with C; N [a;, b;] = 0 for each 1.

By Theorem 1.2, there is a unique point ¢ € [a,b] common to each of the intervals. This
point cannot belong to any C; and this is a contradiction, since every point of the interval [a, b]
was to belong to some member of the sequence C1,Co, Cs, .. .. |

A category argument is one that appeals to Baire’s theorem. One can prove the existence
of sets or points (or even functions) by these means. It has become one of the standard tools of
the analyst and plays a fundamental role in many investigations.
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1.6.2 An illustration of a category argument

We illustrate with an application showing that an important class of functions has certain con-
tinuity properties. A function f is said to be in the first class of Baire or Baire 1 if it can be
written as the pointwise limit of a sequence of continuous functions. A Baire 1 function need
not be continuous. Does a Baire 1 function have any points of continuity? The existence of
such points is obtained by a category argument.

Theorem 1.19 (Baire) FEvery Baire 1 function is continuous except at the points of a set of
the first category.

Proof. Recall that we use wy(x) to denote the oscillation of the function f at a point = (see
Exercise 1:1.8). The proof follows from the fact that for each € > 0 the set of points

F(e) ={z :wf(zx) > e}
is nowhere dense. [This is because the set of points of discontinuity of f can be written as [ J,-, F(%
Let I be any interval; let us search for a subinterval J C I that misses F(¢). The proof is com-

plete once we find J.
Let f be the pointwise limit of a sequence of continuous functions { f;} and write

oo 0
Bo= () ({z €I fi@) - ;@) <e/2}.
i=nj=n
Each set E, is closed (since the f; are continuous), and the sequence of sets E,, expands to
cover all of I (since {f;} converges everywhere). By Baire’s theorem (Theorem 1.18), there
must be an interval J C I and a set E,, dense in J. (Otherwise, we have just expressed I as the
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union of a sequence of nowhere dense sets, which is impossible.) But the sets here are closed, so
this means merely that E,, contains the interval J. For this n (which is now fixed) we have

|fi(z) = fi(@)] < /2
for all 7, j > n and for all x € J. In this inequality set 7 = n, and let i — oo to obtain
[f (@) = ful2)] < /2.
Now we see that J misses the set F'(¢). Our last inequality shows that f is close to the continu-

ous function f,, on J, too close to allow the oscillation of f at any point in J to be greater than
. Thus there is no point in J that is also in F'(e). [

Theorem 1.19 very nearly characterizes Baire 1 functions. One needs to state it in a more
general form, but one that can be proved by the same method. A function f is Baire 1 if and
only if f has a point of continuity relative to any perfect set.

Exercises

1:6.1 Prove Theorem 1.18 using induction in place of the axiom of choice. (We used this axiom here
without comment.) [Hint: See the discussion in Section 1.3.]

1:6.2 Show that every subset of a set of first category is first category.

1:6.3 Show that every finite set is nowhere dense, and show that every countable set is first category.
1:6.4 Show that every union of a sequence of sets of first category is first category.

1:6.5 Show that every intersection of a sequence of residual sets is residual.

1:6.6 Show that the complement of a set of second category may be either first or second category.

1:6.7 Prove that, if F is first category, then E is nowhere dense.
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1:6.8 Show that a set of type G5 that is dense (briefly, “a dense Gs5”) is residual.

1:6.9 Let S C IR. Call a point = € IR first category relative to S if there is some interval (a,b) contain-
ing = so that (a,b) N S is first category. Show that the set

{z € S: =z is first category relative to S}

is first category.
1:6.10 The rationals Q form a set of type F,. Are they of type G5?

1:6.11 Does there exist a function continuous at every rational and discontinuous at every irrational?
Does there exist a function continuous at every irrational and discontinuous at every rational?
[Hint: Use Exercises 1:1.10 and 1:1.11.]

1:6.12 Let f,, : [0,1] — IR be a sequence of continuous functions converging pointwise to a function
f. Prove that, if the convergence is uniform, then there is a finite number M so that |f,(x)| <
M for all n and all € [0, 1]. Even if the convergence is not uniform, show that there must be a
subinterval [a,b] C [0,1] and a finite number M so that |f,(x)| < M for all n and all x € [a, b].

1:6.13 Theorem 1.19 as stated does not characterize Baire 1 functions. Show that a function is discon-
tinuous except at the points of a first category set if and only if it is continuous at a dense set o