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13.3.1 Hölder’s inequality for p = 1, q = ∞ 891

13.4 Separability 892

13.5 The Spaces ℓ2 and L2 896

13.5.1 Continuous linear functionals on L2(X,M, µ) 901

13.6 Continuous Linear Functionals on Lp(µ) 904

13.7 The Lp Spaces (0 < p < 1) 910

13.7.1 Day’s Theorem 911

13.8 Relations 914

13.9 The Banach Algebra L1(IR) 919

13.10 Weak Sequential Convergence 927

13.11 Closed Subspaces of the Lp Spaces 931

13.12 Additional Problems for Chapter 13 937

14 HILBERT SPACES 940

14.1 Inner Products 941

14.2 Convex Sets 950

14.3 Continuous Linear Functionals 954

14.4 Orthogonal Series 957

14.4.1 Best approximation 961

14.4.2 Bessel’s inequality 963

14.4.3 Parseval’s identity 963

14.4.4 Maximal orthonormal systems in a separable Hilbert space 964

14.5 Weak Sequential Convergence 968

14.6 Compact Operators 974

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



xxi

14.7 Projections 979

14.8 Eigenvectors and Eigenvalues 984

14.9 Spectral Decomposition 991

14.10 Additional Problems for Chapter 14 997

15 FOURIER SERIES 1001

15.1 Notation and Terminology 1003

15.2 Dirichlet’s Kernel 1011

15.3 Fejér’s Kernel 1016

15.4 Convergence of the Cesàro Means 1021
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PREFACE
Preface to the second edition

This second edition is a corrected, revised, and reprinted version of our original textbook. We
are particularly grateful to readers who have sent in suggestions for corrections. Among them
we owe a huge debt to R. B. Burckel (Kansas State University). Many of his corrections and
suggestions are incorporated in this new edition. Thanks too to Keith Yates (Manchester Metropoli-
tan University) who, while working on some of the more difficult problems, found some further
errors.

Original Preface to first edition

In teaching first courses in real analysis over the years, we have found increasingly that the
classes form rather heterogeneous groups. It is no longer true that most of the students are
first-year graduate students in mathematics, presenting more or less common backgrounds for
the course. Indeed, nowadays we find diverse backgrounds and diverse objectives among stu-
dents in such classes. Some students are undergraduates, others are more advanced. Many stu-
dents are in other departments, such as statistics or engineering. Some students are seeking
terminal master’s degrees; others wish to become research mathematicians, not necessarily in
analysis.

xxiii
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xxiv Preface

We have tried to write a book that is suitable for students with minimal backgrounds, one
that does not presuppose that most students will eventually specialize in analysis.

We have pursued two goals. First, we would like all students to have an opportunity to ob-
tain an appreciation of the tools, methods, and history of the subject and a sense of how the
various topics we cover develop naturally. Our second objective is to provide those who will
study analysis further with the necessary background in measure, integration, differentiation,
metric space theory, and functional analysis.

To meet our first goal, we do several things. We provide a certain amount of historical per-
spective that may enable a reader to see why a theory was needed and sometimes, why the re-
searchers of the time had difficulty obtaining the “right” theory. We try to motivate topics be-
fore we develop them and try to motivate the proofs of some of the important theorems that
students often find difficult. We usually avoid proofs that may appear “magical” to students in
favor of more revealing proofs that may be a bit longer. We describe the interplay of various
subjects—measure, variation, integration, and differentiation. Finally, we indicate applications
of abstract theorems such as the contraction mapping principle, the Baire category theorem,
Ascoli’s theorem, Hahn-Banach theorem, and the open mapping theorem, to concrete settings
of various sorts.

We consider the exercise sections an important part of the book. Some of the exercises do
no more than ask the reader to complete a proof given in the text, or to prove an easy result
that we merely state. Others involve simple applications of the theorems. A number are more
ambitious. Some of these exercises extend the theory that we developed or present some related
material. Others provide examples that we believe are interesting and revealing, but may not
be well known. In general, the problems at the ends of the chapters are more substantial. A few
of these problems can form the basis of projects for further study. We have marked exercises
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Preface xxv

that are referenced in later parts of the book with a ♦ to indicate this fact.
When we poll our students at the beginning of the course, we find there are a number of

topics that some students have seen before, but many others have not. Examples are the rudi-
ments of metric space theory, Lebesgue measure in IR1, Riemann–Stieltjes integration, bounded
variation and the elements of set theory (Zorn’s lemma, well-ordering, and others). In Chap-
ter 1, we sketch some of this material. These sections can be picked up as needed, rather than
covered at the beginning of the course. We do suggest that the reader browse through Chap-
ter 1 at the beginning, however, as it provides some historical perspective.

Text Organization

Many graduate textbooks are finely crafted works as intricate as a fabric. If some thread is
pulled too severely, the whole structure begins to unravel. We have hoped to avoid this. It is
reasonably safe to skip over many sections (within obvious limitations) and construct a course
that covers your own choice of topics, with little fear that the student will be forced to cross
reference back through a maze of earlier skipped sections.

A word about the order of the chapters. The first chapter is intended as background read-
ing. Some topics are included to help motivate ideas that reappear later in a more abstract
setting. Zorn’s lemma and the axiom of choice will be needed soon enough, and a classroom
reference to Sections 1.3, 1.5 and 1.11 can be used.

The course can easily start with the measure theory of Chapter 2 and proceed from there.
We chose to cover measure and integration before metric space theory because so many impor-
tant metric spaces involve measurable or integrable functions. The rudiments of metric space
theory are needed in Chapter 3, however, so we begin that chapter with a short section contain-

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



xxvi Preface

ing the necessary terminology.
Instructors who wish to emphasize functional analysis and reach Chapter 9 quickly can do

so by omitting much of the material in the earlier chapters. One possibility is to cover Sections
2.1 to 2.6, 4.1, 4.2, and Chapter 5 and then proceed directly to Chapter 9. This will provide
enough background in measure and integration to prepare the student for the later chapters.

Chapter 6 on the Fubini and Tonelli theorems is used only occasionally in the sequel (Sec-
tions 8.4 and 13.9). This is presented from the outer measure point of view because it fits bet-
ter with the philosophy developed in Chapters 2 and 3. One can substitute any treatment in
its place. Chapter 11 on analytic sets is not needed for the later chapters, and is presented as
a subject of interest on its own merits. Chapter 13 on the Lp–spaces can be bypassed in favor
of Chapter 14 or 15 except for a few points. Chapter 14 on Hilbert space could be undertaken
without covering Chapters 12 and 13 since all material on the spaces ℓ2 and L2 is repeated as
needed. Chapter 15 on Fourier series does not need the Hilbert space material in order to work,
but, since it is intended as a showplace for many of the methods, it does draw on many other
chapters for ideas and techniques.

The dependency chart gives a rough indication of how chapters depend on their predeces-
sors. A strong dependency is indicated by a bold arrow, a weaker one by a fine arrow. The ab-
sence of an arrow indicates that no more than peripheral references to the earlier chapters are
involved. Even when a strong dependency is indicated, the omission of certain sections near the
en d of a chapter should not cause difficulties in later chapters. In addition, we have provided
a number of concrete applications of abstract theorems. Many of these applications are not
needed in later chapters. Thus an instructor who wishes to include material from all chapters
in a year course for reasonably prepared students can do so by
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Preface xxvii

Chapter 1
Background and motivational
material that can be picked up
as needed.

Chapter 3 Chapter 2

Chapter 4

Chapter 6 Chapter 5 Chapter 9 Chapter 11

Chapter 7 Section 10.1 Sections
10.2-10.6

Chapter 8 Chapter 12

Chapter 13 Chapter 14

Chapter 15
Depends to some extent
on many earlier sections.

�

� -

?

?

?

? ?

-

?

-

?

-

HHHHj

���*

HHHHj

1. Omitting some of the less central material such as 3.8 to 3.10, 5.10, 7.6 to 7.8, 8.4 to 8.7,
9.14 to 9.15, 10.2 to 10.6, and various material from the remaining chapters.

2. Sampling from the applications in Sections 9.8, 9.12, 9.14, 10.2 to 10.6, and 12.6.
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xxviii Preface

3. Pruning sections from chapters from which no arrow emanates.
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Chapter 1

BACKGROUND AND PREVIEW

In this chapter we provide a review and historical sampling of much of the background needed
to embark on a study of the theory of measure, integration, and functional analysis. The setting
here is the real line. In later chapters we place most of the theory in an abstract measure space
or in a metric space, but the ideas all originate in the situation on the real line. The reader will
have a background in elementary analysis, including such ideas as continuity, uniform conti-
nuity, convergence, uniform convergence, and sequence limits. The emphasis at this more ad-
vanced level shifts to a study of sets of real numbers and collections of sets, and this is what we
shall address first in Sections 1.1 and 1.2.

Some of the basic ideas from set theory needed throughout the text are introduced in this
chapter. The rudiments of cardinal and ordinal numbers appear in Sections 1.3 to 1.5. At cer-
tain points in the text we make extensive use of cardinality arguments and transfinite induc-
tion. The axiom of choice and its equivalent versions, Zermelo’s theorem and Zorn’s lemma,
are discussed in Sections 1.3, 1.5, and 1.11. This material should be sufficient to justify these

1
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2 Background and Preview Chapter 1

ideas, although a proper course of instruction in these concepts is recommended. We have tried
to keep these considerations both minimal and intuitive. Our business is to develop the analysis
without long lingering on the set-theoretic methods that are needed.

In Sections 1.7 to 1.10 we present two contrasting and competing theories of measure on the
real line: the theory of Peano–Jordan content and the theory of Lebesgue measure. They serve
as an introduction to the general theory that will be developed in Chapters 2 and 3. All the
material here receives its full expression in the later chapters with complete proofs in the most
general setting. The reader who works through the concepts and exercises in this introductory
chapter should have an easier time of it when the abstract material is presented.

The notion of category plays a fundamental role in almost all aspects of analysis nowadays.
In Section 1.6 the basics of this theory on the real line are presented. We shall explore this in
much more detail in Chapter 10.

Borel sets and analytic sets play a key role in measure theory. These are covered briefly in
Sections 1.12 and 1.13. The latter contains only a report on the origins of the theory of analytic
sets. A full treatment appears in Chapter 11.

Sections 1.15 to 1.21 present the basics of integration theory on the real line. A quick review
of the integral as viewed by Newton, Cauchy, Riemann, Stieltjes, and Lebesgue is a useful pre-
lude to an approach to the modern theory of integration. We conclude with a generalized ver-
sion of the Riemann integral that helps to complete the picture on the real line. We will return
to these ideas in Section 5.10.

A brief study of functions of bounded variation appears in Section 1.14. This material, of-
ten omitted from an undergraduate education, is essential background for the student of general
measure theory and, in any case, cannot be avoided by anyone wishing to understand the differ-
entiation theory of real functions.
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Section 1.1. The Real Numbers 3

The exercises are designed to allow the student to explore the technical details of the sub-
ject and grasp new methods. The chapter can be read superficially without doing many exer-
cises as a fast review of the background that is needed in order to appreciate the abstract the-
ory that follows. It may also be used more intensively as a short course in the basics of analysis
on the real line.

1.1 The Real Numbers

The reader is presumed to have a working knowledge of the real number system and its elemen-
tary properties. We use IR to denote the set of real numbers. The natural numbers (positive in-
tegers) are denoted as IN, the integers (positive, negative, and zero) as Z, and the rational num-
bers as Q. The complex numbers are written as C and will play a role at a number of points in
our investigation, even though the topic is called real analysis.

The extended real number system IR, that is, IR with the two infinities +∞ and −∞ ap-
pended, is used extensively in measure theory and analysis. One does not try to extend too
many of the real operations to IR ∪ {+∞} ∪ {−∞}: we shall write, though,

c+ ∞ = +∞ and c−∞ = −∞
for any c ∈ IR.

Limits of sequences in IR are defined using the metric

ρ(x, y) = |x− y| (x, y ∈ IR).

This metric has the properties that one expects of a distance, properties that shall be used later
in Chapter 9 to develop the concept of an abstract metric space.

1. 0 ≤ ρ(x, y) < +∞, (x, y ∈ IR).

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



4 Background and Preview Chapter 1

2. ρ(x, y) = 0 if and only if x = y.

3. ρ(x, y) = ρ(y, x).

4. ρ(x, y) ≤ ρ(x, z) + ρ(z, y), (x, y, z ∈ IR).

We recall that sequence convergence in IR means convergence relative to this distance. Thus
xn → x means that ρ(xn, x) = |xn − x| → 0. A sequence {xn} is convergent if and only if
that sequence is Cauchy, that is, if limm,n→∞ ρ(xm, xn) = 0. On the real line, sequences that
are monotone and bounded are necessarily convergent. Virtually all the analysis on the real line
develops from these fundamental notions.

1.1.1 Sets of real numbers

In the theory to be studied here, we require an extensive language for classifying sets of real
numbers. The reader is familiar, no doubt, with most of the following concepts, which we present
here to provide an easy reference and review. All these concepts will be generalized to an ab-
stract metric space in Chapter 9.

Set notation throughout is standard. Thus union and intersection are written A ∪ B and
A ∩ B. Set difference is written A \ B, and so the complement of a set A ⊂ IR will be written
IR \ A. It is convenient to have a shorthand for this sometimes and we use Ã as well for this.
The union and intersection of a family of sets A will appear as

⋃

A∈A
A and

⋂

A∈A
A.
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Section 1.1. The Real Numbers 5

• A limit point of a set E or point of accumulation of a set E is any number that can be
expressed as the limit of a convergent sequence of distinct points in E.

• The closure of a set E is the union of E together with its limit points. One writes E for
the closure of E.

• An interior point of a set E is a point contained in an interval (a, b) that is itself entirely
contained in E.

• The interior of a set E is the set of interior points of E. One writes Eo or perhaps int(E)
for the interior of E.

• An isolated point of a set is a member of the set that is not a limit point of the set.

• A boundary point of a set is a point of accumulation of the set that is not also an interior
point of the set.

• A set G of real numbers is open if every point of G is an interior point of G.

• A set F of real numbers is closed if F contains all its limit points.

• A set of real numbers is perfect if it is nonempty, closed, and has no isolated points.

• A set of real numbers is scattered if it is nonempty and every nonempty subset has at
least one isolated point.

• A set E of real numbers is dense in a set E0 if every point in E0 is a limit point of the set
E.
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6 Background and Preview Chapter 1

• A set E of real numbers is nowhere dense if for every interval (a, b) there is a subinterval
(c, d) ⊂ (a, b) containing no points of E. (This is the same as asserting that E is dense in
no interval.)

• A set E of real numbers is a Cantor set if it is nonempty, bounded, perfect, and nowhere
dense.

In elementary courses one learns a variety of facts about these kinds of sets. We review
some of the more important of these here, and the exercises explore further facts. All will play
a role in our investigations of measure theory and integration theory on the real line.

1.1.2 Open sets and closed sets

To begin, one observes that the interval

(a, b) = {x : a < x < b}
is open and that the interval

[a, b] = {x : a ≤ x ≤ b}
is closed. The intervals

[a, b) = {x : a ≤ x < b} and (a, b] = {x : a < x ≤ b}
are neither open, nor closed.

It is nearly universal now for mathematicians to lean toward the letter “G” to express open
sets and the letter “F” to represent closed sets. The folklore is that the custom came from the
French (fermé for closed) and the Germans (Gebiet for region). The following theorem de-
scribes the fundamental properties of the families of open and closed sets.
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Section 1.1. The Real Numbers 7

Theorem 1.1: Let G denote the family of all open subsets of the real numbers and F the fam-
ily of all closed subsets of the real numbers. Then

1. Each element in G is the complement of a unique element in F , and vice versa.

2. G is closed under arbitrary unions and finite intersections.

3. F is closed under finite unions and arbitrary intersections.

4. Every set G in G is the union of a sequence of disjoint open intervals (called the compo-
nents of G).

5. Given a collection C ⊂ G, there is a sequence {G1, G2, G3, . . . } of sets from C so that

⋃

G∈C
G =

∞⋃

i=1

Gi.

Much more complicated sets than merely open sets or closed sets arise in many questions in
analysis. If C is a class of sets, then frequently one is led to consider sets of the form

E =
∞⋃

i=1

Ci

for a sequence of sets Ci ∈ C. We shall write Cσ for the resulting class. Similarly, we shall write
Cδ for the class of sets of the form

E =
∞⋂

i=1

Ci
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8 Background and Preview Chapter 1

for some sequence of sets Ci ∈ C. The subscript σ denotes a summation (i.e., union) and δ de-
notes an intersection (from the German word Durchschnitt).

Continuing in this fashion, we can construct classes of sets of greater and greater complexity

C, Cδ, Cσ, Cδσ, Cσδ, Cδσδ, Cσδσ, . . . ,

which may play a role in the analysis of the sets C.
These operations applied to the class G of open sets or the class F of closed sets result in

sets of great importance in analysis. The class Gδ and the class Fσ are just the beginning of a
hierarchy of sets that form what is known as the Borel sets:

G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ Gδσδσ . . .

and

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ Fσδσδ . . . .

A complete description of the class of Borel sets requires more apparatus than this might sug-
gest, and we discuss these ideas in Section 1.12 along with some historical notes. Some elemen-
tary exercises now follow that will get the novice reader started in thinking along these lines.

Exercises

1:1.1 The classical Cantor ternary set is the subset of [0, 1] defined as

C =

{
x ∈ [0, 1] : x =

∞∑

n=1

in
3n

for in = 0 or 2

}
.

Show that C is bounded, perfect, and nowhere dense (i.e., C is a Cantor set in the terminology of
this section).
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1:1.2 List the intervals complementary to the Cantor ternary set in [0, 1] and sum their lengths.

1:1.3 Let

D =

{
x ∈ [0, 1] : x =

∞∑

n=1

jn
3n

for jn = 0 or 1

}
.

Show D + D = {x + y : x, y ∈ D} = [0, 1]. From this deduce, for the Cantor ternary set C, that
C + C = [0, 2].

1:1.4 Criticize the following “argument” which is far too often seen:

“If G = (a, b) then G = [a, b]. Similarly, if G =
⋃∞

i=1(ai, bi) is an open set, then
G =

⋃∞
i=1[ai, bi]. It follows that an open set G and its closure G differ by at most a

countable set.”(?)

[Hint: Consider G = (0, 1) \ C where C is the Cantor ternary set.]

1:1.5 Show that a scattered set is nowhere dense.

1:1.6 If f : IR → IR is continuous, then show that the set

f−1(C) = {x : f(x) = y ∈ C}
is closed for every closed set C.

1:1.7 If f is continuous, then show that the set

f−1(G) = {x : f(x) = y ∈ G}
is open for every open set G.

1:1.8♦ We define the oscillation of a real function f at a point x as

ωf (x) = inf
δ>0

sup {|f(y) − f(z)| : y, z ∈ (x− δ, x+ δ)} .

Show that f is continuous at x if and only if ωf (x) = 0.
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10 Background and Preview Chapter 1

1:1.9 Show that the set {x : ωf (x) ≥ ε} is closed for each ε ≥ 0.

1:1.10 For an arbitrary function f , show that the set of points where f is discontinuous is of type Fσ.

1:1.11 For an arbitrary function f , show that the set of points where f is continuous is of type Gδ.

1:1.12 Prove the elementary parts (1, 2, and 3) of Theorem 1.1.

1:1.13 Prove part 4 of Theorem 1.1. Every open set G is the union of a unique sequence of disjoint
open intervals, called the components of G.

1:1.14 Prove part 5 of Theorem 1.1 (Lindelöf’s theorem). Given any collection C of open sets, there is a
sequence {G1, G2, G3, . . . } of sets from C so that

⋃

G∈C
G =

∞⋃

i=1

Gi.

1:1.15 Show that every open interval may be expressed as the union of a sequence of closed intervals
with rational endpoints. Thus every open interval is a Fσ. (What about arbitrary open sets?)

1:1.16 What is G ∩ F?

1:1.17 Show that F ⊂ Gδ.

1:1.18 Show that G ⊂ Fσ.

1:1.19 Show that the complements of sets in Gδ are in Fσ, and conversely.

1:1.20 Find a set in Gδ ∩ Fσ that is neither open nor closed.

1:1.21 Show that the set of zeros of a continuous function is a closed set. Given any closed set, show
how to construct a continuous function that has precisely this set as its set of zeros.
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Section 1.1. The Real Numbers 11

1:1.22 A function f is upper semicontinuous at a point x if for every ε > 0 there is a δ > 0 so that if
|x − y| < δ then f(y) > f(x) − ε. Show that f is upper semicontinuous everywhere if and only if
for every real α the set {x : f(x) ≥ α} is closed.

1:1.23 Formulate a version of Exercise 1:1.22 for the notion of lower semicontinuity. [Hint: It should
work in such a way that f is lower semicontinuous at a point if and only if −f is upper semicon-
tinuous there.]

1:1.24♦ Prove that, if fn → f at every point, then

{x : f(x) > α} =

∞⋃

m=1

∞⋃

r=1

∞⋂

n=r

{x : fn(x) ≥ α+ 1/m}.

1:1.25 Let {fn} be a sequence of real functions. Show that the set E of points of convergence of the
sequence can be written in the form

E =
∞⋂

k=1

∞⋃

N=1

∞⋂

n=N

∞⋂

m=N

{
x : |fn(x) − fm(x)| ≤ 1

k

}
.

1:1.26 Let {fn} be a sequence of continuous real functions. Show that the set of points of convergence
of the sequence is of type Fσδ.

1:1.27 Show that every scattered set is of type Gδ.

1:1.28 Give an example of a scattered set that is not closed nor is its closure scattered.

1:1.29 Show that every set of real numbers can be written as the union of a set that is dense in itself
(i.e., has no isolated points) and a scattered set.

1:1.30 Show that the union of a finite number of Cantor sets is also a Cantor set.
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12 Background and Preview Chapter 1

1.2 Compact Sets of Real Numbers

A closed, bounded set of real numbers is said to be compact. The concept of compactness plays
a fundamental role in nearly all aspects of analysis. On the real line the notions are particularly
easy to grasp and to apply. A basic theorem, often ascribed to Cantor (1845–1918), leads easily
to many applications.

Theorem 1.2 (Cantor) If {[ai, bi]} is a nested sequence of closed, bounded intervals whose
lengths shrink to zero, then the intersection

∞⋂

i=1

[ai, bi]

contains a unique point.

Here the sequence of intervals is said to be nested if, for each n,

[an+1, bn+1] ⊂ [an, bn].

The easy proof of this theorem can be obtained either by using the fact that monotone, bounded
sequences converge (and hence an and bn must converge) or by using the fact that Cauchy se-
quences converge (a sequence of points xn chosen so that each xn ∈ [an, bn] must be Cauchy).
See Exercises 1:2.1 and 1:2.2.

1.2.1 Cousin covering theorem

Our next theorem is less well known. It was apparently first formulated by Pierre Cousin at
the end of the nineteenth century. It asserts that a collection of intervals that contains all suf-
ficiently small ones can be used to form a partition of any interval. The term partition, used
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Section 1.2. Compact Sets of Real Numbers 13

often in elementary accounts of integration theory, here means a subdivision of an interval [a, b]
by points

a = x0 < x1 < · · · < xn = b

so that [xi−1, xi] (i = 1, 2, . . . , n) are nonoverlapping subintervals of [a, b] whose union is all of
[a, b].

Theorem 1.3 (Cousin) Let C be a collection of closed subintervals of [a, b] with the property
that for every x ∈ [a, b] there is a δ > 0 so that C contains all intervals [c, d] ⊂ [a, b] that contain
x and have length smaller than δ. Then there are points

a = x0 < x1 < · · · < xn = b

from [a, b] so that each interval [xi−1, xi] ∈ C for all i = 1, 2, . . . , n.

A proof is sketched in Exercises 1:2.3. Note that it can be made to follow from the Cantor
theorem. We introduce some language that is useful in applying this theorem. Let us say that
a collection of closed intervals C is full if it has the property of the theorem that it contains all
sufficiently small intervals at any point x. Let us say that C is additive if whenever [c, d] and
[d, e] are in C it follows that [c, e] ∈ C. Then Cousin’s theorem implies that any collection C of
closed intervals that is both additive and full must contain all intervals.

1.2.2 Heine-Borel and Bolzano-Weierstrass theorems

Our remaining theorems are all consequences of the Cantor theorem or the Cousin theorem.
The most economical approach to proving each is apparently provided by the Cousin theorem.
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14 Background and Preview Chapter 1

In each case, define a collection C of closed intervals, check that it is full and additive, and con-
clude that C contains all intervals. The exercises give the necessary hints on how to start as
well as explain the terminology.

Theorem 1.4 (Heine–Borel) Every open covering of a closed and bounded set of real num-
bers has a finite subcover.

Theorem 1.5: Every collection of closed, bounded sets of real numbers that has the finite inter-
section property, has a nonempty intersection.

Theorem 1.6 (Bolzano–Weierstrass) A bounded, infinite set of real numbers has a limit
point.

By a compactness argument in the study of sets and functions on IR, we understand any
application of one of the theorems of this section. Often one can recognize a compactness ar-
gument most clearly in the process of reducing open covers to finite subcovers (Heine–Borel)
or passing from a sequence to a convergent subsequence (Bolzano–Weierstrass). The reader
is encouraged to try for a variety of proofs of the exercises that ask for a compactness argu-
ment. Hints are given that allow an application of Cousin’s theorem. But one should develop
the other techniques too, especially since in more general settings (metric spaces, topological
spaces) a version of Cousin’s theorem may not be available, and a version of the Heine–Borel
theorem or the Bolzano–Weierstrass theorem may be.

Exercises

1:2.1 If {[ai, bi]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection

⋂∞
i=1[ai, bi] contains a unique point. Prove this by showing that both limai and lim bi
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exist and are equal.

1:2.2 If {[ai, bi]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection

⋂∞
i=1[ai, bi] contains a unique point. Prove this by selecting a point xi in each [ai, bi]

and showing that {xi} is Cauchy.

1:2.3 Prove Theorem 1.3. [Hint: If there is no partition of [a, b], then either there is no partition of
[a, 1

2 (a + b)] or else there is no partition of [12 (a + b), b]. Construct a nested sequence of intervals
and obtain a contradiction.]

1:2.4 Prove Theorem 1.3. [Hint: Consider the set S of all points z ∈ (a, b] for which there is a partition
of [a, t] whenever t < z. Write z0 = supS. Then z0 ∈ S (why?), z0 > a (why?), and z0 < b is
impossible (why?). Hence z0 = b and the theorem is proved.]

1:2.5 Prove the Heine–Borel theorem: Let S be a collection of open sets covering a closed set E. Then,
for every interval [a, b], there is a finite subset of S that covers E ∩ [a, b]. [Hint: Let C be the col-
lection of closed subintervals I of [a, b] for which there is a finite subset of S that covers E ∩ I.]

1:2.6 Prove Theorem 1.5 directly from the Heine–Borel theorem. Here a family of sets has the finite in-
tersection property if every finite subfamily has a nonempty intersection. [Hint: Take complements
of the closed sets.]

1:2.7 Prove the Bolzano–Weierstrass theorem: If a set S has no limit points, then S ∩ [a, b] is finite for
every interval [a, b]. [Hint: If x is not a limit point of S, then S ∩ [c, d] is finite for small intervals
containing x.]

1:2.8 Show that if a function f : IR → IR is continuous, then it is uniformly continuous on every closed
bounded interval. [Hint: Let ε > 0 and let C denote the set of intervals I such that, for some δ >
0, x, y ∈ I and |x − y| < δ implies |f(x) − f(y)| < ε. Try also for other compactness arguments
than Cousin’s theorem.]
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1:2.9 If f is continuous it is bounded on every closed bounded interval. [Hint: Let C denote the set of
intervals I such that, for some M > 0 and all x ∈ I, |f(x)| ≤M .]

1:2.10 Prove the intermediate-value property: If f is continuous and never vanishes, then it is either al-
ways positive or always negative. [Hint: Let C denote the set of intervals [a, b] such that f(b)f(a) >
0.]

1:2.11 If f : IR → IR is continuous and K ⊂ IR is compact, show that f(K) is compact. Is f−1(K) also
necessarily compact?

1:2.12 [Dini] Suppose that fn : IR → IR is continuous for each n = 1, 2, 3, . . . , and f1(x) ≥ f2(x) ≥
f3(x) ≥ . . . and limn→∞ fn(x) = 0 at each point. Prove that the convergence is uniform on every
compact interval. [Hint: Consider all intervals [a, b] such that there is a p so that, for all n ≥ p and
all x ∈ [a, b], fn(x) < ε.]

1.3 Countable Sets

The cardinality of a finite set is merely the number of elements that the set possesses. For infi-
nite sets a similar notion was made available by the fundamental work of Cantor in the 1870s.
We can say that a finite set S has cardinality n if the elements of S can be placed in a one-one
correspondence with the elements of the set {1, 2, 3, 4, . . . , n}.

Similarly, we say an infinite set S has cardinality ℵ0 if the elements of S can be placed in a
one-one correspondence with the elements of the set IN of natural numbers. More simply put,
this says that the elements of S can be listed:

S = {s1, s2, s3, . . . }.
A set is countable (some authors say it is “at most countable”) if it has finite cardinality or car-
dinality ℵ0. A set is uncountable if it is infinite but does not have cardinality ℵ0. The choice of
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Section 1.3. Countable Sets 17

the first letter in the Hebrew alphabet (aleph, ℵ) to represent the transfinite cardinal numbers
was made quite carefully by Cantor himself, and the notation is standard today.

To illustrate that these notions are not trivial, Cantor showed that any interval of real num-
bers is uncountable. Thus the points of an interval cannot be written in a list. The easiest and
clearest proof is based on the fact that a nested sequence of intervals shrinks to a point. Cantor
based his proof on a diagonal argument.

Theorem 1.7 (Cantor) No interval [a, b] is countable.

Proof. Suppose not. Then the elements of [a, b] can be arranged into a sequence c1, c2, c3, . . . .
Select an interval [a1, b1] ⊂ [a, b] so that c1 6∈ [a1, b1] and so that b1 − a1 < 1/2. Continuing
inductively, we find a nested sequence of intervals {[ai, bi]} with lengths bi − ai < 2−i → 0 and
with ci 6∈ [ai, bi] for each i.

By Theorem 1.2, there is a unique point c ∈ [a, b] common to each of the intervals. This
point cannot be equal to any ci and this is a contradiction, since the sequence c1, c2, c3, . . . was
to contain every point of the interval [a, b]. �

A comment must be made here about the method of proof. It is undoubtedly true that
there is an interval [a1, b1] with the properties that we require. It is also true that there is an
interval [a2, b2] with the properties that we require. But is it legitimate to make an infinite
number of selections? One way to justify this is to make explicit in the rules of mathematics
that we can make such infinite selections. This is provided by the axiom of choice that can be
invoked when needed.
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1.3.1 The axiom of choice

1.8 (Axiom of Choice) Let C be any collection of nonempty sets. Then there is a function f
defined on C so that f(E) ∈ E for each E ∈ C.

The function f is called a choice function. That such a function exists is the same for us as
the claim that an element can be chosen from each of the (perhaps) infinitely many sets. The
original wording (translated from the German) of E. Zermelo from 1904 is instructive:

For every subset M ′, imagine a corresponding element m′
1, which is itself a member

of M ′ and may be called the “distinguished” [ausgezeichnete] element of M ′.

We can invoke this axiom in order to justify the proof we have just given. Alternatively, we
can puzzle over whether, in this specific instance, we can obtain our proof without using this
principle. Here is how to avoid using the axiom of choice in this particular instance, replacing it
with an ordinary inductive argument. Suppose that I1, I2, I3, . . . is a list of all the closed inter-
vals with rational endpoints. (See Exercise 1:3.7.) Then in our proof we announce a recipe for
the choice of [ai, bi] at each stage. At the kth step in the proof we simply find the first interval
Ip in the sequence I1, I2, I3, . . . that has the three properties that

1. Ip ⊂ [ak−1, bk−1],

2. ck 6∈ Ip, and

3. the length of Ip is less than 2−k.
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Then we set [ak, bk] = Ip. Since, at each stage, only a finite number of intervals need be consid-
ered in order to arrive at our interval Ip, we need much less than the full force of the axiom of
choice to make the determination for us.

In most aspects of real analysis the use of the axiom of choice is unavoidable and is under-
taken without apology (or perhaps even without explicit mention). Later, in Section 1.10, when
we construct a nonmeasurable set we shall have to invoke the axiom of choice; there we shall
mention the fact quite clearly and comment on what is known about the situation if the axiom
of choice were not to be allowed. In many other parts of this work we shall follow the usual cus-
tom of real analysts and apply the axiom when needed without much concern as to whether it
can be avoided or not. This attitude has taken some time to develop. The early French analysts
Baire, Borel, and Lebesgue relied on the axiom implicitly in their early works and then, after
Zermelo gave a formal enunciation, reacted negatively. For most of his life Lebesgue remained
deeply opposed, on philosophical grounds, to its use.1

Further material on the axiom of choice appears in Section 1.11. This axiom is known to
be independent of the rest of the axioms of set theory known as ZF (Zermelo–Fraenkel set the-
ory, without the axiom of choice). Kurt Gödel (1906–1978) showed that the axiom of choice is
consistent with the remaining axioms provided one assumes that the remaining axioms are con-
sistent themselves. (This is something that cannot be proved, only assumed.)

1 For an interesting historical essay on the subject, see G. H. Moore, “Lebesgue’s measure problem and Zer-
melo’s axiom of choice: the mathematical effect of a philosophical dispute,” Ann. N. Y. Acad. Sci., 412 (1983),
pp. 129–154.
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Exercises

1:3.1 Show Theorem 1.7 using a diagonal argument (or find a proof in a standard text).

1:3.2 Prove that every subset of a countable set is countable.

1:3.3 Let S be countable and let Sk (k ∈ IN) denote the set of all sequences of length k formed of ele-
ments of S. Show that Sk is countable.

1:3.4 Prove that a union of a sequence of countable sets is countable.

1:3.5 Let S be countable. Show that the set of all sequences of finite length formed of elements of S is
countable.

1:3.6 Show that the set of rational numbers is countable.

1:3.7♦ Show that the set of intervals with rational numbers as endpoints is countable.

1:3.8 Show that the set of algebraic numbers is countable.

1:3.9 Show that every subset of a countable Gδ set is again a countable Gδ set.

1:3.10 Show that scattered sets are countable. [Hint: Consider all intervals (a, b) with rational end-
points such that S ∩ (a, b) is countable.]

1:3.11 Show that every Cantor set is uncountable.

1:3.12 Prove that every infinite set contains a subset that is infinite and countable. [Hint: Use the ax-
iom of choice.]

1:3.13 (Cantor–Bendixson) Show that every closed set C of real numbers can be written as the union of
a perfect set and a countable set. Moreover, there is only one decomposition of C into two disjoint
sets, one perfect and the other countable.
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1:3.14 Show that the set of discontinuities of a monotone, nondecreasing function f is (at most) count-
able. [Hint: Use the fact that the right-hand and left-hand limits f(x+ 0) and f(x− 0) must both
exist. Consider the sets

{x : f(x+ 0) − f(x− 0) < 1/n}.
1:3.15 Let C be any countable set. Show that there is a monotone function f such that C is precisely

the set of discontinuities of f . [Hint: Write C = c1, c2, c3, . . . and construct f(x) =
∑

ci<x 2−i.]

1:3.16 Show that the family of all finite subsets of a countable set is countable.

1:3.17 Let E ⊂ IR and let A consist of the right-isolated points of E (that is, x ∈ A if x ∈ E and there
exists some y > x so that (x, y) ∩ E = ∅). Show that A is countable.

1:3.18♦ Let S be a collection of nondegenerate closed intervals covering a set E ⊂ IR. Prove that there
is a countable subset of S that also covers E. Show by example that there need not be a finite
subset of S that covers E. [Hint: You may wish to use Exercise 1:3.17.]

1.4 Uncountable Cardinals

Every set can be assigned a cardinal number that denotes its size. So far we have listed just the
cardinal numbers

0, 1, 2, 3, 4, . . . ,ℵ0, (1)

and we recall that the set of real numbers must have a cardinality different from these since it
is infinite and is uncountable.

To handle cardinality questions for arbitrary sets, we require the following definitions and
facts that can be developed from the axioms of set theory. If the elements of two sets A and B
can be placed into a one-one correspondence, then we say that A and B are equivalent and we
write A ∼ B. For any two sets A and B, only three possibilities can arise:
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1. A is equivalent to some subset of B and, in turn, B is equivalent to some subset of A.

2. A is equivalent to some subset of B, but B is equivalent to no subset of A.

3. B is equivalent to some subset of A, but A is equivalent to no subset of B.

The other possibility that might be imagined (that A is equivalent to no subset of B and B is
equivalent to no subset of A) can be proved not to occur. In the first of these three cases, it can
be proved that A ∼ B (Bernstein’s theorem). These facts allow us to assign to every set A a
symbol called the cardinal number of A. Then, if a is the cardinal number of A and if b is the
cardinal number of B, cases 1, 2, and 3 can be described by the relations

1. a = b.

2. a < b.

3. a > b.

This orders the cardinal numbers and allows us to extend the list (1) above. We write ℵ1 for
the next cardinal in the list,

0 < 1 < 2 < 3 < 4 < · · · < ℵ0 < ℵ1,

and we write c for the cardinality of the set IR. That the cardinals can be, in fact, written in
such a list and that there is a “next” cardinal is one of the most important features of this sub-
ject. (This is called a well-order and is discussed in the next section.)

Cantor presumed that c = ℵ1 but, despite great effort, was unable to prove it. It has since
been established that this cannot be determined within the axioms of set theory and that those
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axioms are consistent if it is assumed and also consistent if it is negated. (More precisely, if the
axioms of set theory are consistent, then they remain consistent if c = ℵ1 is added or if c > ℵ1

is added.) The assumption that c = ℵ1 is called the continuum hypothesis (abbreviated CH)
and is often assumed in order to construct exotic examples. But in all such cases one needs to
announce clearly that the construction has invoked the continuum hypothesis.

Here are some of the rudiments of cardinal arithmetic, adequate for all the analysis that we
shall pursue.

1. Let a and b be cardinal numbers for disjoint sets A and B. Then a + b denotes the cardi-
nality of the set A ∪B.

2. Let a and b be cardinal numbers for sets A and B. Then a · b denotes the cardinality of
the Cartesian product set A×B.

3. Let ai (i ∈ I) be cardinal numbers for mutually disjoint sets Ai (i ∈ I). Then
∑

i∈I ai

denotes the cardinality of the set
⋃

i∈I Ai.

4. Let b be the cardinal number for a set B; then 2b denotes the cardinality of the set of all
subsets of B.

5. Finally, let a and b be cardinal numbers for sets A and B. Then ab denotes the cardinal-
ity of the set of all functions mapping B into A.

For finite sets A and B, it is easy to count explicitly the sets in (iv) and (v). There are 2b

distinct subsets of B and there are ab distinct functions mapping B into A. Note that with
A = {0, 1}, so that a = 2, these two meanings in (iv) and (v) give the same cardinal in general.
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(That is, the set of all subsets of B is equivalent to the set of all mappings from B → {0, 1}.
See Exercise 1:4.5.)

This suggests a notation that we shall use throughout. By AB we mean the set of func-
tions mapping B into A. Hence by 2B we mean the set of all subsets of B (sometimes called
the power set of B).

One might wish to know the following theorems:

Theorem 1.9: For every cardinal number a, 2a > a.

Theorem 1.10: ℵ0 · ℵ0 = ℵ0.

Theorem 1.11: c+ ℵ0 = c and c+ c = c.

Theorem 1.12: c · c = c.

Theorem 1.13: 2ℵ0 = c.

In particular, the continuum hypothesis can then be written as

CH: 2ℵ0 = ℵ1

which is its most familiar form.

Exercises

1:4.1 Prove that (0, 1) ∼ IR.

1:4.2 (Bernstein’s theorem) If A ∼ B1 ⊂ B and B ∼ A1 ⊂ A, then A ∼ B. (Not at all an easy theorem.)
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1:4.3 Prove that any open interval is equivalent to any closed interval without invoking Bernstein’s the-
orem.

1:4.4 Show that every Cantor set has cardinality c.

1:4.5 Show that the set of all subsets of B is equivalent to the set of all mappings from B → {0, 1}.
[Hint: Consider χ

A
for any A ⊂ B.]

1:4.6 Show that the class of functions continuous on the interval [0, 1] has cardinality c. [Hint: If two
continuous functions agree on each rational in [0, 1], then they are identical.]

1:4.7♦ Show that the family of all closed subsets of IR has cardinality c.

1.5 Transfinite Ordinals

The set IN of natural numbers is the simplest, nontrivial example of what we shall call a well-
ordered set. The usual order (that is, m < n) on the natural numbers has the following proper-
ties.

1. For any n ∈ IN, it is not true that n < n.

2. For any distinct n,m ∈ IN, either m < n or n < m.

3. For any n, m, p ∈ IN, if n < m and m < p, then n < p.

4. Every nonempty subset S ⊂ IN has a first element (i.e., there is an element n0 ∈ S so that
n0 < s for every other element s of S).

It is precisely this set of properties that allows mathematical induction. Let P be a set of
integers with the following properties:
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1. 1 ∈ P .

2. For all n ∈ IN, m ∈ P for each m < n implies that n ∈ P .

Then P = IN. Indeed, if P is not IN, then P ′ = IN \ P is nonempty and so has a first element
n0. That element cannot be 1. All predecessors of n0 are in P , which, by property (ii), implies
that n0 ∈ P , which is not possible.

Mathematical induction can be carried out on any set that has these four properties, and
so we are not confined to induction on integers. We say that a set X is linearly ordered and
that “<” is a strict linear order on X if properties (i), (ii), and (iii) hold for this set and this
relation. We say that X is well-ordered if all four properties (i)–(iv) hold. If X is well-ordered
and x0 is in X, then the set of all elements that precede x0 is called an initial segment of X.

The following two facts are fundamental. The first can be proved from the axiom of choice
and is, in fact, equivalent to the axiom of choice. The second essentially defines the countable
ordinals.

1.14 (Well-ordering principle) Every set can be well-ordered. That is, for any nonempty
set X there is a relation < that is a strict linear order on X making it a well-ordered set.

1.15 (Countable ordinals) There exists an uncountable, well-ordered set X with an order
relation < so that

1. X has a last element denoted Ω.

2. For every x0 ∈ X with x0 6= Ω the initial segment

{x ∈ X : x < x0}
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is countable.

3. There is an element ω ∈ X such that

{x ∈ X : x < ω} = {0, 1, 2, 3, . . . }
and < has its usual meaning in the set of nonnegative integers.

Thus the set {0, 1, 2, 3, . . . } of nonnegative integers is an initial segment of X. We can think
of X as looking like a long list starting with 0 and continuing just until uncountably many ele-
ments have been listed:

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < · · · < ω2 < ω2 + 1 < · · · < Ω.

We call all the elements of X ordinals. Each element prior to ω is called a finite ordinal. Each
element from then, but prior to the last one Ω, is called a countable ordinal. The element Ω is
called the first uncountable ordinal.

We can identify an element x with the initial segment consisting of the elements that pre-
cede it. Thus each element of X can be thought of as a subset of X, and we see that each ele-
ment (other than the last element Ω) is finite or countable considered as a set. The first infinite
ordinal is ω and the first uncountable ordinal is Ω. The cardinality of Ω (i.e., the cardinality of
X \ {Ω} or, the same thing, the cardinality of X) is ℵ1. Unless we assume the continuum hy-
pothesis, we do not know if this is c.

One can develop a bit of intuition about this situation by making the following observation.
Any finite collection of finite ordinals ξ1, ξ2, . . . ξn will stay away from ω in the sense that there
is a finite ordinal ξ so that, for each i,

ξi < ξ < ω.
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The reason for this is that a finite union of finite sets is again finite. Similarly any countable
collection of countable ordinals ξ1, ξ2, . . . will stay away from Ω in the sense that there is a
countable ordinal ξ so that, for each i,

ξi < ξ < Ω.

The reason for this is that a countable union of countable sets is again countable. This observa-
tion is most useful.

If we do assume the continuum hypothesis (CH), then the real numbers (or any set of car-
dinality 2ℵ0) can be well-ordered as described above. If we do not wish to assume CH, we can
still perform a transfinite induction. In this case the version of Theorem 1.15 that we shall use
is the following:

Lemma 1.16: Any set X of cardinality 2ℵ0 can be well-ordered in such a way that for each x ∈
X the set of all predecessors of x has cardinality strictly less than 2ℵ0.

Every element, except the last, of a well-ordered set has an immediate successor defined as
the first element of the set of all later elements; for any x ∈ X, if x is not the last element then
the immediate successor of x can be written as x + 1. Note, however, that elements need not
have immediate predecessors. Any element (ω and Ω in Theorem 1.15 are examples) that does
not have an immediate predecessor is called a limit ordinal. We shall later define ordinals as
even and odd in a way that extends the usual meaning. The first element 0 and every limit or-
dinal is thought of as even, a successor of an even is odd, and a successor of an odd is even. In
this way every ordinal is designated as either odd or even.

This is admittedly a very sketchy introduction to the ordinals, but adequate for our pur-
poses. The serious reader will take a course in transfinite arithmetic or consult textbooks that
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take the time to develop this subject from first principles.

1.5.1 A transfinite covering argument

As an illustration of the method of transfinite induction, let us prove a simple covering property
of intervals using the ideas. We show that from a certain family of subintervals [x, y) ⊂ [a, b) a
disjoint subcover can be selected. The argument is, perhaps, the most transparent and intuitive
use of a transfinite sequence.

Lemma 1.17: Let C be a family of subintervals of [a, b) such that for every a ≤ x < b there ex-
ists y, x < y < b so that [x, y) ∈ C. Then there is a countable disjoint subfamily E ⊂ C so that

⋃

[x,y)∈E
[x, y) = [a, b).

Proof. Set x0 = a. By the hypotheses, we can choose an interval [x0, x1) ∈ C and then an in-
terval [x1, x2) ∈ C and, once again, [x2, x3) ∈ C, and so on. If xn → b, then take E = {[xi−1, xi)}
and we are done. Otherwise, xn → c with c < b. Then we can carry on with [c, y1), [y1, y2), and
so on, until we eventually reach b.

Well not quite! The idea seems sound, but a proper expression of this requires a transfinite
sequence and transfinite induction. Set x0 = a and choose x1 < b so that [x0, x1) ∈ C. Suppose
that for each ordinal α we have chosen xβ < b in such a way that [xβ, xβ+1) ∈ C for every β
for which β + 1 < α. Then we can choose xα as follows: (i) If α is a limit ordinal, take xα =
supβ<α xβ . (ii) If α is not a limit ordinal, let α0 be the immediate predecessor of α and suppose
that xα0 < b. Take xα < b so that [xα0 , xα) ∈ C. The process stops if xα0 = b.
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Inside each interval [xα−1, xα) we can choose distinct rationals. Hence this process must
stop in a countable number of steps. The family E = {[xα−1, xα)} is a countable disjoint sub-
family of C so that

⋃
[x,y)∈E [x, y) = [a, b). �

Exercises

1:5.1 Prove the assertion 1.17 without using transfinite induction.

[Hint: Say that a point z > a can be reached if there is a countable disjoint subfamily E ⊂ C so
that

⋃
[x,y)∈E [x, y) ⊃ [a, z). Take the sup of all points that can be reached.]

1:5.2 Define a “natural” order on IN × IN and determine if it is a well-ordering.

1:5.3 Let A and B be linearly ordered sets. A natural order (the lexicographic order) on A × B is de-
fined as (a, b) � (c, d) if a � c or if a = c and b � d. Show that this is a linear order. If A, B are
well-ordered, then is this a well-ordering of A×B? Describe the initial segments of A×B.

1:5.4 A limit ordinal is an ordinal with no immediate predecessor. Show that ω and Ω are limit ordi-
nals.

1.6 Category

Recall that a set E of real numbers is nowhere dense if for every open interval (a, b) there is a
subinterval (c, d) ⊂ (a, b) that contains no points of E. That is, it is nowhere dense if it is dense
in no interval. Loosely, a nowhere dense set is shot full of holes.

A set is first category if it can be expressed as a union of a sequence of nowhere dense sets.
Any set not of the first category is said to be of the second category. Nowhere dense sets are, in
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a certain sense, very small. Thus first category sets are, in the same sense, merely small. Sec-
ond category sets are then not small. The complement of a first category set must apparently
be quite large; such sets are said to be residual. Here, this notion of smallness should be taken
as merely providing an intuitive guide to how these concepts can be interpreted.

1.6.1 The Baire category theorem on the real line

A fundamental theorem of René Baire (1874–1932) proved in 1899 asserts that every interval
is second category. (It was proved too by W. F. Osgood two years earlier, but credit is almost
always assigned to Baire.) Note that the proof here is nearly identical with the proof of the fact
that intervals are uncountable; indeed, this theorem contains Theorem 1.7.

Theorem 1.18 (Baire) No interval [a, b] is first category.

Proof. Suppose not. Then [a, b] can be written as the union of a sequence of sets C1, C2, C3, . . .
each of which is nowhere dense. Select an interval [a1, b1] ⊂ [a, b] so that C1 ∩ [a1, b1] = ∅ and so
that b1 − a1 < 1/2. Continuing inductively, we find a nested sequence of intervals {[ai, bi]} with
lengths bi − ai < 2−i → 0 and with Ci ∩ [ai, bi] = ∅ for each i.

By Theorem 1.2, there is a unique point c ∈ [a, b] common to each of the intervals. This
point cannot belong to any Ci and this is a contradiction, since every point of the interval [a, b]
was to belong to some member of the sequence C1, C2, C3, . . . . �

A category argument is one that appeals to Baire’s theorem. One can prove the existence
of sets or points (or even functions) by these means. It has become one of the standard tools of
the analyst and plays a fundamental role in many investigations.
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1.6.2 An illustration of a category argument

We illustrate with an application showing that an important class of functions has certain con-
tinuity properties. A function f is said to be in the first class of Baire or Baire 1 if it can be
written as the pointwise limit of a sequence of continuous functions. A Baire 1 function need
not be continuous. Does a Baire 1 function have any points of continuity? The existence of
such points is obtained by a category argument.

Theorem 1.19 (Baire) Every Baire 1 function is continuous except at the points of a set of
the first category.

Proof. Recall that we use ωf (x) to denote the oscillation of the function f at a point x (see
Exercise 1:1.8). The proof follows from the fact that for each ε > 0 the set of points

F (ε) = {x : ωf (x) ≥ ε}
is nowhere dense. [This is because the set of points of discontinuity of f can be written as

⋃∞
n=1 F ( 1

n).]
Let I be any interval; let us search for a subinterval J ⊂ I that misses F (ε). The proof is com-
plete once we find J .

Let f be the pointwise limit of a sequence of continuous functions {fi} and write

En =
∞⋂

i=n

∞⋂

j=n

{x ∈ I : |fi(x) − fj(x)| ≤ ε/2}.

Each set En is closed (since the fi are continuous), and the sequence of sets En expands to
cover all of I (since {fi} converges everywhere). By Baire’s theorem (Theorem 1.18), there
must be an interval J ⊂ I and a set En dense in J . (Otherwise, we have just expressed I as the
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union of a sequence of nowhere dense sets, which is impossible.) But the sets here are closed, so
this means merely that En contains the interval J . For this n (which is now fixed) we have

|fi(x) − fj(x)| ≤ ε/2

for all i, j ≥ n and for all x ∈ J . In this inequality set j = n, and let i→ ∞ to obtain

|f(x) − fn(x)| ≤ ε/2.

Now we see that J misses the set F (ε). Our last inequality shows that f is close to the continu-
ous function fn on J , too close to allow the oscillation of f at any point in J to be greater than
ε. Thus there is no point in J that is also in F (ε). �

Theorem 1.19 very nearly characterizes Baire 1 functions. One needs to state it in a more
general form, but one that can be proved by the same method. A function f is Baire 1 if and
only if f has a point of continuity relative to any perfect set.

Exercises

1:6.1 Prove Theorem 1.18 using induction in place of the axiom of choice. (We used this axiom here
without comment.) [Hint: See the discussion in Section 1.3.]

1:6.2 Show that every subset of a set of first category is first category.

1:6.3 Show that every finite set is nowhere dense, and show that every countable set is first category.

1:6.4 Show that every union of a sequence of sets of first category is first category.

1:6.5 Show that every intersection of a sequence of residual sets is residual.

1:6.6 Show that the complement of a set of second category may be either first or second category.

1:6.7 Prove that, if E is first category, then E is nowhere dense.
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1:6.8 Show that a set of type Gδ that is dense (briefly, “a dense Gδ”) is residual.

1:6.9 Let S ⊂ IR. Call a point x ∈ IR first category relative to S if there is some interval (a, b) contain-
ing x so that (a, b) ∩ S is first category. Show that the set

{x ∈ S : x is first category relative to S}
is first category.

1:6.10 The rationals Q form a set of type Fσ. Are they of type Gδ?

1:6.11 Does there exist a function continuous at every rational and discontinuous at every irrational?
Does there exist a function continuous at every irrational and discontinuous at every rational?
[Hint: Use Exercises 1:1.10 and 1:1.11.]

1:6.12 Let fn : [0, 1] → IR be a sequence of continuous functions converging pointwise to a function
f . Prove that, if the convergence is uniform, then there is a finite number M so that |fn(x)| <
M for all n and all x ∈ [0, 1]. Even if the convergence is not uniform, show that there must be a
subinterval [a, b] ⊂ [0, 1] and a finite number M so that |fn(x)| < M for all n and all x ∈ [a, b].

1:6.13 Theorem 1.19 as stated does not characterize Baire 1 functions. Show that a function is discon-
tinuous except at the points of a first category set if and only if it is continuous at a dense set of
points.

1:6.14 (Fort’s theorem) If f is discontinuous at the points of a dense set, show that the set of points x,
where f ′(x) exists, is of the first category.

1:6.15 If f is Baire 1, show that every set of the form {x : f(x) > α} is of type Fσ and every set of the
form {x : f(x) ≥ α} is of type Gδ. (The converse is also true.) [Hint: Use Exercise 1:1.24.]
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1.7 Outer Measure and Outer Content

By the 1880s it was recognized that integration theory was intimately linked to the notion of
measuring the “length” of subsets of IR or the “area” of subsets of IR2. Peano (1858–1932),
Jordan (1838–1922), Cantor (1845–1918), Borel (1871–1956) and Lebesgue (1875–1941) are the
main contributors to this development, but many authors addressed these problems.

At the end of the century there were two main competing notions that allowed the concept
of length to be applied to all sets of real numbers. The Peano–Cantor–Jordan treatment defines
a notion of outer content in terms of approximations that employ finite sequences of intervals.
The Borel–Lebesgue method defines a notion of outer measure in terms of approximations that
employ infinite sequences of intervals. The two methods are closely related, and it is, perhaps,
best to study them together. The outer measure concept now dominates analysis and has left
the outer content idea as a historical curiosity. Nonetheless, by seeing the two together and
appreciating the difficulties that the early mathematicians had in coming to the correct ideas
about measure, we can more easily learn this theory.

For any interval I we shall write |I| for its length. Thus |[a, b]| = |(a, b)| = b − a and
|(−∞, a)| = |(b,+∞)| = +∞. We include the empty set as an open interval and consider it
to have zero length.
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Definition 1.20: Let E be an arbitrary set of real numbers. We write

c∗(E) = inf

{
n∑

i=1

|Ii| : E ⊂
n⋃

i=1

Ii

}

and

λ∗(E) = inf

{
∞∑

i=1

|Ii| : E ⊂
∞⋃

i=1

Ii

}
,

where in the two cases {Ii} is a finite (infinite) sequence of open intervals covering E.

We refer to the set function c∗ as the outer content (or Peano-Jordan content) and λ∗ as
(Lebesgue) outer measure. Note that c∗ is not of much interest for unbounded sets since it
must assign the value +∞ to each. Each of these set functions assigns a value (thought of as
a “length”) to each subset E ⊂ IR.

The following properties are essential and can readily be proved directly from the defini-
tions. All the properties claimed for the Lebesgue outer measure in this chapter will be fully
justified in Chapters 2 and 3.
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Theorem 1.21: The outer content and the outer measure have the following properties:

1. c∗(∅) = λ∗(∅) = 0.

2. For every interval I, c∗(I) = λ∗(I) = |I|.

3. For every set E, c∗(E) ≥ λ∗(E).

4. For every compact set K, c∗(K) = λ∗(K).

5. For a finite sequence of sets {Ei}, c∗(
⋃n

i=1Ei) ≤
∑n

i=1 c
∗(Ei).

6. For any sequence of sets {Ei}, λ∗(
⋃∞

i=1Ei) ≤
∑∞

i=1 λ
∗(Ei).

7. Both c∗ and λ∗ are translation invariant.

8. For any set E, c∗(E) = c∗(E).

This last property, c∗(E) = c∗(E), would nowadays be considered a flaw in the definition
of a generalized length function. For a long time, though, it was felt that this property was es-
sential: if a set A ⊂ B is dense in B, then “surely” the two sets should be assigned the same
length.

Exercises

1:7.1 Show that, for every interval I, c∗(I) = λ∗(I) = |I|.
1:7.2 Show that, for every set E, c∗(E) ≥ λ∗(E), and give an example to show that the inequality can

occur.
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1:7.3 Show that, for every compact set K, c∗(K) = λ∗(K).

1:7.4 Show that, for any set E, c∗(E) = c∗(E).

1:7.5♦ Show that, for every finite sequence of sets {Ei},

c∗
(

n⋃

i=1

Ei

)
≤

n∑

i=1

c∗(Ei).

1:7.6♦ Show that, for every infinite sequence of sets {Ei},

λ∗
( ∞⋃

i=1

Ei

)
≤

∞∑

i=1

λ∗(Ei).

1:7.7 Show that both c∗ and λ∗ are translation invariant.

1:7.8♦ Let G be an open set with components {(ai, bi)}. Show that

λ∗(G) =
∞∑

i=1

(bi − ai),

but that c∗(G) may be strictly larger.

1:7.9♦ Let G be an open subset of an interval [a, b] and write K = [a, b] \G. Show that

c∗(K) = λ∗(K) = b− a− λ∗(G)

but that c∗(K) = b− a− c∗(G) may be false.
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1.8 Small Sets

In many studies of analysis there is a natural class of sets whose members are “small” or “neg-
ligible” for some purposes. We have already encountered the classes of countable sets, nowhere
dense sets, and first category sets that can, with some justice, be considered small. In addition,
the class of sets of zero outer content and the class of sets of zero outer measure also play the
role of small sets in many investigations. Each of these classes enters into certain problems in
that if a set is small in one of these senses it may be neglected in the analysis.

After some thought, one expects that in order to apply the term “small” to the members of
some class of sets S one would require that finite (or perhaps countable) unions of small sets
be small, that subsets of small sets be small, and that no interval be allowed to be small. More
formally, the properties of S that seem to be desirable are as follows:

1. The union of a finite [countable] collection of sets in S is itself in S.

2. Any subset of a set in S is itself in S.

3. No interval (a, b) belongs to S.

We say that S is an ideal of sets if properties (i) and (ii) hold. If the stronger version of (i)
holds (with countable unions), then we say that S is a σ-ideal of sets. We have, by now, a num-
ber of different ideals of sets that can be viewed as composed of small sets. Let us summarize.
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Theorem 1.22:

1. The nowhere dense sets form an ideal.

2. The first category sets form a σ-ideal.

3. The finite sets form an ideal.

4. The countable sets form a σ-ideal.

5. The sets of outer content zero form an ideal.

6. The sets of outer measure zero form a σ-ideal.

There are some obvious connections and some surprising contrasts. Certainly, finite sets are
nowhere dense and of outer content zero. Countable sets are first category and of outer measure
zero. The other relations are not so easy or so immediate. Let us first compare perfect, nowhere
dense sets and sets of outer content zero.

1.8.1 Cantor sets

In the early days of the study of the Riemann integral (before the 1870s) it was recognized that
sets of zero outer content played an important role as the sets that could be neglected in argu-
ments. Nowhere dense sets at first appeared to be equally negligible, and there was some con-
fusion as to the distinction. It is easy to check that a set of zero outer content must be nowhere
dense; lacking any easy examples to the contrary, one might assume, as did a number of math-
ematicians, that the converse is also true. The following construction then comes as a bit of a
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surprise and shook the intuition of many nineteenth-century mathematicians. This shows that
Cantor sets (nonempty, bounded, perfect, nowhere dense sets) can have relatively large mea-
sure (or content, since the two notions agree for compact sets) even though they appear to be
small in some other sense. Constructions of this sort were given by H. J. Smith (1826–1883), du
Bois-Reymond (1831–1889) and others.

Theorem 1.23: Let 0 ≤ α < 1. Then there is a Cantor set C ⊂ [0, 1] whose outer content
(measure) is exactly α.

Proof. Let α1, α2, . . . be a sequence of positive numbers with
∞∑

k=1

αk = 1 − α.

Let I1 be an open subinterval of I0 = [0, 1], with |I1| = α1 chosen in such a way that the set
A1 = I0 \ I1 consists of two closed intervals, each of length less than 1/2. At the second stage
we shall remove from A1 two further intervals, one from inside each of the two closed intervals,
leaving A2 = I0 \ (I1 ∪ I2 ∪ I3) consisting of four intervals. We define the procedure inductively.
After the nth stage, we have selected

1 + 2 + 22 + · · · + 2n−1 = 2n − 1

nonoverlapping open intervals I1, . . . , I2n−1 with

2n−1∑

k=1

|Ik| =
n∑

i=1

αi,
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and the set

An = I0 \
2n−1⋃

k=1

Ik

consists of 2n closed intervals, each of length less than 1/n, and λ∗(An) = 1 −∑n
i=1 αi. (Note

that the lengths of the closed intervals go to zero as n goes to infinity.)
Now let C =

⋂∞
n=1An and B = I0 \ C. Then C is closed, B is open, and B =

⋃∞
k=1 Ik, with

the intervals Ik pairwise disjoint. We see, by Exercise 1:7.8, that

λ∗(B) =
∞∑

k=1

|Ik| =
∞∑

k=1

αk = 1 − α

and hence, by Exercise 1:7.9, that

λ∗(C) = 1 − λ∗(B) = α.

Thus C is a nowhere dense closed subset of I0 of measure α, and B is a dense open subset of I0
of measure 1 − α. �

1.8.2 Expressing the real line as the union of two “small” sets

Theorem 1.23 shows the contrast between sets of zero content and nowhere dense sets. As a
result, we should not be surprised that there is a similar contrast between sets of outer measure
zero and sets of the first category. The next theorem expresses this in a remarkable way. Every
set of reals can be expressed as the union of two “small” sets (small in different ways). Be sure
to notice that we are using outer measure, not outer content, in the theorem.
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Theorem 1.24: Every set of real numbers can be written as the disjoint union of a set of outer
measure zero and a set of the first category.

Proof. Let {qi} be a listing of all the rational numbers. Denote by Iij that open interval cen-
tered at qi and with length 2−i−j . Write Gj =

⋃∞
i=1 Iij and B =

⋂∞
j=1Gj . Each Gj is a dense

open set, and so B is residual and hence its complement IR \ B is first category. But it is easy
to check that B has measure zero. Thus every set A ⊂ IR can be written as

A = (A ∩B) ∪ (A \B)

which is, evidently, the union of a set of outer measure zero and a set of the first category. �

Exercises

1:8.1 Show that every set of outer content zero is nowhere dense, but there exist dense sets of outer
measure zero.

1:8.2 Show that every set of outer measure zero that is also of type Fσ is first category.

1:8.3 Show that no interval can be written as the union of a set of outer content zero and a set of the
first category.

1:8.4 Show that a set E of real numbers has outer measure zero if and only if there is a sequence of in-
tervals {Ik} such that each point of E belongs to infinitely many of the intervals and

∑∞
k=1 |Ik| <

+∞.

1:8.5 Let B and C be the sets referenced in the proof of Theorem 1.23.

(a) Prove that B is dense and open in [0, 1], so C is nowhere dense and closed.

(b) Prove that C is perfect.
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(c) Let {qi} be a listing of all the rational numbers. Denote by Iij that open interval centered
at qi and with length 2−i−j . Write Gj =

⋃∞
i=1 Iij and B =

⋂∞
j=1Gj . Show that λ∗(B) ≤

λ∗(Gj) ≤ 2−j for each j, and deduce that λ∗(B) = 0.

(d) Prove Theorem 1.24 by using the fact that, in every interval [a, b] and for every ε > 0, there
is a Cantor set C ⊂ [a, b] with measure exceeding b− a− ε.

1:8.6 Let Z be the class of all sets of real numbers that are expressible as countable unions of sets of
outer content zero.

(a) Show that Z is a σ-ideal.

(b) Show that Z is precisely the σ-ideal of subsets of sets that are outer measure zero and Fσ.

(c) Show that Z is not the σ-ideal of sets that are outer measure zero.

[Hint: Let C be a Cantor set whose intersection with each open interval is either empty or of pos-
itive outer measure. Choose a countable subset D ⊂ C, dense in C, and a Gδ set E ⊃ D of outer
measure zero. Then E ∩ C is also outer measure zero but cannot be in Z. (Use a Baire category
argument.)]

1.9 Measurable Sets of Real Numbers

The outer measure and outer content have many desirable properties, but lack one that would
seem to be an essential ingredient of a theory of lengths. They are not additive. If E1 and E2

are disjoint sets, then one expects the length of the union E1 ∪ E2 to be the sum of the two
lengths. In general, we have only that

c∗(E1 ∪ E2) ≤ c∗(E1) + c∗(E2)
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and

λ∗(E1 ∪ E2) ≤ λ∗(E1) + λ∗(E2).

It is, however, not difficult to see that if E1 and E2 are not too “intertangled,” then equality
would hold. One seeks a class of sets on which the outer content or the outer measure is addi-
tive.

The key to creating these classes rests on a notion used by the Greeks in their investiga-
tions into area of plane figures. They considered that the area had been successfully found only
if it had been computed by successive approximations from outside and by successive approxi-
mations from inside and that the two methods gave the same answer. Here our outer measure
and outer content are obtained from outside approximations. Evidently, we should introduce an
inside approximation, hence an inner measure and an inner content, and look for the class of
sets on which the outer and inner estimates agree. In the case of content, this theory is due to
Peano and Jordan. In the case of measure, the corresponding definition was used by Lebesgue.

Definition 1.25: Let E be a bounded set contained in an interval [a, b]. We write

c∗(E) = b− a− c∗([a, b] \ E)

and refer to c∗(E) as the inner content of E and the set function c∗ as the inner content .

Definition 1.26: Let E be a bounded set contained in an interval [a, b]. We write

λ∗(E) = b− a− λ∗([a, b] \ E)

and refer to λ∗(E) as the inner measure of E and the set function λ∗ as the inner measure.

It is left as an exercise to show that, in these two definitions, the particular interval [a, b]
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that is chosen to contain the set E need not be specified. Measurability for bounded sets is de-
fined as agreement of the inner and outer estimates.

Definition 1.27: A bounded set E is said to be Peano–Jordan measurable if c∗(E) = c∗(E).
A bounded set E is said to be Lebesgue measurable if λ∗(E) = λ∗(E). An unbounded set E is
measurable (in either sense) if E ∩ [a, b] is measurable in the same sense for each interval [a, b].
The class of Peano–Jordan measurable sets shall be denoted as PJ . The class of Lebesgue
measurable sets shall be denoted as L.

When the inner and outer estimates agree, it makes sense to drop the subscripts and su-
perscripts. Thus on the sets where c∗ = c∗ we write c = c∗ = c∗ and refer to c as the con-
tent or perhaps Peano–Jordan content. Similarly, on the Lebesgue measurable sets we write
λ = λ∗ = λ∗ and refer to λ as Lebesgue measure.

The families of sets so formed have strong properties, and the set functions c and λ defined
on those families will have our desired additive properties. To have some language to express
these facts, we shall use the following:

Definition 1.28: Let X be any set, and let A be a nonempty class of subsets of X. We say A
is an algebra of sets if it satisfies the following conditions:

1. ∅ ∈ A.

2. If A ∈ A and B ∈ A, then A ∪B ∈ A.

3. If A ∈ A, then X \A ∈ A.
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It is easy to verify that an algebra of sets is closed also under differences, finite unions, and
finite intersections. For any set X, the class 2X of all subsets of X is obviously an algebra. So
is the class A = {∅, X}. An algebra that is also closed under countable unions is said to be a
σ–algebra. Many of the classes of sets that arise in measure theory are algebras or σ–algebras.

Definition 1.29: Let A be an algebra of sets and let ν be an extended real-valued function
defined on A. If ν satisfies the following conditions, we say that ν is an additive set function.

1. ν(∅) = 0.

2. If A ∈ A, B ∈ A, and A ∩B = ∅, then ν(A ∪B) = ν(A) + ν(B).

A nonnegative additive set function is often called a finitely additive measure. Note that, for
an additive set function ν and every finite disjoint sequence {E1, E2, . . . En} of sets from M,

ν

(
n⋃

i=1

Ei

)
=

n∑

i=1

ν(Ei).

In general, we shall prefer a countable version of this definition. We say that ν is a countably
additive set function if, for every infinite disjoint sequence {E1, E2, . . . } of sets from M whose
union

⋃∞
i=1Ei is also in M,

ν

(
∞⋃

i=1

Ei

)
=

∞∑

i=1

ν(Ei).

Using this language, we can now describe the classical measure theory developed in the
nineteenth century by Peano, Jordan, and others and by Lebesgue at the beginning of the twen-
tieth century. Peano–Jordan content is a finitely additive set function on an algebra of sets;
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Lebesgue measure is a countably additive set function on a σ–algebra of sets. The theorems
that now follow describe this formally. The first is not difficult. The second will be proved in
full as part of our more general development in Chapter 2. It is worth attempting a proof of
these two theorems now in order to appreciate the technical problems that arise in the subject.

Theorem 1.30: Let PJ [a, b] denote the family of all Peano–Jordan measurable subsets of an
interval [a, b]. Then the class PJ [a, b] forms an algebra of subsets of [a, b], and c = c∗ = c∗ is a
finitely additive set function on that algebra.

Theorem 1.31: The class L forms a σ–algebra of subsets of IR, and λ = λ∗ = λ∗ is a count-
ably additive set function on that σ–algebra.

Theorem 1.30 is largely a historical curiosity. Theorem 1.31 is one of the fundamental re-
sults of elementary measure theory. Chapter 2 contains a complete proof of this in a more gen-
eral setting.

Exercises

1:9.1 Let E be a bounded set contained in an interval [a, b] ⊂ [a1, b1]. Show that

c∗(E) = b− a− c∗([a, b] \ E) = b1 − a1 − c∗([a1, b1] \ E).

This shows that the definition of the inner content does not depend on the containing interval.

1:9.2 Let E be a bounded set contained in an interval [a, b] ⊂ [a1, b1]. Show that

λ∗(E) = b− a− λ∗([a, b] \ E) = b1 − a1 − λ∗([a1, b1] \ E).

This shows that the definition of the inner measure does not depend on the containing interval.
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1:9.3 Verify that an algebra of sets is closed also under differences, finite unions, and finite intersections.

1:9.4 Show that each of the following classes of subsets of a set X is an algebra:

(a) The class {∅, X}.

(b) The class of all subsets of X.

(c) The class of subsets E of X such that either E or X \ E is finite.

(d) The class of subsets of X that have outer content zero or whose complement has outer con-
tent zero (here X ⊂ IR).

1:9.5 Show that each of the following classes of subsets of a set X is a σ–algebra:

(a) The class of all subsets of X.

(b) The class of all subsets of X that are countable or have a countable complement.

(c) The class of subsets of X that have outer measure zero or whose complement has outer mea-
sure zero (here X ⊂ IR).

1:9.6 Let Ai be an algebra of subsets of a set X for each i ∈ I. Show that
⋂

i∈I Ai is also an algebra.

1:9.7 Let Ai be a σ–algebra of subsets of a set X for each i ∈ I. Show that
⋂

i∈I Ai is also a σ–algebra.

1:9.8♦ Let S be a collection of subsets of a set X. Show that there is a smallest σ–algebra containing
S. (We call this the σ–algebra generated by S.) [Hint: Consider the family of all σ–algebras that
contain S (are there any?) and use Exercise 1:9.7.]

1:9.9 Show that every interval (closed, open, or half-closed) is both Peano–Jordan measurable and Leb-
esgue measurable.

1:9.10 Show that every set of outer content zero is Peano–Jordan measurable.
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1:9.11 Show that every set of outer measure zero is Lebesgue measurable.

1:9.12♦ Suppose that a set E is Peano–Jordan measurable or Lebesgue measurable. Show that every
translate E + r = {x+ r : x ∈ E} is also measurable in the same sense and has the same measure.

1:9.13♦ Show that the class of Peano–Jordan measurable sets and the class of Lebesgue measurable sets
must both have cardinality 2c. [Hint: Consider the subsets of a Cantor set of measure zero.]

1:9.14 Show that every Peano–Jordan measurable set is also Lebesgue measurable, but not conversely.

1:9.15 Theorems 1.30 and 1.31 might be misrepresented by saying that “c is merely finitely additive
while λ is countably additive.” Explain why it is that c is also countably additive.

1:9.16♦ Let E be a bounded subset of IR. Show that

λ∗(E) = sup{λ∗(F ) : F ⊂ E,F closed}.
1:9.17 Prove that if E1 ⊂ E2 then λ∗ (E1) ≤ λ∗ (E2) and λ∗(E1) ≤ λ∗(E2).

1:9.18 Prove that both outer measure λ∗ and inner measure λ∗ are translation invariant functions de-
fined on the class of all subsets of IR.

1:9.19 Show that λ∗(E) ≤ λ∗ (E) for all E ⊂ IR.

1:9.20 Show that every σ–algebra of sets has either finitely many elements or uncountably many ele-
ments.

1.10 Nonmeasurable Sets

The measurability concept allows us to restrict the set functions c∗ and λ∗ to certain algebras
of sets on which they are well behaved, in particular on which they are additive. Have we ex-
cluded any sets from consideration by this device? Are there sets that are so badly misbehaved
with respect to the measurability definition that we cannot use them?
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It is easy enough to characterize the class of Peano–Jordan measurable sets. Then we easily
see which sets are not measurable and we see how to construct nonmeasurable sets. We address
this first. The situation for Lebesgue measure is considerably more subtle and requires entirely
different arguments.

Theorem 1.32: A bounded set E of real numbers is Peano–Jordan measurable if and only if its
set of boundary points has outer content zero.

Proof. We may suppose that E ⊂ (a, b). Let E1 = int(E), E2 = E \ E1, and E3 = (a, b) \ E.
Suppose that c∗(E2) = 0; we show that E is Peano–Jordan measurable. Let ε > 0. Choose a
finite collection of disjoint open subintervals {Ii} of (a, b) covering E2 so that

∑ |Ii| < ε. Let us
consider the intervals complementary to {Ii} in (a, b). These are of two types, the ones interior
to E1 and the ones interior to E3. We call the former {Ji} and the latter {Ki}. Note that {Ii},
{Ji} together cover E and {Ii}, {Ki} together cover (a, b) \ E.

We have

b− a =
∑

|Ii| +
∑

|Ji| +
∑

|Ki|.
Hence

b− a =
(∑

|Ii| +
∑

|Ji|
)

+
(∑

|Ii| +
∑

|Ki|
)
−
∑

|Ii|
≥ c∗(E) + c∗((a, b) \ E) − ε.

Since ε is arbitrary, we can deduce that

c∗(E) + c∗((a, b) \ E) ≤ b− a.

But the inequality

c∗(E) + c∗([a, b] \ E) ≥ b− a
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is true and

c∗([a, b] \ E) = c∗((a, b) \ E).

Thus c∗(E) + c∗((a, b) \ E) = b− a, and this establishes the measurability of the set E.
Conversely, suppose that we have this equality. Take a partition {Ii} of [a, b] using open in-

tervals in such a way that
∑

{|Ii| : Ii ∩ E 6= ∅} ≤ c∗(E) + ε

and
∑

{|Ii| : Ii ∩ ([a, b] \ E) 6= ∅} ≤ c∗([a, b] \ E) + ε.

(We can do this by refining two partitions that handle each inequality separately.) Note that in-
tervals that are used in both of these sums must contain a boundary point of E. Thus, because
b− a =

∑ |Ii| and c∗(E) + c∗([a, b] \ E) = b− a, we can argue that

c∗(E \ int(E)) ≤
∑

{|Ii| : Ii contains a boundary point of E} ≤ 2ε.

Since ε is arbitrary, c∗(E \ int(E)) = 0 as required. �

In particular, note that it is an easy matter now to exhibit sets that are not Peano–Jordan
measurable. The set of rational numbers in any interval must be nonmeasurable since every
point is a boundary point. For a more interesting example, any Cantor set C will be Peano–
Jordan measurable if and only if c∗(C) = 0 (see Exercise 1:10.1). We have seen in Theorem 1.23
how to construct Cantor sets in [0, 1] of positive outer content.
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1.10.1 Existence of sets of real numbers not Lebesgue measurable

We turn now to a search for Lebesgue nonmeasurable sets. We can characterize Lebesgue mea-
surable sets in a variety of ways. None of these, however, does anything to help to see whether
there might exist sets that are nonmeasurable. The first proof that nonmeasurable sets must
exist is due to G. Vitali (1875–1932). He showed that there cannot possibly exist a set function
defined for all subsets of real numbers that is translation invariant, is countably additive, and
extends the usual notion of length.

Theorem 1.33: There exist subsets of IR that are not Lebesgue measurable.

Proof. Let I = [−1
2 ,

1
2 ]. For x, y ∈ I, write x ∼ y if x− y ∈ Q. For all x ∈ I, let

K(x) = {y ∈ I : x− y ∈ Q} = {x+ r ∈ I : r ∈ Q}.
We show that ∼ is an equivalence relation. It is clear that x ∼ x for all x ∈ I and that if x ∼ y
then y ∼ x. To show transitivity of ∼, suppose that x, y, z ∈ I and x− y = r1 and y− z = r2 for
r1, r2 ∈ Q. Then x − z = (x − y) + (y − z) = r1 + r2, so x ∼ z. Thus the set of all equivalence
classes K(x) forms a partition of I:

⋃
x∈I K(x) = I, and if K(x) 6= K(y), then K(x)∩K(y) = ∅.

Let A be a set containing exactly one member of each equivalence class. (The existence of
such a set A follows from the axiom of choice.) We show that A is nonmeasurable. Let 0 = r0, r1, r2,
be an enumeration of Q ∩ [−1, 1], and define

Ak = {x+ rk : x ∈ A}
so that Ak is obtained from A by the translation x→ x+ rk.
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Then

[−1
2 ,

1
2 ] ⊂

∞⋃

k=0

Ak ⊂ [−3
2 ,

3
2 ]. (2)

To verify the first inclusion, let x ∈ [−1
2 ,

1
2 ] and let x0 be the representative of K(x) in A. We

have {x0} = A ∩K(x). Then x− x0 ∈ Q ∩ [−1, 1], so there exists k such that x− x0 = rk. Thus
x ∈ Ak. The second inclusion is immediate: the set Ak is the translation of A ⊂ [−1

2 ,
1
2 ] by the

rational number rk ∈ [−1, 1].
Suppose now that A is measurable. It follows (Exercise 1:9.12) that each of the translated

sets Ak is also measurable and that λ(Ak) = λ(A) for every k. But the sets {Ai} are pairwise
disjoint. If z ∈ Ai ∩ Aj for i 6= j, then xi = z − ri and xj = z − rj are in different equiva-
lence classes. This is impossible, since xi − xj ∈ Q. It now follows from (2) and the countable
additivity of λ on L that

1 = λ([−1
2 ,

1
2 ]) ≤ λ(

∞⋃

k=1

Ak) =
∞∑

k=1

λ(Ak) ≤ λ([−3
2 ,

3
2 ]) = 3. (3)

Let α = λ(A) = λ(Ak). From (3), we infer that

1 ≤ α+ α+ · · · ≤ 3. (4)

But it is clear that no number α can satisfy both inequalities in (4). The first inequality implies
that α > 0, but the second implies that α = 0. Thus A is nonmeasurable.

A variant of our argument (using Exercise 1:22.11) shows that λ∗(A) = 0 while λ∗ (A) > 0.
This, again, reveals why it is that A is nonmeasurable. �
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Many of the ideas that appear in this section, including the exercises, will reappear, in ab-
stract settings as well as in concrete settings, in later chapters.

The proof has invoked the axiom of choice in order to construct the nonmeasurable set. One
might ask whether it is possible to give a more constructive proof, one that does not use this
principle. This question belongs to the subject of logic rather than analysis, and the logicians
have answered it. In 1964, R. M. Solovay showed that, in Zermelo–Fraenkel set theory with a
weaker assumption than the axiom of choice, it is consistent that all sets are Lebesgue mea-
surable. On the other hand, the existence of nonmeasurable sets does not imply the axiom of
choice. Thus it is no accident that our proof had to rely on the axiom of choice: it would have
to appeal to some further logical principle in any case.

Exercises

1:10.1 Show that a Cantor set is Peano–Jordan measurable if and only if it has outer content zero.

1:10.2 Show that every set of positive outer measure contains a nonmeasurable set.

1:10.3 Show that there exist disjoint sets {Ek} so that

λ∗
( ∞⋃

k=1

Ek

)
<

∞∑

k=1

λ∗ (Ek) .

1:10.4 Show that there exists a decreasing sequence of sets E1 ⊃ E2 ⊃ E3 . . . so that each λ∗(Ek) <
+∞ and

λ∗
( ∞⋂

k=1

Ek

)
< lim

k→∞
λ∗ (Ek) .
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1.11 Zorn’s Lemma

In our brief survey we have already seen several points where an appeal to the axiom of choice
was needed. This fundamental logical principle can be formulated in a variety of equivalent
ways, each of use in certain situations.

The form we shall discuss now is called Zorn’s lemma after Max Zorn (1906–1994). To ex-
press this, we need some terms from the language of partially ordered sets. A partially ordered
set is a relaxation of a linearly ordered set as defined in Section 1.5. A relation a � b, defined
for certain pairs in a set S, is said to be a partial order on S, and (S,�) is said to be a partially
ordered set if

1. For all a ∈ S, a � a.

2. If a � b and b � a, then a = b.

3. If a � b and b � c, then a � c.

The word “partial” indicates that not all pairs of elements need be comparable, only that the
three properties here hold. A maximal element in a partially ordered set is an element m ∈ S
with nothing further in the order; that is, if m � a is true, then a = m.

The existence of maximal elements in partially ordered sets is of great importance. Zorn’s
lemma provides a criterion that can be checked in order to claim the existence of maximal ele-
ments. A chain in a partially ordered set is any subset that is itself linearly ordered. An upper
bound of a chain is simply an element beyond every element in the chain. The language is sug-
gestive, and pictures should help keep the concepts in mind.
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Lemma 1.34 (Zorn) If every chain in a partially ordered set has an upper bound, then the set
has a maximal element.

This assertion is, in fact, equivalent to the axiom of choice. We shall prove one direction
just as an indication of how Zorn’s lemma can be used in practice.

Let {Ai : i ∈ I} be a collection of sets, each nonempty. We wish to show the existence of a
choice function, that is, a function f with domain I such that f(i) ∈ Ai for each i ∈ I. For any
single given element i1 ∈ I, we are assured that Ai1 is nonempty and hence we can choose some
element f(i1) ∈ Ai1 . We could do the same for any finite collection {i1, i2, . . . , in}, but without
appealing to some logical principle we cannot do this for all elements of I.

Zorn’s lemma offers a technique. Define F as the family of all functions f such that

1. The domain of f is contained in I.

2. f(i) ∈ Ai for each i in the domain of f .

We already know that there are some functions in F . The choice function we want is presum-
ably there too: it is any element of F with domain I.

Use dom f to denote the domain of a function f . Define a partial order on F by writing f �
g to mean that dom f ⊂ dom g and g is an extension of f . A maximal element of F must be
our choice function. For, if f is maximal and yet the domain of f is not all of I, we can choose
i0 ∈ I \ dom f and some xi0 ∈ Ai0 . Define g on dom f ∪ {i0} so that g(i0) = xi0 . Then g is an
extension of f , and this contradicts the fact that f is to be maximal.

How do we prove the existence of a maximal element? Zorn’s lemma allows us merely to
verify that every chain has an upper bound. If C ⊂ F is a chain, then there is a function h
defined on

⋃
g∈C dom g so that h is an extension of each g ∈ C. Simply take h(i) = g(i) for

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



58 Background and Preview Chapter 1

any g ∈ C for which i ∈ dom g. The fact that C is linearly ordered shows that this definition is
unambiguous.

This completes the proof that Zorn’s lemma implies the axiom of choice. All applications of
Zorn’s lemma will look something like this. The cleverness that may be needed is to interpret
the problem at hand as a maximal problem in an appropriate partially ordered set.

Exercises

1:11.1 Let 2X denote the set of all subsets of a nonempty set X. Show that the relation A ⊂ B is a
partial order on 2X . Is it ever a linear order?

1:11.2 Let F denote the family of all functions f : X → Y . Write f � g if the domain of g includes
the domain of f and g is an extension of f . Show in detail that (F ,�) is a partially ordered set in
which every chain has an upper bound.

1:11.3♦ Prove that there is a Hamel basis for the real numbers; that is, there exists a set H ⊂ IR that
is linearly independent over the rationals and that spans IR. (A set H is linearly independent
over the rationals if given distinct elements h1, h2, . . .hn ∈ H and any r1, r2, . . . rn ∈ Q with∑n

i=1 rihi = 0 then necessarily

r1 = r2 = · · · = rn = 0.

A set H spans IR if for any x ∈ IR there exist

h1, h2, . . . hn ∈ H and r1, r2, . . . rn ∈ Q

so that
∑n

i=1 rihi = x.) [Hint: Find a maximal linearly independent set.]

1:11.4 Prove the axiom of choice assuming the well-ordering principle (that every set can be well-ordered).
[Hint: Given {Ai : i ∈ I} a collection of sets, each nonempty, well order the set

⋃
i∈I Ai. Consider

c(Ai) as the first element in the set Ai in the order.]
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1:11.5 Show that the following statement is equivalent to the axiom of choice: If C is a family of dis-
joint, nonempty subsets of a set X, then there is a set C that has exactly one element in common
with each set in C.

1.12 Borel Sets of Real Numbers

We have already defined several classes of sets that form the start of what is known as the Borel
sets:

G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ Gδσδσ . . .

and

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ Fσδσδ . . . .

Now, with transfinite ordinals available to us, we can continue this construction. The reason
the transfinite ordinals are needed is that this process, which evidently can continue following a
sequence of operations, does not terminate using an ordinary sequence.

The notation used above, while useful at the start of the process, will not serve us for long.
Recall that the first ordinal 0 and every limit ordinal is thought of as even, the successor of an
even ordinal is odd, and a successor of an odd ordinal is even.

We define the classes Fα and Gα for every ordinal α < Ω. We start by writing F0 = F
and G0 = G, F1 = Fσ and G1 = Gδ, F2 = Fσδ and G2 = Gδσ. The classes Fα and Gα for
every ordinal α are defined by taking countable intersections or countable unions of sets from
the corresponding classes Fβ and Gβ for ordinals β < α. If α is odd, then take Fα as the class
formed from countable unions of members from any classes Fβ for β < α. If α is even, then
take Fα as the class formed from countable intersections of members from any classes Fβ for
β < α.
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Similarly, if α is odd, then take Gα as the class formed from countable intersections of mem-
bers from any classes Gβ for β < α. If α is even, then take Gα as the class formed from count-
able unions of members from any classes Gβ for β < α.

This process continues through all the countable ordinals by transfinite induction. For α =
Ω, we find that the formation of countable intersections (to form FΩ) or countable unions (to
form GΩ) does not create new sets (see Exercise 1:12.5). The collection of all sets formed by
this process is called the Borel sets.

We list without proof some properties of the Borel sets on the line to give the flavor of the
theory.

1.35: The complement of a set of type Fα is a set of type Gα, and the complement of a set of
type Gα is a set of type Fα.

1.36: The union and intersection of a finite number of sets of type Fα (Gα) is of the same
type.

1.37: Let α < Ω be odd. Then the union of a countable number of sets of type Fα is of the
same type, and the intersection of a countable number of sets of type Gα is of the same type.

1.38: Every set of type Fα is of type Gα+1. Every set of type Gα is of type Fα+1.

1.39: The Borel sets form the smallest σ–algebra of sets that contains the closed sets (the
open sets).

Thus one says that the Borel sets are generated by the closed sets (or by the open sets).
(Exercise 1:9.8 shows that there must exist, independent of this theorem, a “smallest” σ–algebra
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containing any given collection of sets.) It is this form that we take as a definition in Chapter 3
for the Borel sets in a metric space.

Exercises

1:12.1 Show that the Borel sets form the smallest family of subsets of IR that (i) contains the closed
sets, (ii) is closed under countable unions, and (iii) is closed under countable intersections.

1:12.2 Show that the Borel sets form the smallest family of subsets of IR that (i) contains the closed
sets, (ii) is closed under countable disjoint unions, and (iii) is closed under countable intersections.

1:12.3 Show that the collection of all Borel sets has cardinality c.

1:12.4 Show that there must exist Lebesgue measurable sets that are not Borel sets. [Hint: Use Exer-
cise 1:9.13.]

1:12.5 Show that the formation of countable intersections (to form FΩ) or countable unions (to form
GΩ) does not create new sets. [Hint: All members of any sequence of sets from these classes must
belong to one of the classes.]

1.13 Analytic Sets of Real Numbers

The Borel sets clearly form the largest class of respectable sets. This class is closed under all
the reasonable operations that one might perform in analysis. Or so it seems.

In an important paper in 1905, Lebesgue made the observation that the projections of Borel
sets in IR2 onto the line are again Borel sets. The statement seems so reasonable and expected
that he gave no detailed proof, assuming it to follow by methods he just sketched. The reader
may know that the projection of a compact set in IR2 is a compact set in IR (any continuous
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image of a compact set is compact), and so any set that is a countable union of compact sets
must project to a Borel set. It seems likely that one could prove that projections of other Borel
sets must also be Borel by some obvious argument.

Lebesgue’s assertion went unchallenged for ten years until the error was spotted by a young
student in Moscow. Suslin, a student of Lusin, not only found the error, but reported to his
professor that he was able to characterize the sets that could be expressed as projections of
Borel sets and that he could produce an example of a projection of a Borel set that was not
itself a Borel set.

Suslin calls a set E ⊂ IR analytic if it can be expressed in the form

E =
⋃

(n1,n2,n3,... )

∞⋂

k=1

In1,n2,n3,...,nk

where each In1,n2,n3,...,nk
is a nonempty, closed interval for each

(n1, n2, n3, . . . , nk) ∈ INk

and each k ∈ IN, and where the union is taken over all possible sequences (n1, n2, n3, . . . ) of
natural numbers. Note that while the family of sets under consideration,

{In1,n2,n3,...,nk
: (n1, n2, n3, . . . , nk) ∈ INk},

is countable the union involves uncountably many sets. Accordingly, this operation is substan-
tially more complicated than the operations that preserve Borel sets. We shall call this the
Suslin operation, although some authors, following Suslin himself, call it operation A.

In a short space of time Suslin, with the evident assistance of Lusin, established the basic
properties of analytic sets and laid the groundwork for a vast amount of mathematics that has
proved to be of importance for analysts, topologists, and logicians. We shall study this in some
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detail in Chapter 11. Here let us merely announce some of his discoveries. He obtained each of
the following facts about analytic sets:

• All Borel sets are analytic.

• There is an analytic set that is not Borel.

• A set is Borel if and only if it and its complement are both analytic.

• Every analytic set in IR is the projection of some Gδ set in IR2.

• Every uncountable analytic set has cardinality c.

• The projections of analytic sets are again analytic.

Thus in his short career (he died in 1919) Suslin established the fundamental properties of
analytic sets, properties that exhibit the role that they must play. Lusin and his Polish col-
league Sierpiński carried on the study in subsequent years, and by the end of the 1930s the
study was quite complete and extensive. Let us mention two of their results that are important
from the perspective of measure theory.

• All analytic sets are Lebesgue measurable.

• The Suslin operation applied to a family of Lebesgue measurable sets produces again a
Lebesgue measurable set.
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The study of analytic sets was well developed and well known in certain circles (mostly in
Poland), but it did not receive a great deal of general attention until two main developments.
In the 1950s a number of important problems in analysis were solved by employing the tech-
niques associated with the study of analytic sets. In another direction it was discovered that
most of the theory played an essential role in the study of descriptive set theory; since then all
the methods and results of Suslin, Lusin, Sierpiński, and others have been absorbed by the logi-
cians in their development of this subject.

We shall return to these ideas in Chapter 11 where we will explore the methods used to
prove the statements listed here.

1.14 Bounded Variation

The following two problems attracted some attention in the latter years of the nineteenth cen-
tury.

1.40: What is the smallest linear space containing the monotonic functions?

1.41: For what class of functions f does the graph

{(x, y) : y = f(x)}
have finite length?

Du Bois-Reymond, for one, attempted to solve Problem 1.40. He noted that, for a function
f that is the integral of its derivative, one could write

f(x) = f(a) +

∫ x

a
[f ′(t)]+ dt−

∫ x

a
[f ′(t)]− dt,
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where we are using the useful notation

[a]+ = max{a, 0} and [a]− = max{−a, 0}.

Clearly, this expresses f as a difference of monotone functions. This led him to a more diffi-
cult problem, which he was unable to resolve: Which functions are indefinite integrals of their
derivatives? Unfortunately, this leads to a problem that will not resolve the original problem in
any case.

Camille Jordan (1838–1922) solved both problems by introducing the class of functions of
bounded variation. The functions of bounded variation play a central role in many investiga-
tions, notably in studies of rectifiability (as Problem 1.41 would suggest) and fundamental ques-
tions involving integrals and derivatives. They also lead to natural generalizations in the ab-
stract study of measure and integration. For that reason, the student should be aware of the
basic facts and methods that are developed in the exercises.

Let f be a real-valued function defined on a compact interval [a, b]. As in Section 1.2.1, let
P be a partition of [a, b], i.e., choose points

a = x0 < x1 < · · · < xn = b

and then

P = {[xi−1, xi] : i = 1, 2, . . . , n}

is a collection of nonoverlapping subintervals of [a, b] whose union is all of [a, b]. Let

V (f,P) =

n∑

j=1

|f(xj) − f(xj−1)|.
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The variation of f on [a, b] is defined as

V (f ; [a, b]) = sup{V (f,P) : P is a partition of [a, b] }.
When V (f ; [a, b]) is finite, we say that f is of bounded variation on [a, b]. We then write f is
BV on [a, b], or f is BV when the interval is understood. (The variant VB is also in common
usage because of the French variation bornée.)

The function T (x) = V (f ; [a, x]) measures the variation on the interval [a, x] and evidently
is an increasing function. This is called the total variation of f . It is this that allows the solu-
tion of Problem 1.40, for one shows that

f(x) = T (x) − (T (x) − f(x))

expresses f as a difference of monotone functions (Exercise 1:14.10).
For the problems on arc length, we need the following definitions. Let f and g be real func-

tions on an interval [a, b]. A curve C in the plane is considered to be the pair of parametric
equations

x = f(t), y = g(t) (a ≤ t ≤ b).

The graph of the curve C is the set of points

{(x, y) : x = f(t), y = g(t) (a ≤ t ≤ b)}.
The length ℓ(C) of the curve C is defined as

sup
n∑

j=1

√
(f(xj) − f(xj−1))2 + (g(xj) − g(xj−1))2,

where, as above, the supremum is taken over all partitions of [a, b]. The curve is said to be rec-
tifiable if this is finite. Such a curve is rectifiable precisely when both functions f and g have
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bounded variation (Exercise 1:14.14). The graph of a function f is rectifiable precisely when f
has bounded variation (Exercise 1:14.16).

Exercises

1:14.1 Show that a monotonic function on [a, b] is BV.

1:14.2 Show that a continuous function with a finite number of local maxima and minima on [a, b] is
BV.

1:14.3 Show that a continuously differentiable function on [a, b] is BV.

1:14.4 Show that a function that satisfies a Lipschitz condition on [a, b] is BV.

[A function f is said to satisfy a Lipschitz condition if, for some constant M , |f(x) − f(y)| ≤
M |y − x|. These conditions were introduced by Rudolf Lipschitz (1832–1903) in an 1876 study
of differential equations.]

1:14.5 Estimate the variation of the function f(x) = x sinx−1, f(0) = 0, on the interval [0, 1].

1:14.6 Estimate the variation of the function f(x) = x2 sinx−1, f(0) = 0, on the interval [0, 1].

1:14.7 Prove that, if f is BV on [a, b], then f is bounded on [a, b].

1:14.8 Show that the class of functions of bounded variation on [a, b] is closed under addition, subtrac-
tion, and multiplication. If f and g are BV, and g is bounded away from zero, then f/g is BV.

1:14.9♦ Show that if f is BV on [a, b] and a ≤ c ≤ b, then

V (f ; [a, b]) = V (f ; [a, c]) + V (f ; [c, b]).

1:14.10♦ Show that a function f is BV on [a, b] if and only if there exist functions f1 and f2 that are
nondecreasing on [a, b], and f(x) = f1(x) − f2(x) for all x ∈ [a, b]. [Hint: Let V (x) = V (f ; [a, x]).
Verify that V − f is nondecreasing on [a, b] and use f = V − (V − f).]
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1:14.11 Show that the set of discontinuities of a function of bounded variation is (at most) countable.
[Hint: See Exercise 1:3.14.]

1:14.12 Show that if f is BV on [a, b], with variation V (x) = V (f ; [a, x]), then

{x : f is right continuous at x} = {x : V is right continuous at x}.
1:14.13 Let {fn} be a sequence of functions, each BV on [a, b] with variation less than or equal to some

number M . If fn → f pointwise on [a, b], show that f is BV on [a, b] with variation no greater
than M .

1:14.14 Show that the graph of a curve C in the plane, given by the pair of parametric equations

x = f(t), y = g(t) (a ≤ t ≤ b)

is rectifiable if and only if both f and g have bounded variation on [a, b]. [Hint: |x|, |y| ≤
√
x2 + y2 ≤

|x| + |y|.]
1:14.15 Show that the length of a curve C in the plane, given by the pair of parametric equations x =

f(t), y = g(t) (a ≤ t ≤ b), is the integral
∫ b

a

√
[f ′(t)]2 + [g′(t)]2 dt

if f and g are continuously differentiable.

1:14.16 Show that the graph of a function f is rectifiable if and only if f has bounded variation on
[a, b].

1:14.17♦ Let f : [a, b] → IR. We say that f is absolutely continuous if for each ε > 0 there exists δ > 0
such that, if {[an, bn]} is any finite or countable collection of nonoverlapping closed intervals in
[a, b] with

∑∞
k=1(bk − ak) < δ, then

∞∑

k=1

|f(bk) − f(ak)| < ε.
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This concept plays a significant role in the integration theory of real functions. Show that an abso-
lutely continuous function is both continuous and of bounded variation.

1:14.18 Give a natural definition for a complex-valued function on a real interval [a, b] to have bounded
variation. Prove that a complex-valued function has bounded variation if and only if its real and
imaginary parts have bounded variation.

1.15 Newton’s Integral

We embark now on a tour of classical integration theory leading up to the Lebesgue integral.
The reader will be familiar to various degrees with much of this material, since it appears in
a variety of undergraduate courses. Here we need to clarify many different themes that come
together in an advanced course in measure and integration.

The simplest starting point is the integral as conceived by Newton. For him the integral is
just an inversion of the derivative. In the same spirit (but not in the same technical way that
he would have done it) we shall make the following definition.

Definition 1.42: A real-valued function f defined on an interval [a, b] is said to be Newton
integrable on [a, b] if there exists an antiderivative of f , that is, a function F on [a, b] with
F ′(x) = f(x) everywhere there. Then we write

(N)

∫ b

a
f(x) dx = F (b) − F (a).

The mean-value theorem shows that the value is well defined and does not depend on the
particular primitive function F chosen to evaluate the integral. This integral must be consid-
ered descriptive in the sense that the property of integrability and the value of the integral are
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determined by the existence of some object for which no construction or recipe is available. If,
perchance, such a function F can be found, then the value of the integral is determined, but
otherwise there is no hope, a priori, of finding the integral or even of knowing whether it exists.

One might wish to call this the calculus integral since, in spite of the many texts that teach
constructive definitions for integrals, most freshman calculus students hardly ever view an inte-
gral as anything more than a determination of an antiderivative.

At this point let us remark that this integral is handling functions that are not handled by
other methods. The integrals of Cauchy and of Riemann, discussed next, require a fair bit of
continuity in the function and do not tolerate much unboundedness. But derivatives can be un-
bounded and derivatives can be badly discontinuous. We know that a derivative is Baire 1 and
that Baire 1 functions are continuous except at the points of a first category set; this first cat-
egory set can, however, have positive measure, and this will interfere with integrability in the
senses of Cauchy or Riemann. Thus, while this integral may seem quite simple and unassuming,
it is involved in a process that is more mysterious than might appear at first glance. Attempts
to understand this integral will take us on a long journey.

Exercises

1:15.1 Show that the mean-value theorem can be used to justify the definition of the Newton integral.

1:15.2 Show that a derivative f ′ of a continuous function f is Baire 1 and has the intermediate-value
property. [Hint: Consider fn(x) = n−1(f(x+n−1)− f(x)). The intermediate-value property can be
deduced from the mean-value theorem.]

1:15.3 Show that a derivative on a finite interval can be unbounded.

1:15.4 Which of the elementary properties of the Riemann integral hold for the Newton integral? For
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example, can we write ∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx?

1.16 Cauchy’s Integral

A first course in calculus will include a proper definition of the integral that dates back to the
middle of the nineteenth century and is generally attributed to Bernhard Riemann (1826–1866).
Actually, Augustin Cauchy (1789–1857) had conceived of such an integral a bit earlier, but
Cauchy limited his study to continuous functions. Here is Cauchy’s definition, stated in modern
language but essentially as he would have given it in 1823 in his lessons at the École Polytech-
nique.

Let f be continuous on [a, b] and consider a partition P of this interval:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Form the sum

S(f, P ) =
n∑

i=1

f(xi−1)(xi − xi−1).

Let ‖P‖ = max1≤i≤n(xi − xi−1) and define
∫ b

a
f (x) dx = lim

‖P‖→0
S(f, P ).

Cauchy showed that this limit exists.
Prior to Cauchy, such a definition of integral might not have been possible. The modern

notion of “continuity” was not available (it was advanced by Cauchy in 1821), and even the
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proper definition of “function” was in dispute. Cauchy also established a form of the fundamen-
tal theorem of calculus.

Theorem 1.43: Let f be continuous on [a, b], and let

F (x) =

∫ x

a
f (t) dt (a ≤ x ≤ b).

Then F is differentiable on [a, b], and F ′(x) = f(x) for all x ∈ [a, b].

Theorem 1.44: Let F be continuously differentiable on [a, b]. Then

F (b) − F (a) =

∫ b

a
F ′ (x) dx.

Thus, for continuous functions, Cauchy offers an integral that is constructive and agrees
with the Newton integral. There are, however, unbounded derivatives, and so the Newton in-
tegral remains more general than Cauchy’s version.

1.16.1 Cauchy’s extension of the integral to unbounded functions

To handle unbounded functions, Cauchy introduces the following idea, one that survives to this
day in elementary calculus courses, usually under the unfortunate term “improper integral.”
Let us introduce it in a more formal manner, one that leads to a better understanding of the
structure.

Let f be a real function on an interval [a, b]. A point x0 ∈ [a, b] is a point of unboundedness
of f if f is unbounded in every open interval containing x0. Let Sf denote the set of points of
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unboundedness. If Sf is a finite set and f is continuous at every point of [a, b]\Sf , there is some

hope of obtaining an integral of f . Certainly, we know the value of
∫ d
c f(t) dt for every interval

[c, d] disjoint from Sf . It is a matter of extending these values. Cauchy’s idea is to obtain, for
any c, d ∈ Sf with (c, d) ∩ Sf = ∅,

∫ d

c
f(t) dt = lim

ε1ց0, ε2ց0

∫ d−ε2

c+ε1

f(t) dt

Then, in a finite number of steps, one can extend the integral to [a, b], providing only that each
limit as above exists. A function is Cauchy integrable on an interval [a, b] provided that Sf is
finite, f is continuous at each point of [a, b] excepting the points in Sf and all the limits above
exist.

One important feature of this integral is its nonabsolute character. A function f may be
integrable in Cauchy’s sense on an interval [a, b] and yet the absolute value |f | may not be. An
easy example is the function f(x) = F ′(x) on [0, 1], where F (x) = x2 sinx−2. Here Sf = {0}
and f is continuous away from 0. Obviously, f is Cauchy integrable on [0, 1], and yet |f | is not.
Somehow the “cancelations” that take place for integrating f do not occur for |f |, since

lim
εց0

∫ 1

ε
|f(t)| dt = +∞.

This can be considered as the analog in integration theory of the fact that
∑∞

i=1(−1)i/i exists
and yet

∑∞
i=1 1/i = +∞.

Finally, we mention Cauchy’s method for handling unbounded intervals. The procedure
above for determining the integral of a continuous function on a bounded interval [a, b] does
not immediately extend to the unbounded intervals (−∞, a], [a,+∞), or (−∞,+∞). Cauchy
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handled these in a now familiar way. He defines
∫ +∞

−∞
f(x) dx = lim

s,t→+∞

∫ t

−s
f(x) dx.

Note that this integral, too, is a nonabsolute integral.

Exercises

1:16.1 Let Sf denote the set of points of unboundedness of a function f . Show that Sf is closed.

1:16.2 Cauchy also considered symmetric limits of the form

lim
t→0+

(∫ b−t

a

f(x) dx+

∫ c

b+t

f(x) dx

)

as “principal-value” limits. Give an example to show that these can exist when the ordinary Cauchy
integral does not.

1:16.3 Cauchy also considered symmetric limits for unbounded intervals

lim
t→+∞

∫ t

−t

f(x) dx.

as “principal value” limits. Give an example to show that this can exist when the ordinary Cauchy
integral does not.

1:16.4 Let f(x) = x2 sinx−2, f(0) = 0 and show that f ′ is an unbounded derivative on [0, 1] integrable
by both Cauchy and Newton’s methods to the same value. Show that |f | is not integrable by ei-
ther method.
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1.17 Riemann’s Integral

Riemann extended Cauchy’s concept of integral to include some bounded functions that are dis-
continuous. All the definitions one finds in standard calculus texts are equivalent to his. Using
exactly the language we have given for one of the results of Cauchy from the preceding section,
we can give a definition of Riemann’s integral. Note that it merely turns a theorem (for contin-
uous functions) into a definition of the meaning of the integral for discontinuous functions. This
shift represents a quite modern point of view, one that Cauchy and his contemporaries would
never have made.

Definition 1.45: Let f be a real-valued function defined on [a, b], and consider a partition P
of this interval

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

supplied with associated points ξi ∈ [xi−1, xi]. Form the sum

S(f, P ) =
n∑

i=1

f(ξi)(xi − xi−1)

and let

‖P‖ = max
1≤i≤n

(xi − xi−1).

Then we define ∫ b

a
f (x) dx = lim

‖P‖→0
S(f, P )

and call f Riemann integrable if this limit exists.
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1.17.1 Necessary and sufficient conditions for Riemann integrability

The structure of Riemann integrable functions is quite easy to grasp. They are bounded (this
is evident from the definition) and they are “mostly” continuous. This was established by Rie-
mann himself. His analysis of the continuity properties of integrable functions lacked only an
appropriate language in which to express it. With Lebesgue measure at our disposal, the char-
acterization is immediate and compelling. It reveals too just why the Riemann integral must be
considered so limited in application.

Theorem 1.46 (Riemann-Lebesgue) A necessary and sufficient condition for a function f
to be Riemann integrable on an interval [a, b] is that f is bounded and that its set of points of
discontinuity in [a, b] forms a set of Lebesgue measure zero.

Perhaps we should give a version of this theorem that would be more accessible to the math-
ematicians of the nineteenth century, who would have known Peano–Jordan content but not
Lebesgue measure. The set of points of discontinuity has an easy structure: it is the countable
union

⋃∞
n=1 Fn of the sequence of closed sets

Fn = {x : ωf (x) ≥ 1/n},
where the oscillation of the function is greater than the positive value 1/n. [Exercise 1:1.8 de-
fines ωf (x).] That the set of points of continuity of f has measure zero is seen to be equivalent
to each of the sets Fn having content zero. Thus the theorem could have been expressed in this,
rather more clumsy, way. Note that, so expressed, one may miss the obvious fact that it is only
the nature of the set of discontinuity points itself that plays a role, not some other geometric
property of the function. In particular, this serves as a good illustration of the merits of the
Lebesgue measure over the Peano–Jordan content.
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Exercises

1:17.1 Show that a Riemann integrable function must be bounded.

1:17.2♦ (Riemann) Let f be a real-valued function defined on [a, b], and consider a partition P of this
interval:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Form the sum

O(f, P ) =
n∑

i=1

ω(f, [xi−1, xi])(xi − xi−1),

where

ω(f, I) = sup{|f(x) − f(y)| : x, y ∈ I}
is called the oscillation of f on the interval I. Show that in order for f to be Riemann integrable
on [a, b] it is necessary and sufficient that

lim
‖P‖→0

O(f, P ) = 0.

1:17.3 Relate Exercise 1:17.2 to the problem of finding the Peano–Jordan content (Lebesgue measure)
of the closed set of points where the oscillation ωf (x) of f is greater or equal to some positive
number c.

1:17.4 Relate Exercise 1:17.2 to the problem of finding the Lebesgue measure of the set of points where
f is continuous (i.e., where the oscillation ωf of f is zero).

1:17.5 Riemann’s integral does not handle unbounded functions. Define a Cauchy–Riemann integral
using Cauchy’s extension method to handle unbounded functions.

1:17.6 Let Sf denote the set of points of unboundedness of a function f in an interval [a, b]. Suppose
that Sf has content zero (i.e., measure zero since it is closed) and that f is Riemann integrable in
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every interval [c, d] ⊂ [a, b] disjoint from Sf . Define fst(x) = f(x) if −s ≤ f(x) ≤ t, fst(x) = t if
f(x) > t and fst(x) = −s if −s > f(x). Define

∫ b

a

f(x) dx = lim
s,t→+∞

∫ b

a

fst(x) dx

if this exists. Show that
∫ b

a
f(x) dx does exist under these assumptions. This is the way de la

Vallée Poussin proposed to handle unbounded functions. Show that this method is different from
the Cauchy–Riemann integral by showing that this integral is an absolutely convergent integral.

1:17.7 Prove that a function f on an interval [a, b] is Riemann integrable if f has a finite limit at every
point.

1:17.8 Prove that a bounded function on an interval [a, b] is Riemann integrable if and only if f has a
finite right-hand limit at every point except only a set of measure zero. [Hint: The set of points at
which f is discontinuous and yet has a finite right-hand limit is countable.]

1.18 Volterra’s Example

By the end of the nineteenth century, many limitations to Riemann’s approach were apparent.
All these flaws related to the fact that the class of Riemann integrable functions is too small for
many purposes.

The most obvious problem is that a Riemann integrable function must be bounded. Much
attention was given to the problem of integrating unbounded functions by the analysts of the
that era and less to the fact that, even for bounded functions, the integrability criteria were
too strict. This fact was put into startling clarity by an example of Volterra. He produces an
everywhere differentiable function F such that F ′ is bounded but not Riemann integrable. Thus
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the fundamental theorem of calculus fails for this function, and the formula
∫ b

a
F ′(x) dx = F (b) − F (a)

is invalid.
Here are some of the details of a construction due to Casper Goffman (1913–2006). For a

version closer to Volterra’s actual construction, see Exercise 5:5.5. Note that we have only to
construct a derivative F ′ that is discontinuous on a set of positive measure (or a closed set of
positive content). For this we take a Cantor set of positive measure (Theorem 1.23). It was the
existence of such sets that provided the key to Volterra’s construction.

Let C ⊂ [0, 1] be a Cantor set of measure 1/2 and let {In} denote the sequence of open
intervals complementary to C in (0, 1). Then

∑∞
i=1 |Ii| = 1/2. Choose a closed subinterval

Jn ⊂ In centered in In such that |Jn| = |In|2. Define a function f on [0, 1] with values 0 ≤
f(x) ≤ 1 such that f is continuous on each interval Jn and is 1 at the centers of each interval
Jn and vanishes outside of every Jn. It is straightforward to check that f cannot be Riemann
integrable on [0, 1]. Indeed, since the intervals {In} are dense and have total length 1/2, and
the oscillation of f is 1 on each In, this function violates Riemann’s criterion (Exercise 1:17.2).

That f is a derivative follows immediately from advanced considerations (it is bounded and
everywhere approximately continuous and hence the derivative of its Lebesgue integral). This
can also be seen without any technical apparatus. We can construct a continuous primitive
function F for f on each interval Jn. To define a primitive F on all of [0, 1], we write

F (x) =
∞∑

n=1

∫

Jn∩[0,x]
f(t) dt.

Let I ⊂ [0, 1] be an interval that meets the Cantor set C, and let n be any integer so that I ∩
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Jn 6= ∅. Let ℓn = |In|. Since ℓn ≤ 1
2 , it follows that

|I ∩ In| ≥ 1
2(ℓn − ℓ2n) ≥ 1

4ℓn.

Then

|I ∩ Jn| ≤ |Jn| = ℓ2n ≤ 16|I ∩ In|2.
If N is the set of integers n for which I ∩ Jn 6= ∅, then∑

n∈N

|I ∩ Jn| ≤
∑

n∈N

16|I ∩ In|2 ≤ 16|I|2.

From this we can check that F ′(x) = f(x) = 0 for each x ∈ C. For x ∈ [0, 1] \ C, it is obvious
that F ′(x) = f(x). Thus f is a derivative and bounded (between 0 and 1).

Other flaws that reveal the narrowness of the Riemann integral emerge by comparison with
later theories. One would like useful theorems that assert a series of functions can be integrated
term by term. More precisely, if {fn} is a sequence of integrable functions on [a, b], and f(x) =∑∞

n=1 fn(x), then f is integrable, and
∫ b

a
f (x) dx =

∞∑

n=1

∫ b

a
fn (x) dx.

Riemann’s integral does not do very well in this connection since the limit function f can be
badly discontinuous even if the functions fn are themselves each continuous. Many authors in
the first half of the nineteenth century routinely assumed the permissibility of term-by-term in-
tegration. It was not until 1841 that the notion of uniform convergence appeared, and its role
in theorems about term-by-term integration, continuity of the sum, and the like, followed soon
thereafter. By the end of the century there was felt a strong need to go beyond uniform conver-
gence in theorems of this kind.
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Yet another type of limitation is that Riemann’s integral is defined only over intervals. For
many purposes, one needs to be able to deal with the integral over a set E that need not be an
interval. The Riemann integral can, in fact, be defined over Peano–Jordan measurable sets, but
we have seen that this class of sets is rather limited and does not embrace many sets (Cantor
sets of positive measure for example) that arise in applications. One often needs a larger class
of sets over which an integral makes sense.

We shall deal in this text with a notion of integral, essentially due to Henri Lebesgue, that
does much better. The class of integrable functions is sufficiently large to remove, or at least
reduce, the limitations we discussed, and it allows natural generalizations to functions defined
on spaces much more general than the real line.

Exercises

1:18.1 Check the details of the construction of the function F whose derivative is bounded and not Rie-
mann integrable.

1:18.2 Construct a sequence of continuous functions converging pointwise to a function that is not Rie-
mann integrable.

1:18.3 Define ∫

E

f(x) dx =

∫ b

a

χ
E

(x)f(x) dx

when E ⊂ [a, b] and f is continuous on [a, b]. For what sets E is this generally possible?
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1.19 Riemann–Stieltjes Integral

T. J. Stieltjes (1856–1894) introduced a generalization of the Riemann integral that would seem
entirely natural. He introduced a weight function g into the definition and considered limits of
sums of the form

n∑

i=1

f(ξi) (g(xi) − g(xi−1))

where, as usual, x0, x1, . . . , xn is a partition of an interval and each ξi ∈ [xi−1, xi]. Although
it was introduced for the specific purpose of representing functions in a problem in continued
fractions, it should have been clear that this object (the Riemann–Stieltjes integral) had some
independent merit. Stieltjes himself died before the appearance of his paper, and the idea at-
tracted almost no attention for the next 15 years. Then F. Riesz showed that this integral gave
a precise characterization of the general continuous linear functions on the space of continuous
function on an interval. (See Section 12.8.) Since then it has become a mainstream tool of anal-
ysis. It also played a fundamental role in the development [notably by J. Radon (1887-1956)
and M. Fréchet (1878-1973)] of the abstract theory of measure and integration. For these rea-
sons the student should know at least the rudiments of the theory as presented here.
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Definition 1.47: Let f , g be real-valued functions defined on [a, b], and consider a partition P
of this interval

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

supplied with associated points ξi ∈ [xi−1, xi]. Form the sum

S(f, dg, P ) =
n∑

i=1

f(ξi) (g(xi) − g(xi−1))

and let

‖P‖ = max
1≤i≤n

(xi − xi−1).

Then we define ∫ b

a
f(x) dg(x) = lim

‖P‖→0
S(f, dg, P )

and call f Riemann–Stieltjes integrable with respect to g if this limit exists.

Clearly, the case g(x) = x is just the Riemann integral. For g continuously differentiable,
the integral reduces to a Riemann integral of the form

∫ b

a
f(x) dg(x) =

∫ b

a
f(x)g′(x) dx.

If g is of a very simple form, then the integral can be computed by hand. Suppose that g is a
step function; that is, for some partition P of this interval,

a = c0 < c1 < c2 < · · · < ck−1 < ck = b,
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the function g is constant on each interval (ci−1, ci). Let ji be the jumps of g at ci; that is j0 =
g(c0+) − g(c0), jk = g(ck) − g(ck−), and ji = g(ci+) − g(ci−) for 1 ≤ i ≤ k − 1. Then one easily
checks for a continuous function f that

∫ b

a
f(x) dg(x) =

k∑

i=1

f(ci)ji.

The most natural applications of this integral occur for f continuous and g of bounded vari-
ation. In this case the integral exists and there is a useful estimate for its magnitude. We state
this as a theorem; it is assigned as an exercise in Section 12.8 where it is needed. We leave the
rest of the theoretical development of the integral to the exercises.

Theorem 1.48: If f is continuous and g has bounded variation on an interval [a, b], then f is
Riemann–Stieltjes integrable with respect to g and

∣∣∣∣
∫ b

a
f(x) dg(x)

∣∣∣∣ ≤
(

max
x∈[a,b]

|f(x)|
)
V (g; [a, b]).

The exercises can be used to sense the structure of the theory that emerges without working
through the details. We do not require this theory in the sequel; but, as there are many appli-
cations of the Riemann–Stieltjes integral in analysis, the reader should emerge with some fa-
miliarity with the ideas, if not a full technical appreciation of how the proofs go. The study of∫ b
a f(x) dg(x) is easiest if f is continuous and g monotonic (or of bounded variation). The de-

tails are harder if one wants more generality.
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Exercises

1:19.1 What is
∫ b

a
f(x) dg(x) if f is constant? If g is constant?

1:19.2 Writing

I(f, g) =

∫ b

a

f(x) dg(x)

establish the linearity of f → I(f, g) and g → I(f, g); that is, show that I(f1 + f2, g) = I(f1, g) +
I(f2, g), I(cf, g) = I(f, cg) = cI(f, g), and I(f, g1 + g2) = I(f, g1) + I(f, g2).

1:19.3 Give an example to show that both
∫ b

a
f(x) dg(x) and

∫ c

b
f(x) dg(x) may exist and yet

∫ c

a
f(x) dg(x)

may not.

1:19.4 Show that ∫ c

a

f(x) dg(x) =

∫ b

a

f(x) dg(x) +

∫ c

b

f(x) dg(x)

under appropriate assumptions.

1:19.5 Suppose that g is continuously differentiable and f is continuous. Prove that
∫ b

a

f(x) dg(x) =

∫ b

a

f(x)g′(x) dx.

[Hint: Write f(ξi)(g(xi) − g(xi−1)) as f(ξi)g
′(ηi)(xi − xi−1), where ξi, ηi ∈ [xi−1, xi] using the

mean-value theorem.]

1:19.6 Let g be a step function, constant on each interval (ci−1, ci) of the partition

a = c0 < c1 < c2 < · · · < ck−1 < ck = b.
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Then, for a continuous function f ,

∫ b

a

f(x) dg(x) =

k∑

i=1

f(ci)ji,

where ji are the jumps of g at ci; that is, j0 = g(c0+) − g(c0), jk = g(ck) − g(ck−), and ji =
g(ci+) − g(ci−) for 1 ≤ i ≤ k − 1.

1:19.7 Show that if
∫ b

a
f(x) dg(x) exists then f and g have no common point of discontinuity.

1:19.8 (Integration by parts) Establish the formula
∫ b

a

f(x) dg(x) +

∫ b

a

g(x) df(x) = f(b)g(b) − f(a)g(a)

under appropriate assumptions on f and g.

1:19.9 (Mean-value theorem) Show that
∫ b

a

f(x) dg(x) = f(ξ)(g(b) − g(a))

for some ξ ∈ [a, b] under appropriate assumptions on f and g.

1:19.10 Suppose that f1, f2 are continuous and g is of bounded variation on [a, b], and define

h(x) =

∫ x

a

f1(t) dg(t)

for a ≤ x ≤ b. Show that ∫ b

a

f2(t) dh(t) =

∫ b

a

f1(t)f2(t) dg(t).
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1:19.11 Let g, g1, g2, . . . be BV functions on [a, b] such that g(a) = g1(a) = · · · = 0. Suppose that the
variation of g − gn on [a, b] tends to zero as n→ ∞. Show that

lim
n→∞

∫ b

a

f(x) dgn(x) =

∫ b

a

f(x) dg(x)

for every continuous f . [Hint: Use Theorem 1.48.]

1.20 Lebesgue’s Integral

The mainstream of modern integration theory is based on the notion of integral due to Lebes-
gue. A formal development of the integral must wait until Chapter 5, where it is done in full
generality. Here we give some insight into what is involved.

Suppose that you have several coins in your pocket to count: 4 dimes, 2 nickels, and 3 pen-
nies. There are two natural ways to count the total value of the coins.

Computation 1. Count the coins in the order in which they appear as you pull them from
your pocket, for example,

10 + 10 + 5 + 10 + 1 + 5 + 10 + 1 + 1 = 53.

Computation 2. Group the coins by value, and compute

(10)(4) + (5)(2) + (1)(3) = 53.

The first computation corresponds to Riemann integration, while the second computation
is closely related to the methods of Lebesgue integration. Let’s look at this in more detail. Fig-
ure 1.1 is the graph of a function that models our counting problem using the order from com-
putation 1.
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6
f(x)

- x

1 pennies

5 nickels

10 dimes

1 9

Figure 1.1. A function that models our counting problem.

One can check easily that
∫ 9
0 f (x) dx = 53, the integral being Riemann’s. Because of the

simple nature of this function, one sees that one needs no finer partition than the partition ob-
tained by dividing [0, 9] into 9 congruent intervals. This partition gives the sum corresponding
to the first method.

To consider the second method of counting, we use the notation of measure theory. If I is
an interval, we write, as usual, λ(I) for the length of I. If E is a finite union of pairwise-disjoint
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intervals, E = I1 ∪ · · · ∪ In, then the measure of E is given by the sum

λ(E) = λ(I1) + · · · + λ(In).

Now let

E1 = {x : f(x) = 1},
E5 = {x : f(x) = 5},

and

E10 = {x : f(x) = 10}.
Then λ(E1) = 3, λ(E5) = 2, and λ(E10) = 4. In computation 2 we formed the sum

(1)λ(E1) + (5)λ(E5) + (10)λ(E10).

Note that the numbers 1, 5, and 10 represent the values of the function f , and λ(Ei) indicates
“how often” the value i is taken on.

We have belabored this simple example because it contains the seed of the Lebesgue inte-
gral. Let us try to imitate this example for an arbitrary bounded function f defined on [a, b].
Suppose that m ≤ f(x) < M for all x ∈ [a, b]. Instead of partitioning the interval [a, b], we
partition the interval [m,M ]:

m = y0 < y1 < · · · < yn = M.

For k = 1, . . . , n, let

Ek = {x : yk−1 ≤ f(x) < yk}.
Thus the partition of the range induces a partition of the interval [a, b]:

[a, b] = E1 ∪ E2 ∪ · · · ∪En
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where the sets {Ek} are clearly pairwise disjoint. We can form the sums
∑

yk λ(Ek) and
∑

yk−1 λ(Ek)

in the expectation that these can be used to approximate our integral, the first from above and
the second from below. We hope two things: that such approximating sums approach a limit
as the norm of the partition approaches zero and that the two limits are the same. If each of
the sets Ek happens to be always a finite union of intervals (e.g., if f is a polynomial), then the
upper and lower sums do have the same limit. This is just another way of describing a well-
known development of the Riemann integral via upper and lower sums.

But the sets Ek may be much more complicated than this. For example, each Ek might con-
tain no interval. Thus one needs to know in advance the measure of quite arbitrary sets. This
attempt at an integral will break down unless we restrict things in such a way that the sets that
arise are Lebesgue measurable. This means we must restrict our attention to classes of func-
tions for which all such sets are measurable, the measurable functions (Chapter 4).

After we understand the basic ideas of measures (Chapter 2) and measurable functions (Chap-
ter 4), we will be ready to develop the integral. The idea of considering sums of the form

∑
yk λ(Ek) and

∑
yk−1 λ(Ek)

taken over a partition of the interval

[a, b] = E1 ∪ E2 ∪ · · · ∪En

did not originate with Lebesgue; Peano had used it earlier. But the idea of partitioning the
range in order to induce this partition seems to be Lebesgue’s contribution, and it points out
very clearly the class of functions that should be considered; that is, functions f for which the
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associated sets

E = {x : α ≤ f(x) < β}
are Lebesgue measurable.

The preceding paragraphs represent an outline of how one could arrive at the Lebesgue inte-
gral. Our development will be more general; it will include a theory of integration that applies
to functions defined on general “measure spaces.” The fascinating evolution of the theory of in-
tegration is delineated in Hawkins book on this subject.2 A reading of this book allows one to
admire the genius of some leading mathematicians of the time. It also allows one to sympathize
with their misconceptions and the frustration these misconceptions must have caused.

1.21 The Generalized Riemann Integral

The main motivation that Lebesgue gave for generalizing the Riemann integral was Volterra’s
example of a bounded derivative that is not Riemann integrable. Lebesgue was able to prove
that his integral would handle all bounded derivatives. His integral is, however, by its very na-
ture an absolute integral. That is, in order for

∫ b
a f(x) dx to exist, it must be true that

∫ b

a
|f(x)| dx

also exists. The problem of inverting derivatives cannot be solved by an absolute integral, as we
know from the elementary example F ′ with

F (x) = x2 sinx−2.

2T. Hawkins, Lebesgue’s Theory of Integration, Chelsea Publishing Co., (1979).
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Thus we are still left with a curious situation. Despite a century of the best work on the
subject, the integration theories of Cauchy, Riemann, and Lebesgue do not include the original
Newton integral. There are derivatives (necessarily unbounded) that are not integrable in any
of these three senses. In general, how can one invert a derivative then?

To answer this, we can take a completely naive approach and start with the definition of the
derivative itself. If F ′ = f everywhere, then, at each point ξ and for every ε > 0, there is a
δ > 0 so that

|F (x′′) − F (x′) − f(ξ)(x′′ − x′)| < ε(x′′ − x′) (5)

for x′ ≤ ξ ≤ x′′ and 0 < x′′ − x′ < δ.
We shall attempt to recover F (b) − F (a) as a limit of Riemann sums for f , even though

this is a misguided attempt, since we know that the Riemann integral must fail in general to
accomplish this. Even so, let us see where the attempt takes us.

Let

a = x0 < x1 < x2 . . . xn = b

be a partition of [a, b], and let ξi ∈ [xi−1, xi]. Then

F (b) − F (a) =
n∑

i=1

(F (xi−1) − F (xi)) =
n∑

i=1

f(ξi)(xi − xi−1) +R

where

R =
n∑

i=1

(F (xi) − F (xi−1) − f(ξi)(xi − xi−1)) .

Thus F (b) − F (a) has been given as a Riemann sum for f plus some error term R. But it ap-
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pears now that, if the partition is finer than the number δ so that (5) may be used, we have

|R| ≤
n∑

i=1

∣∣∣F (xi) − F (xi−1) − f(ξi)(xi − xi−1)
∣∣∣

<

n∑

i=1

ε(xi − xi−1) = ε(b− a).

Evidently, then, if there are no mistakes here we have just proved that f is Riemann integrable
and that ∫ b

a
f(t) dt = F (b) − F (a).

This is false of course. Even the Lebesgue integral does not invert all derivatives, and the
Riemann integral cannot invert even all bounded derivatives. The error is that the choice of
δ depends on the point ξ considered and so is not a constant. But, instead of abandoning the
argument, one can change the definition of the Riemann integral to allow a variable δ. The defi-
nition then changes to look like this.

Definition 1.49: A function f is generalized Riemann integrable on [a, b] with value I if for
every ε there is a positive function δ on [a, b] so that∣∣∣∣∣

n∑

i=1

f(ξi)(xi − xi−1) − I

∣∣∣∣∣ < ε

whenever a = x0 < x1 < x2 < · · · < xn = b is a partition of [a, b] with ξi ∈ [xi−1, xi] and
0 < xi − xi−1 < δ(ξi).
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To justify the definition requires knowing that such partitions actually exist for any such
gauge δ; this is supplied by the Cousin theorem (Theorem 1.3).

This defines a Riemann-type integral that includes the Lebesgue integral and the Newton
integral. It is equivalent to the integrals invented by A. Denjoy (1884–1974) and O. Perron in
1912. The generalized Riemann integral was discovered in the 1950s, independently, by Ralph
Henstock (1923–2007) and Jaroslav Kurzweil, and these ideas have led to a number of other
integration theories that exploit the geometry of the underlying space in the same way that this
integral exploits the geometry of derivatives on the real line.

In Section 5.10 we shall present a property of the Lebesgue integral that shows how it is in-
cluded in a generalized Riemann integral. We do not develop this theme any further as these
ideas should be considered, for the moment anyway, as rather specialized. A development of
these ideas can be found in the recent monographs of Pfeffer3 or Gordon.4 The main tool of
modern analysis is the standard theory of measure and integration developed in subsequent
chapters, and we confine our interests in integration theory to its exposition.

Exercises

1:21.1 Develop the elementary properties of the generalized Riemann integral directly from its defini-

tion (e.g., the integral of a sum f + g, the integral formula
∫ b

a
+
∫ c

b
=
∫ c

a
, etc.).

1:21.2 Show directly from the definition that the function f defined as f(x) = 0 for x rational and
f(x) = 1 for x irrational is not Riemann integrable, but is generalized Riemann integrable on any

3W. F. Pfeffer, The Riemann Approach to Integration: Local Geometric Theory. Cambridge (1993).
4R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Studies in Math, Vol. 4,

Amer. Math. Soc. (1994).
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interval, and that
∫ 1

0
f(x) dx = 1.

1:21.3 Show that the generalized Riemann integral is closed under the extension procedure of Cauchy
from Section 1.16.

1.22 Additional Problems for Chapter 1

1:22.1 For an arbitrary function F : IR→ IR, prove that the set

{x : F assumes a strict local maximum or minimum at x}
is countable. [Hint: Consider

An =

{
x : F (t) < F (x) ∀ t 6= x in

(
x− 1

n
, x+

1

n

)}
.

1:22.2 For an arbitrary function F : IR→ IR, prove that the set{
x : lim sup

t→x
F (t) > lim sup

t→x+
F (t)

}

is countable.

1:22.3 For an arbitrary function F : IR→ IR, prove that the set{
x : F (x) /∈

[
lim inf

t→x
F (t), lim sup

t→x
F (t)

]}

is countable.

1:22.4 For an arbitrary function F : IR→ IR, prove that the set{
x : F is discontinuous at x and lim

t→x
F (t) exists

}

is countable.
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1:22.5 Show that the set of irrationals in [0, 1] has inner measure 1 and the set of rationals in [0, 1] has
outer measure 0.

1:22.6 Prove (or find somewhere a proof) that the following three logical principles are equivalent:

(a) The axiom of choice,

(b) The well-ordering principle [Zermelo’s theorem].

(c) Zorn’s lemma.

1:22.7♦ An uncountable set S of real numbers is said to be totally imperfect if it contains no nonempty
perfect set. A set S of real numbers is said to be a Bernstein set if neither S nor IR \ S contains
a nonempty perfect set. Prove the existence of such sets assuming the continuum hypothesis and
using Statement 1.15. (Incidentally, no Borel set can be totally imperfect.) [Hint: Let C be the
collection of all perfect sets. This has cardinality c (see Exercise 1:4.7). Under CH we can well
order C as in Statement 1.15, say indexing as {Pα}, so that each element has only countably many
predecessors. Construct S by picking two distinct points xα, yα from each Pα in such a way that
at each stage we pick new points. (You will have to justify this by a cardinality argument.) Put
the xα in S.]

1:22.8♦ Show the existence of Bernstein sets without assuming CH.

[Hint: Use Lemma 1.16, and basically the same proof as Exercise 1:22.7, but with a little more
attention to the cardinality arguments.]

1:22.9♦ Assuming CH, show that there is an uncountable set U of real numbers (called a Lusin set)
such that every dense open set contains all but countably many points from U . [Hint: Let {Gα}
be a well ordering of the open dense sets so that every element has only countably many predeces-
sors. Choose distinct points xα from

⋂
β≤αGβ . Then U consists of all the points xα. (The steps

have to be justified. Remember that a countable intersection of dense open sets is residual and
therefore uncountable.)]
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1:22.10 Recall (Exercise 1:7.5) that the outer content c∗ is finitely subadditive; that is, if {Ek} is a se-
quence of subsets of an interval [a, b], then

c∗
(

n⋃

k=1

Ek

)
≤

n∑

k=1

c∗(Ek).

Show that c∗ is finitely superadditive; that is, if {Ek} is a disjoint sequence of subsets of IR,

c∗

(
n⋃

k=1

Ek

)
≥

n∑

k=1

c∗(Ek).

1:22.11 Recall (Exercise 1:7.6) that the outer measure λ∗ is countably subadditive; that is, if {Ek} is a
sequence of subsets of IR, then

λ∗
( ∞⋃

k=1

Ek

)
≤

∞∑

k=1

λ∗ (Ek) .

Similarly, show that λ∗ is countably superadditive; that is, if {Ek} is a disjoint sequence of subsets
of an interval [a, b], then

λ∗

( ∞⋃

k=1

Ek

)
≥

∞∑

k=1

λ∗(Ek).

[Hint: Use Exercise 1:9.16.]

1:22.12 Let {ck} be complex numbers with
∑∞

k=1 |ck| < +∞ and write f(z) =
∑∞

k=1 ckz
k for |z| ≤ 1.

Show that f is BV on each radius of the circle |z| = 1.

1:22.13♦ Let C and B be the sets referenced in the proof of Theorem 1.23. Define a function f in the
following way. On I1, let f = 1/2; on I2, f = 1/4; on I3, f = 3/4. Proceed inductively. On the
2n−1 − 1 open intervals appearing at the nth stage, define f to satisfy the following conditions:
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(i) f is constant on each of these intervals.

(ii) f takes the values
1

2n
,

3

2n
, . . . ,

2n − 1

2n

on these intervals.

(iii) If x and y are members of different nth-stage intervals with x < y, then f(x) < f(y).

This description defines f on B. Extend f to all of [0, 1] by defining f(0) = 0 and, for x 6= 0,
f(x) = sup{f(t) : t ∈ B, t < x}.

(a) Show that f(B) is dense in I0.

(b) Show that f is nondecreasing on I0.

(c) Infer from (a) and (b) that f is continuous on I0.

(d) Show that f(C) = I0, and thus C has the same cardinality as I0.

As an example, Figure 1.2 corresponds to the case in which, every time an interval Ik is selected,
it is the middle third of the closed component of An from which it is chosen. In this case, the set
C is called the Cantor set (or Cantor ternary set) and f is called the Cantor function. The set
and function are named for the German mathematician Georg Cantor (1845–1918). Observe that
f “does all its rising” on the set C, which here has measure zero. More precisely, λ(f(B)) = 0,
λ(f(C)) = 1. This example will be important in several places in Chapters 4 and 5.

1:22.14 Using some of the ideas in the construction of the Cantor function (Exercise 1:22.13), obtain a
continuous function that is not of bounded variation on any subinterval of [0, 1].

1:22.15 Using some of the ideas in the construction of the Cantor function (Exercise 1:22.13), obtain a
continuous function that is of bounded variation on [0, 1], but is not monotone on any subinterval
of [0, 1].
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- x
11/3 2/31/9 2/9 7/9 8/9

Figure 1.2. The Cantor function.

1:22.16 Show that the Cantor function is not absolutely continuous (Exercise 1:14.17).
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Chapter 2

MEASURE SPACES

With the help of the Riemann version of the integral, calculus students can study such notions
as the length of a curve, the area of a region in the plane, the volume of a region in space, and
mass distributions on the line, in the plane, or in space. But there are serious limitations and
many awkward difficulties associated with Riemann’s methods. These length, area, and volume
notions, as well as many others, are better studied within the framework of measure theory.

In this framework, one has a set X, a class M of subsets of X, and a measure µ defined on
M. The class M satisfies certain natural conditions (See Sections 2.2 and 2.3), and µ satisfies
conditions one would expect of such notions as length, area, volume, or mass.

Our objective in this chapter is to provide the reader with a working knowledge of basic
measure theory. In Section 2.1, we provide an outline of Lebesgue measure on the line via the
notions of inner measure and outer measure. Then, in Sections 2.2 and 2.3, we begin our devel-
opment of abstract measure theory by extracting features of Lebesgue measure that one would
want for any notion of measure.

100
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This abstract approach has the advantage of being quite general and therefore of being ap-
plicable to a variety of phenomena. But it does not tell us how to obtain a measure with which
to model a given phenomenon. Here we take our cue from the development in Section 2.1. We
find that a measure can always be obtained from an outer measure (Section 2.8).

We also find that when we have a primitive notion of our phenomenon, for example, length
of an interval, area of a square, volume of a cube, or mass in a square or cube, this primitive
notion determines an outer measure in a natural way. The outer measure, in turn, defines a
measure that extends this primitive notion to a large class of sets M that is suitable for a co-
herent theory.

Many measures possess special properties that make them particularly useful. Lebesgue
measure has most of these. For example, the Lebesgue outer measure of any set E can be ob-
tained as the Lebesgue measure of a larger set H ⊃ E that is measurable. Every subset of
a set of Lebesgue measure zero is measurable and has, again, Lebesgue measure zero. In Sec-
tions 2.10 to 2.13 we develop such properties abstractly. Finally, Section 2.11 addresses the
problem of nonmeasurable sets in a very general setting.

2.1 One-Dimensional Lebesgue Measure

We begin our study of measures with a heuristic development of Lebesgue measure in IR that
will provide a concrete example that we can recall when we develop the abstract theory. This
is independent of the sketch given in the first chapter. Our development will be heuristic for
two reasons. First, a development including all details would obscure the major steps we wish
to highlight. Some of these details are covered by the exercises. Second, our development of the
abstract theory in the remainder of the chapter, which does not depend on Lebesgue measure
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in any way, will verify the correctness of our claims. Thus Lebesgue measure serves as our moti-
vating example to guide the development of the theory and our illustrative example to show the
theory in application.

We begin with the primitive notion of the length of an interval. We then extend this no-
tion in a natural way first to open sets, then to closed sets. Finally, by the method of inner and
outer measures, this is extended to a large class of “measurable” sets.

1. The measure of open intervals. We define

λ(I) = b− a,

where I denotes the open interval (a, b). This is the beginning of a process that can, with some
adjustments, be applied to a variety of situations.

2. The measure of open sets. Define

λ(G) =
∑

λ(Ik),

where G is an open set and {Ik} is the sequence of component intervals of G. If one of the com-
ponents is unbounded, we let λ(G) = ∞. [If G 6= ∅, then G can be expressed as a finite or
countably infinite disjoint union of open intervals: G =

⋃
Ik. If G = ∅, the empty set, define

λ(G) = 0.] This definition is a natural one; it conforms to our intuitive requirement that “the
whole is equal to the sum of the parts.”

3. The measure of bounded closed sets. Define

λ(E) = b− a− λ((a, b) \ E),
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where E is a bounded closed set and [a, b] is the smallest closed interval containing E. Since
[a, b] = E ∪ ([a, b] \ E), our intuition would demand that

λ(E) + λ((a, b) \ E) = b− a

and this becomes our definition.

So far, we have a notion of measure for arbitrary open sets and for bounded closed sets. We
shall presently use these notions to extend the measure to a larger class of sets—the measurable
sets. Let us pause first to look at an intuitive example.

Example 2.1: Let 0 ≤ α < 1. There is a nowhere dense closed set C ⊂ [0, 1] that is of measure
α. (For the full details of the construction see Section 1.8.) Its complement B = [0, 1] \ C is a
dense open subset of [0, 1] of measure 1 − α. In particular, if α > 0, C has positive measure. In
any case, C is a nonempty nowhere dense perfect subset of [0, 1] and therefore has cardinality of
the continuum. (See Exercise 1:22.13.)

While the construction of the set C is relatively simple, the existence of such sets was not
known until late in the nineteenth century. Prior to that, mathematicians recognized that a
nowhere dense set could have limit points, even limit points of limit points, but could not con-
ceive of a nowhere dense set as possibly having positive measure. Since dense sets were per-
ceived as large and nowhere dense sets as small, this example, with α > 0, would have begun
the process of clarifying the ideas that would lead to a coherent development of measure theory.

We shall now use our definitions of measure for bounded open sets and bounded closed sets
to obtain a large class L of Lebesgue measurable sets to which the measure λ can be extended.
To each set E ∈ L, we shall assign a nonnegative number λ(E) called the Lebesgue measure of
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E. Our intuition demands that a certain “monotonicity” condition be satisfied for measurable
sets: if E1 and E2 are measurable and E1 ⊂ E2, then

λ(E1) ≤ λ(E2).

In particular, if G is any open set containing a set E, we would want λ(E) ≤ λ(G), so λ(G)
provides an upper bound for λ(E), if E is to be measurable.

2.1.1 Lebesgue outer measure

We can now define the outer measure of an arbitrary set E by choosing the open set G “eco-
nomically.”

Definition 2.2: Let E be an arbitrary subset of IR. Let

λ∗ (E) = inf {λ(G) : E ⊂ G, G open} .
Then λ∗ (E) is called the Lebesgue outer measure of E.

We point out, for later reference, that the outer measure can also be obtained by approxi-
mating from outside with sequences of open intervals (Exercise 2:1.10):

λ∗ (E) = inf

{
∞∑

k=1

λ(Ik) : E ⊂ ⋃∞
k=1 Ik, each Ik an open interval

}
.

Now λ∗ (E) may seem like a good candidate for λ(E). It meets the monotonicity requirement
and it is well defined for all bounded subsets of IR. It is also true, but by no means obvious,
that λ∗ (E) = λ(E) when E is open or closed. (See Exercise 2:1.4.) But λ∗ lacks an essential
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property: we cannot conclude for a pair of disjoint sets E1, E2 that

λ∗ (E1 ∪ E2) = λ∗ (E1) + λ∗ (E2) .

The whole need not equal the sum of its parts.

2.1.2 Lebesgue inner measure

Here is how Lebesgue remedied this flaw. So far we have used only part of what is available to
us—outside approximation of E by open sets. Now we use inside approximation by closed sets.

Definition 2.3: Let E be an arbitrary subset of IR. Let

λ∗ (E) = sup {λ(F ) : F ⊂ E, F compact} .
Then λ∗ (E) is called the Lebesgue inner measure of E.

Since E need not contain any intervals, there is no inner approximation by intervals, anal-
ogous to the approximation of the outer measure by intervals. We have, however, the following
formula for a bounded set E.

2.4: Let [a, b] be the smallest interval containing a bounded set E. Then

λ∗ (E) = b− a− λ∗ ([a, b] \ E) .

This shows the important fact that the inner measure is definable directly in terms of the
outer measure. In particular, it suggests already that a theory based on the outer measure alone
may be feasible. We illustrate these definitions with an example.
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Example 2.5: Let I0 = [0, 1], and let Q denote the rational numbers in I0. Let ε > 0 and let
{qk} be an enumeration of Q. For each positive integer n, let In be an open interval such that
qn ∈ In and λ(In) < ε/2n. Then Q ⊆ ⋃

In and
∑
λ(In) < ε. Thus λ∗ (Q) = 0. The set

P = I0 \
⋃
Ik is closed, and P ⊂ I0 \Q. We see, using the assertion 2.4 and Exercise 2:1.12, that

λ(P ) > 1 − ε. It follows that

1 − ε < λ∗ (P ) ≤ λ∗ (I0 \ Q) ,

so that λ∗ (I0 \ Q) = 1. Thus the set of irrationals in I0 has inner measure 1, and the set of
rationals has outer measure 0.

2.1.3 Lebesgue measurable sets

Inner measure λ∗ has the same flaw as outer measure λ∗. The key to obtaining a large class of
measurable sets lies in the observation that we would like outside approximation to give the
same result as inside approximation.

Definition 2.6: Let E be a bounded subset of IR, and let λ∗ (E) and λ∗ (E) denote the outer
and inner measures of E. If

λ∗ (E) = λ∗ (E) ,

we say that E is Lebesgue measurable with Lebesgue measure λ(E) = λ∗ (E). If E is unbounded,
we say that E is measurable if E ∩ I is measurable for every interval I and again write λ(E) =
λ∗ (E).

One can verify that the class L of Lebesgue measurable sets is closed under countable unions
and under set difference. If {Ek} is a sequence of measurable sets, so is

⋃
Ek, and the difference
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of two measurable sets is measurable. In addition, Lebesgue measure λ is countably additive on
the class L: if {Ek} is a sequence of pairwise disjoint sets from L, then

λ(
⋃
Ek) =

∑
λ(Ek).

We shall not prove these statements at this time. They will emerge as consequences of the the-
ory developed in Section 2.10. Observe for later reference that λ∗ is countably additive on L,
since λ∗ = λ on L. Thus we can view λ as the restriction of λ∗, which is defined for all subsets
of IR, to L, the class of Lebesgue measurable sets.

Not all subsets of IR can be measurable. In Section 1.10 we have given the details of the
proof of this fact. But we shall discover that all sets that arise in practice are measurable.

Many of the ideas that appear in this section, including the exercises, will reappear, in ab-
stract settings as well as in concrete settings, throughout the remainder of this chapter.

Exercises

2:1.1 In the definition of λ(G) for G a bounded open set, how do we know that the sum
∑
λ(Ik) is fi-

nite?

2:1.2 Prove that both the outer measure and inner measure are monotone: If E1 ⊂ E2, then λ∗ (E1) ≤
λ∗ (E2) and λ∗ (E1) ≤ λ∗ (E2).

2:1.3 Prove that the outer measure λ∗ and inner measure λ∗ are translation-invariant functions defined
on the class of all subsets of IR.

2:1.4 Prove that λ∗ (E) = λ∗ (E) = λ(E) when E is open or closed and bounded. (Thus the definition
of measure for open sets and for compact sets in terms of λ∗ and λ∗ is consistent with the defi-
nition given at the beginning of the section.) [Hint: If E is an open set with component intervals
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{(ai, bi)}, then show how λ∗ (E) can be approximated by the measure of a compact set of the form

N⋃

i=1

[
ai + ε2−i, bi − ε2−i

]

for large N and small ε > 0.]

2:1.5 Let [a, b] be the smallest interval containing a bounded set E. Prove that

λ∗ (E) = b− a− λ∗ ([a, b] \ E) .

[Hint: Split the equality into two inequalities and prove each directly from the definition.]

2:1.6 For all E ⊂ IR, show that λ∗ (E) ≤ λ∗ (E). [Hint: If F ⊂ E ⊂ G with F compact and G open, we
know already that λ(F ) ≤ λ(G). Take first the infimum over G and then the supremum over F .]

2:1.7 Show that if λ∗ (E) = 0 then E and all its subsets are measurable.

2:1.8 Show that there exist 2c Lebesgue measurable sets (where c is, as usual, the cardinality of the real
numbers).

2:1.9 Show that if {Gk} is a sequence of open subsets of IR then

λ

( ∞⋃

k=1

Gk

)
≤

∞∑

k=1

λ(Gk).

[Hint: If (a, b) ⊂ ⋃∞
k=1Gk, show that b− a ≤∑∞

k=1 λ(Gk) by considering that

[a+ ε, b− ε] ⊂
N⋃

k=1

Gk

for small ε and sufficiently large N .]
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2:1.10 Using Exercise 2:1.9, show that

λ∗ (E) = inf

{ ∞∑

k=1

λ(Ik) : E ⊂ ⋃∞
k=1 Ik, each Ik an open interval

}
.

2:1.11 Show that if {Fk} is a sequence of compact disjoint subsets of IR then

λ

(
n⋃

k=1

Fk

)
≥

n∑

k=1

λ(Fk).

[Hint: If F1 and F2 are disjoint compact sets, then there are disjoint open sets G1 ⊃ F1 and G2 ⊃
F2.]

2:1.12 Show that λ∗ is countably subadditive: if {Ek} is a sequence of subsets of IR, then

λ∗
( ∞⋃

k=1

Ek

)
≤

∞∑

k=1

λ∗ (Ek) .

[Hint: Choose open sets Gk ⊃ Ek so that λ∗ (Ek) + ε2−k ≥ λ(Gk) and use Exercise 2:1.9.]

2:1.13 Similarly to Exercise 2:1.12, show that λ∗ is countably superadditive: if {Ek} is a disjoint se-
quence of subsets of IR,

λ∗

( ∞⋃

k=1

Ek

)
≥

∞∑

k=1

λ∗ (Ek) .

[Hint: Choose compact sets Fk ⊂ Ek so that λ∗ (Ek) − ε2−k ≥ λ(Fk) and use Exercise 2:1.11.]

2:1.14♦ We recall that a set is of type Fσ if it can be expressed as a countable union of closed sets, and
it is of type Gδ if it can be expressed as a countable intersection of open sets. (See the discussion
of these ideas in Sections 1.1 and 1.12.)
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(a) Prove that every closed set F ⊂ IR is of type Gδ and every open set G ⊂ IR is of type Fσ.

(b) Prove that for every set E ⊂ IR there exists a set K of type Fσ and a set H of type Gδ such
that K ⊂ E ⊂ H and

λ(K) = λ∗ (E) ≤ λ∗ (E) = λ(H).

The set K is called a measurable kernel of E, while the set H is called a measurable cover for
E.

(c) Prove that if E ∈ L there exist K, H as above such that

λ(K) = λ(E) = λ(H).

[The point of this exercise is to show that one can approximate measurable sets by relatively
simple sets on the inside and on the outside. By use of the Baire category theorem (see Sec-
tion 1.6), one can show that the roles played by sets of type Fσ and of type Gδ cannot be
exchanged in parts (b) and (c).]

(d) Show that “Fσ” cannot be improved to “closed” and “Gδ” cannot be improved to “open” in
parts (b) and (c).

2:1.15 Give an example of a nonmeasurable set E for which λ∗ (E) = λ∗ (E) = ∞. [Hint: Use Theo-
rem 1.33.]

2.2 Additive Set Functions

We begin now our study of structures suggested by Lebesgue measure. The class of sets that
are Lebesgue measurable has certain natural properties: it is closed under the formation of
unions, intersections, and set differences. This leads to our first abstract definition.
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Definition 2.7: Let X be any set, and let A be a nonempty family of subsets of X. We say A
is an algebra of sets if it satisfies the following conditions:

1. ∅ ∈ A.

2. If A ∈ A and B ∈ A, then A ∪B ∈ A.

3. If A ∈ A, then X \A ∈ A.

It is easy to verify that an algebra of sets is closed also under differences, finite unions, and
finite intersections. (See Exercise 2:2.1.) For any set X, the family 2X of all subsets of X is ob-
viously an algebra. So is the family A = {∅, X}. We have noted that the family L of Lebesgue
measurable sets is an algebra. Here is another example, to which we shall return later.

Example 2.8: Let X = (0, 1]. Let A consist of ∅ and all finite unions of half-open intervals
(a, b] contained in X. Then A is an algebra of sets.

Our next notion, that of additive set function, might be viewed as the forerunner of the no-
tion of measure. If we wish to model phenomena such as area, volume, or mass, we would like
our model to conform to physical laws, reflect our intuition, and make precise concepts, such as
“the whole is the sum of its parts.” We can do this as follows.

Definition 2.9: Let A be an algebra of sets and let ν be an extended real-valued function
defined on A. If ν satisfies the following conditions, we say ν is an additive set function.

1. ν(∅) = 0.

2. If A, B ∈ A and A ∩B = ∅, then ν(A ∪B) = ν(A) + ν(B).
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Note that such a function is allowed to take on infinite values, but cannot take on both −∞
and ∞ as values. (See Exercise 2:2.8.) A nonnegative additive set function is often called a
finitely additive measure.

Example 2.10: Let X = (0, 1] and A be as in Example 2.8. Let f be an arbitrary function on
[0, 1]. Define νf ((a, b]) = f(b) − f(a), and extend νf to be additive on A. Then νf is an additive
set function. (See Exercise 2:2.14.)

2.2.1 Example: Distributions of mass

Example 2.10 plays an important role in the general theory, both for applications and to illus-
trate many ideas. Note that if f is nondecreasing, then the set function νf is nonnegative and
can model many concepts. If f(x) = x for all x ∈ X, then νf (A) = λ(A) for all A ∈ A. Here, νf

models a uniform distribution of mass—the amount of mass in an interval is proportional to the
length of the interval. Another nondecreasing function would give rise to a different mass distri-
bution. For example, if f(x) = x2, νf ((0, 1

2 ]) = 1
4 , while νf ((1

2 , 1]) = 3
4 ; in this case the mass is

not uniformly distributed. As yet another example, let

f(x) =

{
0, 0 ≤ x < x0 < 1;
1, x0 ≤ x ≤ 1.

Then f has a jump discontinuity at x0, and

νf (A) =

{
0, if x0 /∈ A;
1, if x0 ∈ A.

We would like to say that x0 is a “point mass” and that the set function assigns the value 1
to the singleton set {x0}, but {x0} /∈ A. Since point masses arise naturally as models in na-
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ture, this algebra A is not fully adequate to discuss finite mass distributions on (0, 1]. This flaw
will disappear when we consider measures on σ-algebras in Section 2.3. In that setting, {x0}
will be a member of the σ-algebra and will have unit mass. These ideas are the forerunner of
Lebesgue–Stieltjes measures, which we study in Section 3.5.

In Example 2.10 we can take f nonincreasing and we can model “negative mass.” This is
analogous to the situation in elementary calculus where one often interprets an integral

∫ b
a g (x) dx

in terms of negative area when the integrand is negative on the interval.
One can combine positive and negative mass. If f has a decomposition into a difference of

monotonic functions

f = f1 − f2 with f1 and f2 nondecreasing on X, (1)

then it is easy to check that νf has a similar decomposition:

νf = νf1 − νf2 .

Unless f is monotonic on X, there will be intervals of positive mass and intervals of negative
mass. Functions f that admit the representation (1) are those that are of bounded variation.
(We have reviewed some properties of such functions in Section 1.14. Note particularly Exer-
cise 1:14.10.) It appears then that we can model a mass distribution νf on [a, b] that involves
both positive and negative mass as a difference of two nonnegative mass distributions. This is
so if, in Example 2.10, f has bounded variation; is it true for an arbitrary function f?

2.2.2 Positive and negative variations

This leads us to variational questions for additive set functions that parallel the ideas and meth-
ods employed in the study of functions of bounded variation.
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Definition 2.11: Let X be any set, let A be an algebra of subsets of X and let ν be additive
on A. For E ∈ A, we define the positive variation of ν on E by

V (ν,E) = sup {ν(A) : A ∈ A, A ⊂ E} .
Similarly, we define the negative variation of ν on E by

V (ν,E) = inf {ν(A) : A ∈ A, A ⊂ E} .
Finally, we define the (total) variation of ν on E by

V (ν,E) = V (ν,E) − V (ν,E) .

Note that the positive variation is indeed positive or nonnegative since V (ν,E) ≥ ν(∅) = 0.
Similarly the negative variation is negative or nonpositive since V (ν,E) ≤ ν(∅) = 0. The total
variation, defined as the difference of the two expressions, is well-defined even if one or both of
the postive and negative variations is infinite. [Some authors, thinking of these notions as sups
and infs, call them upper variation and lower variation instead.]

Exercise 2:2.16 displays the total variation V (ν,E) in an equivalent form

V (ν,E) = sup

n∑

k=1

|ν(Ak)| ,

where the supremum is taken over all finite collections of pairwise disjoint subsets Ak of E, with
each Ak in A. For that reason some authors call the total variation the absolute variation. Note
that it is reminiscent of the usual definition of variation for a real-valued function.

Theorem 2.12: If ν is additive on an algebra A of subsets of X, then all the variations are
additive set functions on A.
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Proof. We show that the positive variation is additive on A, the other proofs being similar.
That V (ν, ∅) = 0 is clear. To verify condition 2 of Definition 2.9, let A and B be disjoint mem-
bers of A. Assume first that

V (ν,A ∪B) <∞.

Let ε > 0. There exist A′ and B′ in A such that A′ ⊂ A, B′ ⊂ B, ν(A′) > V (ν,A) − ε/2, and
ν(B′) > V (ν,B) − ε/2. Thus

V (ν,A ∪B) ≥ ν(A′ ∪B′) = ν(A′) + ν(B′) (2)

> V (ν,A) + V (ν,B) − ε.

In the other direction, there exists a set C ∈ A such that C ⊂ A∪B and ν(C) > V (ν,A ∪B)−
ε. Thus

V (ν,A ∪B) − ε < ν(C) = ν(A ∩ C) + ν(B ∩ C) (3)

≤ V (ν,A) + V (ν,B) .

Since ε is arbitrary, it follows from (2) and (3) that

V (ν,A ∪B) = V (ν,A) + V (ν,B) .

It remains to consider the case V (ν,A ∪B) = ∞. Here one can easily verify that either
V (ν,A) = ∞ or V (ν,B) = ∞, and the conclusion follows. �

2.2.3 Jordan decomposition theorem

Theorem 2.13 provides an abstract version in the setting of additive set functions of the Jordan
decomposition theorem for functions of bounded variation (Exercise 1:14.10). It indicates how,
in many cases, a mass distribution can be decomposed into the difference of two nonnegative
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mass distributions. Here we shall show that

ν(A) = V (ν,A) + V (ν,A)

or, equivalently,

ν(A) = V (ν,A) − [−V (ν,A)].

Since V (ν,A) is nonpositive, this latter identity expressed the decomposition as a difference of
two nonnegative additive set functions.

Theorem 2.13 (Jordan decomposition) Let ν be an additive set function on an algebra A
of subsets of X, and suppose that ν has finite total variation. Then, for all A ∈ A,

ν(A) = V (ν,A) + V (ν,A) . (4)

Proof. Let A, E ∈ A and E ⊂ A. Since

ν(E) = ν(A) − ν(A \ E),

we have

ν(A) − V (ν,A) ≤ ν(E) ≤ ν(A) − V (ν,A). (5)

Expression (5) is valid for all E ∈ A, E ⊂ A. Noting the definition of V (ν,A), we see from the
second inequality that

V (ν,A) ≤ ν(A) − V (ν,A). (6)

Similarly, from the first inequality, we infer that

V (ν,A) ≥ ν(A) − V (ν,A). (7)

Comparing (6) and (7), we obtain our desired conclusion, (4). �
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Exercises

2:2.1 Show that an algebra of sets is closed under differences, finite unions, and finite intersections.

2:2.2 Let X be a nonempty set. Show that 2X (the family of all subsets of X) and {∅, X} are both al-
gebras of sets, in fact the largest and the smallest of the algebras of subsets of X.

2:2.3♦ Let S be any family of subsets of a nonempty set X. The smallest algebra containing S is called
the algebra generated by S. Show that this exists. [Hint: This can be described as the intersection
of all algebras containing S. Make sure to check that there are such algebras and that the intersec-
tion of a collection of algebras is again an algebra.]

2:2.4♦ Let S be a family of subsets of a nonempty set X such that (i) ∅, X ∈ S and (ii) if A, B ∈ S
then both A∩B and A∪B are in S. Show that the algebra generated by S is the family of all sets
of the form

⋃n
i=1Ai \Bi for Ai, Bi ∈ S with Bi ⊂ Ai.

2:2.5♦ Let X be an arbitrary nonempty set, and let A be the family of all subsets A ⊂ X such that ei-
ther A or X\A is finite. Show that A is the algebra generated by the singleton sets S = {{x} : x ∈ X}.

2:2.6♦ Let X be an arbitrary nonempty set, and let A be the algebra generated by a collection S of
subsets of X. Let A be an arbitrary element of A. Show that there is a finite family S0 ⊂ S so
that A belongs to the algebra generated by S0. [Hint: Consider the union of all the algebras gen-
erated by finite subfamilies of S.]

2:2.7 Show that Example 2.8 provides an algebra of sets.

2:2.8♦ Show how it follows from Definition 2.9 that an additive set function ν cannot take on both −∞
and ∞ as values. [Hint: If ν(A) = −ν(B) = +∞, then find disjoint subsets A′, B′ with ν(A′) =
+∞ and ν(B′) = −∞. Consider what this means for ν(A′ ∪B′).]

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



118 Measure Spaces Chapter 2

2:2.9 Suppose that ν is an additive set function on an algebra A. Let E1 and E2 be members of A with
E1 ⊂ E2 and ν(E2) finite. Show that

ν(E2 \ E1) = ν(E2) − ν(E1).

2:2.10 Let µ be a finitely additive measure and suppose that A, B and C are sets in the domain of µ
with µ(A) finite. Show that

|µ(A ∩B) − µ(A ∩ C)| ≤ µ(B △ C)

where B △ C = (B \ C) ∪ (C \B) is called the symmetric difference of B and C.

2:2.11♦ Suppose that ν is additive on an algebra A. If B ⊂ A with A, B ∈ A and ν(B) = +∞, then
ν(A) = +∞.

2:2.12 Use Exercise 2:2.9 to show that the condition ν(∅) = 0 in Definition 2.9 is superfluous unless ν is
identically infinite.

2:2.13 Let X be any infinite set, and let A = 2X . For A ⊂ X, let

ν(A) =

{
0, if A is finite;
∞, if A is infinite.

Show that ν is additive. Let

B = {A ⊂ X : A is finite or X \A is finite} ,
let B ∈ B, and let

τ(B) =

{
0, if B is finite;
∞, if X \B is finite.

Show that B is an algebra and τ is additive.

2:2.14♦ Show that, in Example 2.10, νf is additive on A and νf is nonnegative if and only if f is non-
decreasing. [Hint: This involves verifying that, for A ∈ A, νf (A) does not depend on the choice of
intervals whose union is A.]
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2:2.15 Complete the proof of Theorem 2.12 by showing that the negative and total variations are addi-
tive on A.

2:2.16 Establish the formula

V (ν,E) = sup

n∑

k=1

|ν(Ak)| ,

where the supremum is taken over all finite collections of pairwise disjoint subsets Ak of E, with
each Ak in A.

2:2.17 Suppose that ν is additive on A and is bounded above. Prove that V (ν,A) is finite for all A ∈ A.
Similarly, if ν is bounded from below, V (ν,A) is finite for all A ∈ A.

2:2.18 Use Exercise 2:2.17 to obtain the Jordan decomposition for additive set functions that are bounded
either above or below.

2:2.19 Show that to every finitely additive set function of finite total variation on the algebra of Exam-
ple 2.8 corresponds a function f of bounded variation, such that ν( (a, b] ) = f(b) − f(a) for every
(a, b] ∈ A.

2:2.20 We have already seen that if f is BV on [0, 1] then Example 2.10 models a finite mass distribu-
tion that may have negative, as well as positive, mass. What happens if f is not of bounded vari-
ation? Is there necessarily a decomposition into a difference of nonnegative additive set functions
then?

2.3 Measures and Signed Measures

Additive set functions defined on algebras have limitations as models for mass distributions or
areas. These limitations are in some way similar to limitations of the Riemann integral. The
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Riemann integral fails to integrate enough functions. Similarly, an algebra of sets may not in-
clude all the sets that one expects to be able to handle. In Example 2.10, for example, one can
discuss the mass of an interval or a finite union of intervals, but one cannot define mass for
more general sets.

We have mentioned several times that to obtain a coherent theory of measure the class of
measurable sets should be “large.” What do we mean by that statement? Roughly, we should
require that the class of sets to be considered measurable encompass all the sets that one rea-
sonably expects to encounter while applying the normal operations of analysis. The situation
on the real line with Lebesgue measure will illustrate.

In a study of a continuous function f : IR → IR we could expect to investigate sets of the
form {x : f(x) ≥ c} or {x : f(x) > c}. The first of these is closed and the second open if f is
continuous. We would hope that these sets are measurable, as indeed they are for Lebesgue
measure. In Chapter 3 we shall make the measurability of closed and open sets a key require-
ment in our study of general measures on metric spaces.

Again, if f is the limit of a convergent sequence of continuous functions (a common enough
operation in analysis), what can we expect for the set

{x : f(x) > c}?

We can rewrite this as

{x : f(x) > c} =

∞⋃

m=1

∞⋃

r=1

∞⋂

n=r

{x : fn(x) ≥ c+ 1/m}

(using Exercise 1:1.24). It follows that the set that we are interested in is measurable provided
that the class of measurable sets is closed under the operations of taking countable unions and
countable intersections. An algebra of sets need only be closed under the operations of taking
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finite unions and finite intersections.

2.3.1 σ–algebras of sets

This, and other considerations, leads us to Definition 2.14. We shall see that with this defini-
tion we can develop a coherent theory of measure and integration.

Definition 2.14: Let X be a set, and let M be a family of subsets of X. We say that M is a
σ–algebra of sets if M is an algebra of sets and M is closed under countable unions; that is, if
{Ak} ⊂ M, then

⋃∞
k=1Ak ∈ M.

2.3.2 Signed measures

It is now natural to replace the notion of additive set function with countably additive set func-
tion or signed measure.

Definition 2.15: Let M be a σ-algebra of subsets of a set X, and let µ be an extended real-
valued function on M. We say that µ is a signed measure if µ(∅) = 0, and whenever {Ak} is
a sequence of pairwise disjoint elements of M, then

∑∞
n=1 µ(An) is defined as an extended real

number with

µ

(
∞⋃

n=1

An

)
=

∞∑

n=1

µ(An). (8)

If µ(A) ≥ 0 for all A ∈ M, we say that µ is a measure. In this case we call the triple (X,M, µ)
a measure space. The members of M are called measurable sets.
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We mention that the term countably additive set function µ indicates that µ satisfies (8).
We shall also use the term σ-additive set function.

Example 2.16: Let X = IN (the set of natural numbers) and M = 2IN, the family of all sub-
sets of IN. It is clear that M is a σ-algebra of sets. For A ∈ M, let

µ1(A) =
∑

n∈A 1/2n, µ2(A) =
∑

n∈A 1/n,

µ3(A) =
∑

n∈A (−1)n/2n, µ4(A) =
∑

n∈A (−1)n/n.

One verifies easily that µ1 and µ2 are measures, with µ1(X) = 1 and µ2(X) = ∞. The set func-
tion µ3 is a signed measure. Since the series

∑∞
n=1 (−1)n/n is conditionally convergent, µ4(A) is

not defined for all subsets of X, and µ4 is not a signed measure.

An inspection of the example µ3 reveals that it is the difference of two measures,

µ3(A) =
∑

n ∈ A, n even

1/2n −
∑

n ∈ A, n odd

1/2n,

just as we have seen that every additive set function is the difference of two nonnegative addi-
tive set functions. In Section 2.5 we will show that this is always the case for signed measures;
thus we will be able to reduce the study of signed measures to the study of measures. Signed
measures will again return to a position of importance in Chapter 5. At the moment, our focus
will be on measures.

2.3.3 Computations with signed measures

We shall require immediately some skill in handling measures. Often we are faced with a set
expressed as a countable union of measurable sets. If the sets are disjoint, then the measure of
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the union can be obtained as a sum. What do we do if the sets are not pairwise disjoint? Our
first theorem shows how to unscramble these sets in a useful way. (We leave the straightfor-
ward proof of Theorem 2.17 as Exercise 2:3.11. Recall that we use IN to denote the set of natu-
ral numbers.)

Theorem 2.17: Let {An} be a sequence of subsets of a set X, and let A =
⋃∞

n=1An. Let B1 =
A1 and, for all n ∈ IN, n ≥ 2, let

Bn = An \ (A1 ∪ · · · ∪An−1).

Then A =
⋃∞

n=1Bn, the sets Bn are pairwise disjoint and Bn ⊂ An for all n ∈ IN. If the sets
An are members of an algebra M, then Bn ∈ M for all n ∈ IN.

We next show that measures are monotonic and countably subadditive.

Theorem 2.18: Let (X,M, µ) be a measure space.

1. If A,B ∈ M with B ⊂ A, then µ(B) ≤ µ(A). If, in addition, µ(B) <∞, then µ(A \B) =
µ(A) − µ(B).

2. If {Ak}∞k=1 ⊂ M, then µ(
⋃∞

k=1Ak) ≤∑∞
k=1 µ(Ak).

Proof. Part (i) follows from the representation

A = B ∪ (A \B).

To verify part (ii), let {Ak} ∈ M, and let A =
⋃∞

k=1Ak. Let {Bk} be the sequence of sets
appearing in Theorem 2.17. Since M is an algebra of sets, Bk ∈ M for all k ∈ IN. It follows
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that A =
⋃∞

k=1Bk and that the sets Bk are pairwise disjoint. Since µ is a measure, µ(A) =∑∞
k=1 µ(Bk). But for each k ∈ IN, µ(Bk) ≤ µ(Ak), by part (i). Thus µ(A) ≤∑∞

k=1 µ(Ak). �

We end

2.3.4 The σ-algebra generated by a family of sets

Note that any family S of subsets of a nonempty set X is contained in the σ-algebra 2X of all
subsets of X. It is also contained in a smallest σ-algebra.

Definition 2.19: The smallest σ-algebra containing a family of sets S is called the σ-algebra
generated by S.

This can be described as the intersection of all σ-algebras containing S. Indeed, to prove
that a smallest σ-algebra containing a given family of sets S exists, one simply checks that the
intersection of all σ-algebras containing S is itself a σ-algebra.

The σ-algebra generated by the open (or closed) subsets of IR is called the class of Borel
sets. It contains all sets of type Fσ or of type Gδ, but it also contains many other sets. The σ-
algebra generated by the algebra A of Example 2.10 also consists of the Borel sets.

Exercises

2:3.1 Let X be a nonempty set. Show that 2X (the family of all subsets of X) and {∅, X} are both σ–
algebras of sets, in fact the largest and the smallest of the σ–algebras of subsets of X.

2:3.2 Let S be any family of subsets of a nonempty set X. The smallest σ–algebra containing S is
called the σ–algebra generated by S. Show that this exists. [Hint: This is described in the last
paragraph of this section. Compare with Exercise 2:2.3.]
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2:3.3 Let S be a family of subsets of a nonempty set X such that (i) ∅, X ∈ S and (ii) if A, B ∈ S,
then both A ∩ B and A ∪ B are in S. Show that the σ–algebra generated by S is, in general, not
the family of all sets of the form

⋃∞
i=1Ai \ Bi for Ai, Bi ∈ S with Bi ⊂ Ai. This contrasts with

what one might have expected in view of Exercise 2:2.4. [Hint: Take S as the collection of inter-
vals [0, n−1] along with ∅.]

2:3.4 Let X be an arbitrary nonempty set, and let A be the family of all subsets A ⊂ X such that
either A or X \ A is countable. Show that A is the σ–algebra generated by the singleton sets S =
{{x} : x ∈ X}.

2:3.5 Let X be an arbitrary nonempty set, and let A be the σ–algebra generated by a collection S of
subsets of X. Let A be an arbitrary element of A. Show that there is a countable family S0 ⊂ S
so that A belongs to the σ–algebra generated by S0. [Hint: Compare with Exercise 2:2.6.]

2:3.6 Let A be an algebra of subsets of a set X. If A is finite, prove that A is in fact a σ–algebra. How
many elements can A have?

2:3.7 Describe the domain of the set function µ4 defined in Example 2.16.

2:3.8 Show that a σ-algebra of sets is closed under countable intersections.

2:3.9♦ Let X be any set, and let µ(A) be the number of elements in A if A is finite and ∞ if A is infi-
nite. Show that µ is a measure. (Commonly, µ is called the counting measure on X.)

2:3.10♦ Let µ be a signed measure on a σ-algebra. Show that the associated variations are countably
additive. Thus, by Theorem 2.13, each signed measure of finite total variation is a difference of
two measures. (See Theorem 2.23 for an improvement of this statement.)

2:3.11 Prove Theorem 2.17.
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2:3.12 Let ν be a signed measure on a σ-algebra. If E0 ⊂ E1 ⊂ E2 . . . are members of the σ–algebra,
then the limit limn→∞En of the sequence is defined to be

⋃∞
n=0En. Prove that

ν( lim
n→∞

En) = lim
n→∞

ν(En).

[The method of Theorem 2.21 can be used, but try to prove without looking ahead. The same
remark applies to the next exercise.]

2:3.13♦ Let ν be a signed measure on a σ-algebra. If E0 ⊃ E1 ⊃ E2 . . . are members of the σ–algebra,
then the limit limn→∞En of the sequence is defined to be

⋂∞
n=0En. Prove that if ν(E0) is finite

then

ν( lim
n→∞

En) = lim
n→∞

ν(En).

2.4 Limit Theorems

The countable additivity of a signed measure allows a number of limit theorems not possible
for the general additive set function. To formulate some of these theorems, we need a bit of set-
theoretic terminology.

2.4.1 Limsup and liminf of a sequence of sets

First, recall that if A is a subset of a set X then the characteristic function of A is defined by

χ
A

(x) =

{
1, if x ∈ A;
0, if x ∈ X \A.

Suppose, now, that we are given a sequence {An} of subsets of X. Then there exist sets B1

and B2 with

χ
B1

= lim sup χ
An

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 2.4. Limit Theorems 127

and

χ
B2

= lim inf χ
An
.

The set B1 consists of those x ∈ X that belong to infinitely many of the sets An, while the
set B2 consists of those x ∈ X that belong to all but a finite number of the sets An. We call
these sets the lim sup An and lim inf An, respectively. Our formal definition has the advantage
of involving only set-theoretic notions.

Definition 2.20: Let {An} be a sequence of subsets of a set X. We define

lim supAn =

∞⋂

m=1

(
∞⋃

n=m

An

)

and

lim inf An =
∞⋃

m=1

(
∞⋂

n=m

An

)
.

If

lim supAn = lim inf An = A,

we say that the sequence {An} converges to A and we write

A = limAn.

2.4.2 Monotone limits in a measure space

Observe that monotone sequences, either expanding or contracting, converge to their union
and intersection, respectively. Furthermore, if all the sets An belong to a σ-algebra M, then
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lim supAn ∈ M and lim inf An ∈ M.
For monotone sequences of measurable sets, limit theorems are intuitively clear.

Theorem 2.21: Let (X,M, µ) be a measure space, and let {An} be a sequence of measurable
sets.

1. If A1 ⊂ A2 ⊂ . . . , then lim µ (An) = µ (limAn).

2. If A1 ⊃ A2 ⊃ . . . and µ (Am) <∞ for some m ∈ IN, then limµ (An) = µ (limAn).

Proof. Let A0 = ∅. Then

lim
n
An =

∞⋃

n=1

An =
∞⋃

n=1

(An \An−1).

Since the last union is a disjoint union, we can infer that

µ(lim
n
An) =

∞∑

n=1

µ(An \An−1) = lim
k

k∑

n=1

µ(An \An−1)

= lim
k
µ

(
k⋃

n=1

(An \An−1)

)
= lim

k
µ(Ak).

This proves part (i). For part (ii), choose m so that µ (Am) < ∞. A similar argument shows
that

µ(Am \ lim
n
An) = lim

n
(µ(Am) − µ(An)) .

Because these are finite, assertion (ii) follows. �
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2.4.3 Liminfs and limsups in a measure space

Theorem 2.22: Let (X,M, µ) be a measure space, and let {An} be a sequence of sets from M.
Then

1. µ(lim inf An) ≤ lim inf µ(An);

2. if µ(
⋃∞

n=1An) <∞, then µ(lim supAn) ≥ lim supµ(An);

3. if {An} converges and µ(
⋃∞

n=1An) <∞, then

µ(limAn) = limµ(An).

Proof. We prove (i), the remaining parts following readily. For m ∈ IN, let Bm =
⋂∞

n=mAn.
Since Bm ⊂ Am, µ(Bm) ≤ µ(Am). It follows that

lim inf µ(Bm) ≤ lim inf µ(Am). (9)

The sequence{Bm} is expanding, so limmBm =
⋃∞

m=1Bm. Using Theorem 2.21, we then obtain

µ(lim
m
Bm) = lim

m
µ(Bm).

Thus

µ(lim inf An) = µ

(
∞⋃

m=1

Bm

)
= µ(lim

m
Bm) = lim

m
µ(Bm)

= lim inf µ(Bm) ≤ lim inf µ(Am),

the last inequality being (9). �
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Exercises

2:4.1 Verify that in Definition 2.20

lim sup
n→∞

An = {x : x ∈ An for infinitely many n}

and

lim inf
n→∞

An = {x : x ∈ An for all but finitely many n} .

2:4.2 Supply all the details needed to prove part (ii) of Theorem 2.21.

2:4.3 For any A ⊂ IN, let

ν(A) =

{ ∑
n∈A 2−n, if A is finite;

∞, if A is infinite.

(a) Show that ν is an additive set function, but not a measure on 2IN.

(b) Show that ν does not have the limit property expressed in part (i) of Theorem 2.21 for mea-
sures.

2:4.4 Verify parts (ii) and (iii) of Theorem 2.22.

2:4.5 Show that the finiteness assumptions in parts 2 and 3 of Theorem 2.22 cannot be dropped.

2:4.6 State and prove an analog for Theorem 2.21 for signed measures.

2:4.7♦ Verify the following criterion for an additive set function to be a signed measure: If ν is additive
on a σ-algebra M, and limn ν(An) = ν(limnAn) for every expanding sequence {An} of sets from
M, then ν is a signed measure on M.

2:4.8♦ (Borel–Cantelli lemma) Let (X,M, µ) be a measure space, and let {An} be a sequence of sets
with

∑∞
n=1 µ(An) <∞. Then

µ(lim supAn) = 0.
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2:4.9 Let C be a Cantor set in [0, 1] of measure α (0 ≤ α < 1) (see Example 2.1). Does there exist a se-
quence {Jk} of intervals with

∑∞
k=1 λ(Jk) < ∞ such that every point of the set C lies in infinitely

many of the intervals Jk?

2:4.10♦ Let A be the algebra of Example 2.10, let

f(x) =

{
0, if 0 ≤ x < x0 < 1;
1, if x0 ≤ x ≤ 1.

,

and let νf be as in that example. We shall see later that νf can be extended to a measure µf de-
fined on the σ-algebra B of Borel sets in (0, 1]. Assume this, for the moment. Show that µf ({x0}) =
1; thus {x0} represents a point mass.

2.5 The Jordan and Hahn Decomposition Theorems

Let us return to the Jordan decomposition theorem, but applied now to signed measures. Cer-
tainly, since a signed measure is also an additive set function, we see that any signed measure
with finite variation can be expressed as the difference of two nonnegative additive set func-
tions. We expect the latter to be measures, but this does not yet follow. In the setting of signed
measures there is also a technical simplification that comes about. An additive set function may
be itself finite and yet have both of its variations infinite. For this reason, in the proof of Theo-
rem 2.13, we needed to assume that both variations were finite; otherwise, the proof collapsed.
For signed measures this does not occur.

2.5.1 Jordan Decomposition

Thus we have the correct version of the decomposition for signed measures, with better hy-
potheses and a stronger conclusion.
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Theorem 2.23 (Jordan decomposition) Let ν be a signed measure on a σ–algebra A of
subsets of X. Then, for all A ∈ A,

ν(A) = V (ν,A) + V (ν,A)

and the set functions V (ν, ·) and −V (ν, ·) are measures, at least one of which must be finite.

Proof. This follows by the same methods used in the proof of Theorem 2.13, provided we
establish some facts. We can prove (see Exercise 2:3.10) that if ν is σ–additive on A then so
too are both variations. We prove also that if ν is finite then both variations are finite. Thus,
with these two facts, the theorem (for finite-valued signed measures) follows directly from Theo-
rem 2.13.

If ν is not finite, then we shall show that precisely one of the two variations is infinite. In
fact, if ν(E) takes the value +∞, then V (ν,E) = +∞ and −V (ν, ·) is everywhere finite. With
this information the proof of Theorem 2.13 can be repeated to obtain the decomposition.

Evidently then, the theorem can be obtained from the following assertion which we will now
prove.

2.24: Let ν be a signed measure on a σ–algebra A of subsets of X. If E ∈ A and V (ν,E) =
+∞, then ν(E) = +∞. If E ∈ A and V (ν,E) = −∞, then ν(E) = −∞.

It is sufficient to prove the first statement. Suppose that V (ν,E) = +∞. Because of Exer-
cise 2:2.11, we may obtain that ν(E) = +∞ by finding a subset A ⊂ E with ν(A) = +∞. There
must exist a set E1 ⊂ E such that

ν(E1) > 1.
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As V (ν, ·) is additive and V (ν,E) = +∞, it follows that either V (ν,E1) = ∞ or else V (ν,E \ E1) =
∞. Choose A1 to be either E1 or E \ E1, according to which of these two is infinite, so that
V (ν,A1) = +∞.

Inductively choose En ⊂ An−1 so that

ν(En) > n

and choose An to be either En or An−1 \ En according to which of these two is infinite so that
V (ν,An) = +∞.

There are two case to consider:

1. For an infinite number of n, An = An−1 \ En.

2. For all sufficiently large n (say for n ≥ n0), An = En.

In the first of these cases we obtain a sequence of disjoint sets {Enk
} so that we can use the σ–

additivity of ν to obtain

ν

(
∞⋃

k=1

Enk

)
=

∞∑

k=1

ν (Enk
) ≥

∞∑

k=1

nk = +∞.

This would give us a subset of E with infinite ν measure so that ν(E) = +∞ as required.
In the second case we have obtained a sequence

E ⊃ En0 ⊃ En0+1 ⊃ En0+2 . . . .

If ν(En0) = +∞, we once again have a subset of E with infinite ν measure so that ν(E) = +∞
as required. If ν(En0) < +∞, then we can use Exercise 2:3.13 to obtain

ν( lim
n→∞

En) = lim
n→∞

ν(En) ≥ lim
n→∞

n = +∞
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and yet again have a subset of E with infinite ν measure so that ν(E) = +∞. This exhausts all
possibilities and so the proof of assertion 2.24 is complete. The main theorem now follows. �

2.6 Hahn Decomposition

The Jordan decomposition theorem is one of the primary tools of general measure theory. It
can be clarified considerably by a further analysis due originally to H. Hahn (1879–1934). In
fact, our proof invokes the Jordan decomposition, but Hahn’s theorem could be proved first and
then one can derive the Jordan decomposition from it. This decomposition is, again, one of the
main tools of general measure theory; we shall have occasion to use it later in our discussion of
the Radon–Nikodym theorem in Section 5.8.

Theorem 2.25 (Hahn decomposition) Let ν be a signed measure on a σ-algebra M. Then
there exists a set P ∈ M such that ν(A) ≥ 0 whenever A ⊂ P , A ∈ M, and ν(A) ≤ 0 whenever
A ⊂ X \ P , A ∈ M.

We call the set P a positive set for ν, the set N = X \ P a negative set for ν, and the pair
(P,N) a Hahn decomposition for ν.

Proof. Using Exercise 2:2.8, we see that ν cannot take both the values +∞ and −∞. Assume
for definiteness that ν(E) < ∞ for all E ∈ M. It follows that V (ν,X) is finite. We construct a
set P for which

V
(
ν, P̃

)
= V (ν, P ) = 0,

where V and V denote the positive and negative variations of ν as defined in Section 2.2. We
know that V and −V are measures. (Recall the notation P̃ for the complement of a set P .)
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For each n ∈ IN, there exists Pn ∈ M such that

ν(Pn) > V (ν,X) − 1

2n
. (10)

Define P = lim supn→∞ Pn, so that P̃ = lim infn→∞ P̃n. Then, from the inequality (10), we have

V
(
ν, P̃n

)
= V (ν,X) − V (ν, Pn) ≤ V (ν,X) − ν(Pn) ≤ 1

2n
.

Using Theorem 2.22 (i), we infer that

0 ≤ V
(
ν, P̃

)
≤ lim inf

n→∞
V
(
ν, P̃n

)
≤ lim

n→∞

1

2n
= 0.

Thus V
(
ν, P̃

)
= 0.

It remains to show that V (ν, P ) = 0. First, note that

−V (ν, Pn) = V (ν, Pn) − ν(Pn) ≤ V (ν,X) − ν(Pn) ≤ 1

2n
.

Hence, for every k ∈ IN,

0 ≤ −V (ν, P ) ≤ −V
(
ν,

∞⋃

n=k

Pn

)

≤ −
∞∑

n=k

V (ν, Pn) ≤
∞∑

n=k

1

2n
=

1

2k−1
.

It follows that V (ν, P ) = 0 as required. �

Note the connection with variation both in the proof of this theorem and in the decomposi-
tion itself. For any signed measure ν we shall use its Hahn decomposition (P,N) to define three

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



136 Measure Spaces Chapter 2

further measures ν+, ν− and |ν| by writing for each E ∈ M,

ν+(E) = ν(E ∩ P ) = V (ν,E) [positive variation]

ν−(E) = −ν(E ∩N) = −V (ν,E) [− negative variation]

and

|ν|(E) = ν+(E) + ν−(E) [total variation].

Observe that the three set functions here, ν+, ν+, and |ν| derived from the signed measure ν
are measures themselves (not merely signed measures) and that the following obvious relations
hold among them:

ν = ν+ − ν−

|ν| = ν+ + ν−.

Two measures α and β on M are called mutually singular, written as α ⊥ β, if there are
disjoint measurable sets A and B such that X = A ∪ B and α(B) = β(A) = 0; that is, the
measures are concentrated on two different disjoint sets. The measures here ν+ and ν− are mu-
tually singular, since ν+(N) = ν−(P ) = 0.

Exercises

2:6.1 A set E is a null set for a signed measure ν if |ν|(E) = 0. Show that if (P,N) and (P1, N1)
are Hahn decompositions for ν then P and P1 (and similarly N and N1) differ by a null set [i.e.,
|ν|(P \ P1) = |ν|(P1 \ P ) = 0].

2:6.2 Exhibit a Hahn decomposition for each of the signed measures µ3 and 3µ1 − µ2, where µ1, µ2, and
µ3 have been given in Example 2.16.
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2:6.3 Let F be the Cantor function on [0,1] (defined in Exercise 1:22.13). Suppose that µF is a measure
on the Borel subsets of (0, 1] for which µF ((a, b]) = F (b) − F (a) for any (a, b] ⊂ (0, 1]. Let λ be
Lebesgue measure restricted to the Borel sets.

(a) Show that µF ⊥ λ.

(b) Exhibit a Hahn decomposition for λ− µF .

2.7 Complete Measures

Consider for a moment Lebesgue measure λ on [0, 1]. Since λ is the restriction of λ∗ to the fam-
ily L of Lebesgue measurable sets, every subset of a zero measure set has measure zero. But,
for a general measure space (X,M, µ), it need not be the case that subsets of zero measure sets
are necessarily measurable.

This is illustrated by the space (X,B, λ), where X is [0, 1] and B is the class of Borel sets
in [0, 1]: that is, B is the σ-algebra generated by the open sets. A cardinality argument (Exer-
cise 2:7.1) shows that, while the Cantor ternary set K has 2c subsets, only c of them are Borel
sets, yet λ(K) = 0. It follows that there are Lebesgue measurable sets of measure zero that are
not Borel sets. Thus (X,B, λ) is not complete according to the following definition.

Definition 2.26: Let (X,M, µ) be a measure space. The measure µ is called complete if the
conditions Z ⊂ A and µ(A) = 0 imply that Z ∈ M. In that case, (X,M, µ) is called a complete
measure space.

Completeness of a measure refers to the domain M and so, properly speaking, it is M that
might be called complete; but it is common usage to refer directly to a complete measure.
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2.7.1 The completion of a measure space

It is clear from the monotonicity of µ that, when a subset of a zero measurable set is measur-
able, its measure must be zero. When a measure space is not complete, it possesses subsets E
that intuition demands be small, but that do not happen to be in the domain of the measure µ.
It may seem that such sets should have measure zero, but the measure is not defined for such
sets. It would be convenient if one could always deal with a complete space. Instead of saying
that a property is valid except on a “subset of a set of measure zero,” we could correctly say
“except on a set of measure zero.” Fortunately, every measure space can be completed naturally
by extending µ to a measure µ defined on the σ-algebra generated by M and the family of sub-
sets of sets of measure zero.

Theorem 2.27: Let (X,M, µ) be a measure space. Let

Z = {Z : ∃N ∈ M for which Z ⊂ N and µ(N) = 0} .
Let M = {M ∪ Z : M ∈ M, Z ∈ Z}. Define µ on M by

µ(M ∪ Z) = µ(M).

Then

1. M is a σ-algebra containing M and Z.

2. µ is a measure on M and agrees with µ on M.

3. µ is complete.
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Proof. Part (i). It is clear that M contains M and Z. To show that M is closed under com-
plementation, let A = M ∪ Z with M ∈ M, Z ⊂ N and µ(N) = 0. Using our usual notation for
complementation, i.e., Ẽ = X \ E, we can check that

Ã = M̃ ∩ Z̃ = (M̃ ∩ Ñ) ∪ (N ∩ M̃ ∩ Z̃).

Since M̃ ∩ Ñ ∈ M and N ∩ M̃ ∩ Z̃ ⊂ N ∈ Z, we see from the definition of M that Ã ∈ M.
Finally, we show that M is closed under countable unions. Let {An} be a sequence of sets

in M. For each n ∈ IN, write

An = Mn ∪ Zn

with Mn ∈ M, Zn ∈ Z. Then
⋃
An =

⋃
(Mn ∪ Zn) =

(⋃
Mn

)
∪
(⋃

Zn

)
.

We have Mn ∈ M and Zn ⊂ Nn ∈ M∩Z, so
⋃
Mn ∈ M and

⋃
Zn ⊂

⋃
Nn ∈ M∩Z.

Thus
⋃
An has the required representation. This completes the verification of (i).

Part (ii). We first check that µ is well defined. Suppose that A has two different representa-
tions:

A = M1 ∪ Z1 = M2 ∪ Z2

for M1, M2 ∈ M, Z1, Z2 ∈ Z. We show µ(M1) = µ(M2). Now

M1 ⊂ A = M2 ∪ Z2 ⊂M2 ∪N2 with µ(N2) = 0.

Thus

µ(M1) ≤ µ(M2) + µ(N2) = µ(M2).
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Similarly, µ(M2) ≤ µ(M1), so µ is well defined.
To show that µ is a measure on M, we verify countable additivity, the remaining require-

ments being trivial to verify. Let {An} be a sequence of pairwise disjoint sets in M. For every
n ∈ IN, we can write An = Mn ∪ Zn for sets Mn ∈ M, Zn ∈ Z. Note that the union

⋃∞
n=1Mn

belongs to M and that
⋃∞

n=1 Zn belongs to Z. Then

µ

(
∞⋃

n=1

An

)
= µ

(
∞⋃

n=1

(Mn ∪ Zn)

)
= µ

((
∞⋃

n=1

Mn

)
∪
(

∞⋃

n=1

Zn

))

= µ

(
∞⋃

n=1

Mn

)
=

∞∑

n=1

µ (Mn) =
∞∑

n=1

µ (An) .

Thus µ is a measure on M. It is clear from the representation A = M ∪ Z and the definition of
µ that µ = µ on M.

Part (iii) Let µ(A) = 0 and let B ⊂ A. We show that µ(B) = 0. Write A = M ∪ Z, M ∈ M,
Z ∈ Z. Since µ(A) = 0, µ(M) = 0, so A = M ∪ Z ∈ Z. It follows that B ∈ Z ⊂ M, and so µ is
complete as required. �

Exercises

2:7.1 Prove each of the following assertions:

(a) The cardinality of the class G of open subsets of [0, 1] is c.

(b) The cardinality of the class B of Borel sets in [0, 1], is also c.

(c) The zero measure Cantor set has subsets that are not Borel sets.

(d) The measure space (X,B, λ) is not complete.
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2:7.2 Let B denote the Borel sets in [0, 1], and let λ be Lebesgue measure on B. Prove that

([0, 1],B, λ) = ([0, 1],L, λ).

2.8 Outer Measures

We turn now to the following general problem. Suppose that we have a primitive notion for
some phenomenon that we wish to model in the setting of a suitable measure space. How can
we construct such a space? We can abstract some ideas from Lebesgue’s approach (given in
Section 2.1). That procedure involved three steps. The primitive notion of the length of an
open interval was the starting point. This was used to provide an outer measure defined on all
subsets of IR. That, in turn, led to an inner measure and then, finally, the class of measurable
sets was defined as the collection of sets on which the inner and outer measures agreed. In this
section and the next we shall see that this same procedure can be used quite generally. Only
one important variant is necessary—we must circumvent the use of inner measure. The reason
for this will become apparent.

We begin by abstracting the essential properties of the Lebesgue outer measure. A method
for constructing outer measures similar to that used to construct the Lebesgue outer measure
will be developed in the next section.
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Definition 2.28: Let X be a set, and let µ∗ be an extended real-valued function defined on 2X

such that

1. µ∗(∅) = 0.

2. If A ⊂ B ⊂ X, then µ∗(A) ≤ µ∗(B).

3. If {An} is a sequence of subsets of X, then

µ∗

(
∞⋃

n=1

An

)
≤

∞∑

n=1

µ∗(An).

Then µ∗ is called an outer measure on X.

It follows from the first two conditions that an outer measure is nonnegative. Condition 3 is
called countable subadditivity.

Let us first address the question of how we obtain a measure from an outer measure. The
simple example that follows may be instructive.

Example 2.29: Let X = {1, 2, 3}. Let µ∗(∅) = 0, µ∗(X) = 2, and µ∗(A) = 1 for every other set
A ⊂ X. It is a routine matter to verify that µ∗ is an outer measure. Suppose now that we wish
to mimic the procedure that worked so well for the Peano–Jordan content and the Lebesgue
measure. We could take our cue from the formula in assertion 2.4 and define a version of the
inner measure for this example as

µ∗(A) = µ∗(X) − µ∗(X \A) = 2 − µ∗(X \A).
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If we then call A measurable provided that µ∗(A) = µ∗(A), and let

µ(A) = µ∗(A)

for such sets, our process is complete. We find that all eight subsets of X are measurable by
this definition, but µ is clearly not additive on 2X . The classical inner–outer measure procedure
completely fails to work in this simple example!

A bit of reflection pinpoints the problem. The inner–outer measure approach puts a set A
to the following test stated solely in terms of µ∗: is it true that

µ∗(A) + µ∗(X \A) = µ∗(X)?

In Example 2.29, every A ⊂ X passed this test. But, for A = {1} and E = {1, 2}, we see that

µ∗(A) + µ∗(E \A) = 2 > 1 = µ∗(E).

Thus, while µ∗ is additive with respect to A and its complement in X, it is not with respect to
A and its complement in E.

2.8.1 Measurable sets with respect to an outer measure

These considerations lead naturally to the following criterion of measurability. It is due to Con-
stantin Carathéodory (1873–1950). We have already touched upon Lebesgue’s notion of a mea-
surable set, defined using inner and outer measures. Carathéodory’s definition is more general
and avoids the introduction of inner measures.

Definition 2.30: Let µ∗ be an outer measure on X. A set A ⊂ X is µ∗-measurable if, for all
sets E ⊂ X,

µ∗(E) = µ∗(E ∩A) + µ∗(E \A). (11)
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This definition of the measurability of a set A requires testing the set A against every subset
E of the space. In contrast the inner–outer measure approach requires only that equation (11)
of Definition 2.30 be valid for the single “test set” E = X.

Example 2.31: Let X and µ∗ be as in Example 2.29. Consider a, b ∈ X, with a 6= b. If
E = {a, b} is examined as the test set in (11) of Definition 2.30, we see that {a} is not µ∗-
measurable. Similarly, we find that no two-point set is µ∗-measurable. Thus only ∅ and X are
µ∗-measurable. This is the best one could hope for if some kind of additivity of µ∗ over the
measurable sets is to occur. Note, also, that unlike Lebesgue measure, nonmeasurable sets in
X have no measurable covers or measurable kernels. (See Exercise 2:1.14.)

2.8.2 The σ-algebra of measurable sets

Definition 2.30 defining measurability involves an additivity requirement of µ∗, but not any
kind of σ-additivity. It may therefore be surprising that this simple modification of the inner–
outer measure approach suffices to provide a σ-algebra M of measurable sets on which µ∗ is
σ-additive.

Theorem 2.32: Let X be a set, µ∗ an outer measure on X, and M the class of µ∗-measurable
sets. Then M is a σ-algebra and µ∗ is countably additive on M. Thus the set function µ de-
fined on M by µ(A) = µ∗(A) for all A ∈ M is a measure.

Proof. In applying condition (11) in Definition 2.30 for a measurability test of a set A note
that it is enough, because of subadditivity, to verify that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A) (12)
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for an arbitrary set E of finite measure. We start by checking that ∅ ∈ M. For any set E ⊂ X,
obviously

µ∗(E) = µ∗(E ∩ ∅) + µ∗(E \ ∅),

verifying condition (12). If A ∈ M and B = X \A then the identity

µ∗(E) = µ∗(E ∩A) + µ∗(E \A) = µ∗(E \B) + µ∗(E ∩B)

shows that B ∈ M. Thus far we know that that ∅ ∈ M and M is closed under complementa-
tion.

We show that any finite union of sets in M must also be in M. It is sufficient to check that,
if A1, A2 ∈ M, then necessarily A1 ∪A2 ∈ M. For any E ⊂ X, since A1 ∈ M,

µ∗(E) = µ∗(E ∩A1) + µ∗(E \A1).

For the set A2 ∈ M, we use the test set E \A1 to obtain

µ∗(E ∩A1) = µ∗((E \A1) ∩A2) + µ∗((E \A1) \A2).

We need the two simple set identities

(E \A1) \A2 = E \ (A1 ∪A2)

and

[(E \A1) ∩A2] ∪ [E ∩A1] = E ∩ (A1 ∪A2).

Putting these together and using the subadditivity of the outer measure we obtain,

µ∗(E) ≥ µ∗(E ∩A1) + µ∗(E \A1) ∩A2) + µ∗(E \ (A1 ∪A2))

≥ µ∗(E ∩ (A1 ∪A2)) + µ∗(E \ (A1 ∪A2)).

This is exactly what we need to verify, using condition (12), to prove that A1 ∪A2 ∈ M.
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Now let {Aj} be a sequence of measurable sets. We shall verify that the union

A =
∞⋃

j=1

Aj

belongs also to M. There is no loss of generality in assuming that the sets are disjoint, for we
can express A as a union of a disjoint sequence of sets from M using a familiar device (e.g. as
in our proof of Theorem 2.21).

We let E ⊂ X and show that Definition 2.30 is satisfied. Write Bn =
⋃n

j=1Aj . Note that
Bn ∈ M. We give an inductive proof that, for every n = 1, 2, 3, . . . ,

µ∗(E ∩Bn) = µ∗


E ∩

n⋃

j=1

Aj


 =

n∑

j=1

µ∗(E ∩Aj). (13)

This is certainly true for n = 1. Suppose that it is true for some given n. Use E ∩ Bn+1 as a
test set for the measurability of Bn (which we know is measurable) to obtain

µ∗(E ∩Bn+1) = µ∗([E ∩Bn+1] ∩Bn) + µ∗([E ∩Bn+1] \Bn)

and deduce, using the induction hypothesis, that

µ∗(E ∩Bn+1) = µ∗(E ∩Bn) + µ∗(E ∩An+1) =
n+1∑

j=1

µ∗(E ∩Aj).

Thus (13) is proved.
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The monotonicity of the outer measure and the subadditivity of the outer measure now sup-
plies the inequality

n∑

j=1

µ∗(E ∩Aj) = µ∗(E ∩Bn) ≤ µ∗(E ∩A) ≤
∞∑

j=1

µ∗(E ∩Aj)

valid for all n. From this we see that

µ∗(E ∩A) =
∞∑

j=1

µ∗(E ∩Aj). (14)

It remains only to test the measurability of A using the test set E. From the monotonicity of
outer measures and (13) we have

µ∗(E) = µ∗(E ∩Bn) + µ∗(E \Bn) ≥
n∑

j=1

µ∗(E ∩Aj) + µ∗(E \A)

for all n. If this is true for all n, then

µ∗(E) ≥
∞∑

j=1

µ∗(E ∩Aj) + µ∗(E \A).

Finally, using (14), we obtain our test for the measurability of A, that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A).

This completes the proof that M is a σ-algebra and there remains only to observe that µ∗ is
countably additive on M. But this is precisely what (14) shows, for that identity is valid for
any set E and any sequence of disjoint measurable sets {Aj}. �
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Exercises

2:8.1 Let µ∗ be an outer measure on X, and suppose that one of the two sets A, B ⊂ X is measurable.
Show that µ∗(A) + µ∗(B) = µ∗(A ∪B) + µ∗(A ∩B).

2:8.2 Let X be an uncountable set. Let µ∗(A) = 0 if A is countable and µ∗(A) = 1 if A is uncountable.
Show that µ∗ is an outer measure, and determine the class of measurable sets.

2:8.3 Let µ∗ be an outer measure on X, and let Y be a µ∗-measurable subset of X. Let ν∗(A) = µ∗(A)
for all A ⊂ Y . Show that ν∗ is an outer measure on Y , and a set A ⊂ Y is ν∗-measurable if and
only if A is µ∗-measurable. Thus, for example, a subset A of [0, 1] is Lebesgue measurable (as a
subset of [0, 1]) if and only if it is Lebesgue measurable as a subset of IR.

2:8.4♦ Prove that if A ⊂ X and µ∗(A) = 0 then A is µ∗-measurable. Consequently, the measure space
generated by any outer measure is complete.

2.9 Method I

In Section 2.8 we have seen how one can obtain a measure µ from an outer measure µ∗. We
still have the problem of determining how to obtain an outer measure µ∗ so that the resulting
measure µ is compatible with whatever primitive notion we wish to extend.

Once again, we can abstract this from Lebesgue’s procedure. Suppose that we have a set X,
a family T of subsets of X, and a nonnegative function τ : T → [0,∞]. We view T as the fam-
ily of sets for which we have a primitive notion of “size” and τ(T ) as a measure of that size. We
shall call τ a premeasure to indicate the role that it takes in defining a measure. In order for
our methods to work, we need assume no more of a premeasure τ than that it is nonnegative
and vanishes on the empty set. [In the Lebesgue framework of Section 2.1, for example, we can
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take X = [0, 1], T as the family of open intervals, and the premeasure τ(T ) as the length of the
open interval T .]

Here is a more formal development of these ideas.

Definition 2.33: Let X be a set, and let T be a family of subsets of X such that ∅ ∈ T . A
nonnegative function τ defined on T so that τ(∅) = 0 is called a premeasure, and we refer to
the family T as a covering family for X.

Note that hardly anything is assumed about the properties of a premeasure and a covering
family. The terminology is employed just to indicate the intended use: we use the members of
the family to cover sets, and we use the premeasure to generate an outer measure. The process,
defined in the following theorem, of constructing outer measures is often called Method I in the
literature.

Method I is very useful, but it can have an important flaw when X is a metric space. In
Section 3.2 we shall discuss this flaw and see how a variant, called Method II, overcomes this
problem.

Theorem 2.34 (Method I construction of outer measures) Let T be a covering family
for a set X, and let τ : T → [0,∞] with τ(∅) = 0. For A ⊂ X, let

µ∗(A) = inf

{
∞∑

n=1

τ(Tn) : Tn ∈ T and A ⊂ ⋃∞
n=1 Tn

}
, (15)

where an empty infimum is taken as ∞. Then µ∗ is an outer measure on X.

Proof. Before beginning the proof note that a set A not contained in any countable union
of sets from the covering family T is assigned an infinite outer measure. Note too that, while
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the definition of the outer measure uses countable covers, finite covers are included as well since
∅ ∈ T and τ(∅) = 0.

It is clear that µ∗(∅) = 0 and that µ∗ is monotone. To verify that µ∗ is countably subaddi-
tive, let {An} be a sequence of subsets of X. We show that

µ∗

(
∞⋃

n=1

An

)
≤

∞∑

n=1

µ∗(An).

If any µ∗(An) = ∞, there is nothing to prove, so we suppose that each is finite. Let ε > 0. For
every n ∈ IN, there exists a sequence {Tnk}∞k=1 of sets from T such that An ⊂ ⋃∞

k=1 Tnk, and
∞∑

k=1

τ(Tnk) ≤ µ∗(An) +
ε

2n
. (16)

Now
∞⋃

n=1

An ⊂
∞⋃

n=1

∞⋃

k=1

Tnk,

so by (15) and (16)

µ∗(
∞⋃

n=1

An) ≤
∞∑

n=1

∞∑

k=1

τ(Tnk) ≤
∞∑

n=1

[
µ∗(An) +

ε

2n

]
=

∞∑

n=1

µ∗(An) + ε.

We conclude that

µ∗

(
∞⋃

n=1

An

)
≤

∞∑

n=1

µ∗(An)

since ε is an arbitrary positive number. �
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2.9.1 A warning

The philosophy of the Method I construction, we recall, is to refine some premeasure τ acting
on a family of sets T in such a way as to produce a useful outer measure. One might assume
that the new outer measure reflects closely properties of the tools that were used to construct
it. But the outer measure may assign different values to the sets in T than the premeasure τ
and may not even consider the sets in T to be measurable.

Exercises 2:9.3 to 2:9.5 illustrate that the members of T need not, in general, be measurable
and that τ(T ) need not equal µ(T ), not even when T ∈ T is in fact measurable.

For a natural and important example, suppose that we wish a measure-theoretic model for
area in the Euclidean plane IR2. We could start with T as the family of open squares (along
with ∅) and with τ(T ) as the area of the square T . We apply Method I to obtain an outer mea-
sure λ∗2 in IR2. We then restrict λ∗2 to the class L2 of measurable sets, and we shall have Lebes-
gue’s two-dimensional measure λ2.

We would be assured at this point of having a σ-algebra of measurable sets L2, but we would
need to do more work to show that L2 possesses certain desirable properties. Nothing in our
general work so far guarantees, for example, that members of the original family T are in L2

(i.e., the members of T are measurable) or, indeed, that the measure of a square T is the origi-
nal value τ(T ) with which we started. In the case of L2, it would be unfortunate if open squares
were not measurable by the criterion of Definition 2.30 and worse still if the measure of a square
were not its area. We shall see later, fortunately, that no such problem exists for Lebesgue mea-
sure in IRn or for a variety of other important measures.
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Exercises

2:9.1 Verify that the set function µ∗ as defined in (15) satisfies conditions 1 and 2 of Definition 2.28.

2:9.2♦ Refer to Example 2.10. Let T consist of ∅ and the half-open intervals (a, b] ⊂ (0, 1], and let τ =
νf . Apply Method I to obtain µ∗ and M. Assuming that T ⊂ M and µ = τ on T , this now
provides a model for mass distributions on (0, 1]. Let q1, q2, . . . be an enumeration of Q ∩ (0, 1].
Construct a function f , so that for all A ⊂ (0, 1],

µ(A) =
∑

qn∈A

1

2n
,

where µ is obtained from τ by our process, and τ((a, b]) = f(b) − f(a).

2:9.3♦ Let X = {1, 2, 3}, T consist of ∅, X and all doubleton sets, with τ(∅) = 0, τ({x, y}) = 1, for all
x 6= y ∈ X, and τ(X) = 2. Show that Method I results in the outer measure µ∗ of Example 2.29.
How do things change if τ(X) = 3?

2:9.4 Let X = IN, T consist of ∅, X, and all singleton sets. Let τ(∅) = 0, τ({x}) = 1, for all x ∈ X, and

(a) τ(X) = 2.

(b) τ(X) = ∞.

In each case, apply Method I and determine the family of measurable sets.

2:9.5 Repeat Exercise 2:9.4 with the modification that

τ({x}) =
1

2x−1
.

[Note in part (b), that X ∈ M, but τ(X) 6= µ(X).] How do things change if τ(X) = 1?

2:9.6 Show that if T ⊂ M then µ(T ) ≤ τ(T ) for all T ∈ T .
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2.10 Regular Outer Measures

We saw in Section 2.8 that the inner–outer measure approach does not, in general, give rise to
a measure on a σ-algebra. There are, however, many situations in which the class of sets whose
inner and outer measures are the same is identical to the class of sets measurable according to
Definition 2.30.

Definition 2.35: An outer measure µ∗ is called regular if for every E ⊂ X there exists a mea-
surable set H ⊃ E such that µ(H) = µ∗(E). The set H is called a measurable cover for E.

Theorem 2.36: Let µ∗ be a regular outer measure on X and suppose that

µ∗(X) <∞.

A necessary and sufficient condition that a set A ⊂ X be measurable is that

µ∗(X) = µ∗(A) + µ∗(X \A). (17)

Proof. The necessity is clear from Definition 2.30. To prove that the condition is sufficient,
let A be a subset of X satisfying (17), let E be any subset of X, and let H be a measurable
cover for E. It suffices to verify that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A), (18)

the reverse inequality being automatically satisfied because of the subadditivity of µ∗.
Observe first that

µ∗(A \H) + µ∗((X \A) \H) ≥ µ∗(X \H). (19)

Since H is measurable, we have

µ∗(A) = µ∗(A ∩H) + µ∗(A \H) (20)
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and

µ∗(X \A) = µ∗(H \A) + µ∗((X \H) \A). (21)

Now µ∗(X) = µ∗(A) + µ∗(X \ A) by (17). Thus, from equations (20) and (21) and the subaddi-
tivity of µ∗, we infer that

µ(X) = µ∗(A ∩H) + µ∗(A \H) + µ∗(H \A) + µ∗((X \H) \A)

≥ µ(H) + µ(X \H) = µ(X).

It follows that the one inequality above is actually an equality. Subtracting the inequality (19)
from this equality, we obtain

µ∗(H ∩A) + µ∗(H \A) ≤ µ(H). (22)

This subtraction is justified since all the quantities involved are finite. Because E ⊂ H, we see
from (22) that

µ∗(E ∩A) + µ∗(E \A) ≤ µ∗(H ∩A) + µ∗(H \A) ≤ µ(H) = µ∗(E).

This verifies (18). �

In Section 2.1, we gave a sketch of one-dimensional Lebesgue measure and promised there
to justify those aspects of the development that we did not verify at the time. The material
in Section 2.8 provides a framework for developing Lebesgue measure using the Carathéodory
criterion of Definition 2.30 and Method I. But it does not justify the inner–outer measure ap-
proach of Section 2.1. For that, we need to verify that λ∗ is regular and then invoke Theo-
rem 2.36.
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2.10.1 Regularity of Method I outer measures

It is not the case that every outer measure obtained by Method I is regular. Example 2.29 and
Exercise 2:9.3 show this. Theorem 2.37 is useful in showing that, when Method I is invoked for
the purpose of extending the primitive notions that we have already mentioned (length, area,
volume, and mass) the resulting outer measures will be regular.

Theorem 2.37: Let µ∗ be constructed by Method I from T and τ . If all members of T are
µ∗-measurable, then µ∗ is regular.

Proof. Let A ⊂ X. We find a measurable cover for A. If µ∗(A) = ∞, then X is a measurable
cover. Suppose then that µ∗(A) <∞. For each m ∈ IN, let {Tmn}∞n=1 be a sequence of sets from
the covering class T such that

A ⊂
∞⋃

n=1

Tmn and
∞∑

n=1

τ(Tmn) < µ∗(A) +
1

m
.

Let

Tm =
∞⋃

n=1

Tmn and H =
∞⋂

m=1

Tm.

Since each of the sets Tmn is measurable, so too is H. We show that H is a measurable cover
for A.

Clearly, A ⊂ H and so µ∗(A) ≤ µ(H). For the opposite inequality, we have, for each m ∈ IN,

µ∗(Tm) ≤
∞∑

n=1

µ∗(Tmn) ≤
∞∑

n=1

τ(Tmn) ≤ µ∗(A) +
1

m
.
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For each m ∈ IN, H ⊂ Tm, and so

µ(H) ≤ µ∗(Tm) ≤ µ∗(A) +
1

m
.

This last inequality is true for all m ∈ IN, so µ(H) ≤ µ∗(A). Thus µ(H) = µ∗(A), and H is a
measurable cover for A. �

2.10.2 Regularity of Lebesgue outer measure

Corollary 2.38: Lebesgue outer measure λ∗ on IR is regular.

Proof. Here T consists of ∅ and the open intervals, and τ(T ) is the length of the interval T .
Because of Theorem 2.37, it suffices to show that each interval (a, b) is measurable by Carathéodory’s
criterion (Definition 2.30).

Let E ⊂ IR and let ε > 0. There is a sequence {Tn} ⊂ T that covers E for which
∞∑

n=1

τ(Tn) ≤ λ∗(E) +
ε

2
.

Take

U1 = {Tn ∩ (a, b) : n ∈ IN} ,
U2 = {Tn ∩ (−∞, a) : n ∈ IN} ,
U3 = {Tn ∩ (b,∞) : n ∈ IN} ,

and

U4 =
{(
a− 1

8ε, a+ 1
8ε
)
,
(
b− 1

8ε, b+ 1
8ε
)}
.
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Then U1 covers E ∩ (a, b) and U2 ∪ U3 ∪ U4 covers E \ (a, b). The total length of the intervals
in U1, U2, U3 is the same as for the original sequence, and the additional lengths from U4 have
total length equal to ε/2. Hence

λ∗(E ∩ (a, b)) + λ∗(E \ (a, b)) ≤
∞∑

n=1

τ(Tn) + ε/2 ≤ λ∗(E) + ε.

Since ε is arbitrary, we have

λ∗(E ∩ (a, b)) + λ∗(E \ (a, b)) ≤ λ∗(E)

for any E ⊂ IR, and it follows that (a, b) must be measurable. �

2.10.3 Summary

Let us summarize some of the ideas in Sections 2.8 and 2.10, insofar as they relate to the im-
portant case of Lebesgue measure on an interval. We start with the covering family T of open
intervals and with the primitive notion τ(T ) as the length of the interval T . Upon applying
Method I, this gives rise to an outer measure µ∗. We then apply the Carathéodory process to
obtain a class M of measurable sets and a measure µ that equals µ∗ on M. To verify that our
primitive notion of length is not destroyed by the process, we show, as in the proof of Corol-
lary 2.38, that open intervals are measurable. It is then almost trivial to verify that the mea-
sure of an interval is its length. Theorem 2.37 now tells us that µ∗ is regular; thus we could
have used the inner–outer measure approach of Section 2.1. This would result in the same class
of measurable sets and the same measure as provided by the Carathéodory process.
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Exercises

2:10.1 Prove that, if µ∗ is a regular outer measure and {An} is a sequence of sets in X, then µ∗(lim inf An) ≤
lim inf µ∗(An). Compare with Theorem 2.22 (i).

2:10.2♦ Prove that, if µ∗ is a regular outer measure and {An} is an expanding sequence of sets, then
µ∗(limnAn) = limn µ

∗(An). Compare with Theorem 2.21 (i).

2:10.3 Show that the conclusions of Exercises 2:10.1 and 2:10.2 are not valid for arbitrary outer mea-
sures.

2:10.4 Let X = IN, µ∗(∅) = 0, and µ∗(E) = 1 for all E 6= ∅.

(a) Show that µ∗ is a regular outer measure.

(b) Let {An} be a sequence of subsets of X (not assumed measurable). Show that, while the
analog of part (i) of Theorem 2.22 does hold (Exercise 2:10.1), the analogs of parts (ii) and
(iii) do not hold.

2:10.5 Let X = IN, and let 0 = a0, a1 = 1
2 < a2 < a3 < · · · with limn an = 1. If E has n members, let

µ∗(E) = an. If E is infinite, let µ∗(E) = 1.

(a) Show that µ∗ is an outer measure, but that µ∗ is not regular.

(b) Show that the conclusions of Exercise 2:10.2 and Theorem 2.36 hold.

2:10.6 Prove the following variant of Theorem 2.36: Let µ∗ be a regular outer measure, let H be mea-
surable with µ(H) <∞, and let A ⊂ H. If µ(H) = µ∗(H ∩A) + µ∗(H \A), then A is measurable.

2:10.7♦ Let X = (0, 1], T consist of the half-open intervals (a, b] contained in (0, 1], and f be increasing
and right continuous on (0, 1] with limx→0 f(x) = 0. Let τ((a, b]) = f(b)−f(a). Apply Method I to
obtain an outer measure µ∗

f . Prove that T ⊂ M and µ∗
f is regular and thus the inner–outer mea-

sure approach works here. Observe that all open sets as well as all closed sets are µ∗
f measurable.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 2.11. Nonmeasurable Sets 159

In particular, such measures can be used to model mass distributions on IR. (See Exercise 2:4.10,
and Example 2.10 and the discussion following it.)

2:10.8♦ Let T be a covering family for X. Prove that, if Method I is applied to T and τ to obtain the
outer measure µ∗, then for each E ⊂ X with µ∗(E) < ∞ there exists S ∈ T σδ such that E ⊂ S
and µ∗(S) = µ∗(E). (In particular, if X is a metric space and T consists of open sets, S can be
taken to be of type Gδ.) [Hint: See the proof of Theorem 2.37.]

2.11 Nonmeasurable Sets

In any particular setting, can we determine the existence of nonmeasurable sets? Certainly, it is
easy to give artificial examples where all sets are measurable or where nonmeasurable sets exist.
But in important applications we would like some generally applicable methods.

The special case of Lebesgue nonmeasurable sets should be instructive. Vitali was the first
to demonstrate the existence of such sets using the axiom of choice. Let 0 = r0, r1, r2, . . . be an
enumeration of Q ∩ [−1, 1]. Using this sequence, he finds a set A ⊂ [−1

2 ,
1
2 ] so that the collection

of sets

Ak = {x+ rk : x ∈ A}
forms a disjoint sequence covering the interval [−1

2 ,
1
2 ]. As Lebesgue measure is translation in-

variant and countably additive, the set A cannot be measurable. (See Section 1.10 for the de-
tails.) In Section 12.6 we will encounter an example of a finitely additive measure that extends
Lebesgue measure to all subsets of [0, 1] and is translation invariant. This set function cannot
be a measure, however, because of the Vitali construction. Unfortunately, this discussion does
little to help us in general as it focuses attention on the additive group structure of IR and the
invariance of λ.
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Another example may help more. We have seen a proof of the existence of Bernstein sets,
that is, a set of real numbers such that neither it nor its complement contains any perfect set.
(See Exercises 1:22.7 and 1:22.8.) Such a set cannot be Lebesgue measurable. To see this, re-
member that the outer measure of any set can be approximated from above by open sets; con-
sequently, the measure of a measurable set can be approximated from inside by closed (or per-
fect) sets. But a Bernstein set and its complement contain no perfect set, and so both would
have to have measure zero if they were measurable.

This example does contain a clue, albeit somewhat obliquely. The example suggests that
some topological property (relating to closed and open sets) of Lebesgue measure is intimately
related to the existence of nonmeasurable sets. But the proof of the existence of Bernstein sets
simply employed a cardinality argument and did not invoke any deep topological properties of
the real line. In fact, the nonmeasurability question reduces in many cases, surprisingly, to one
of cardinality.

2.11.1 Ulam’s theorem

The following result of S. M. Ulam illustrates the first step in this direction. Ultimately, we
wish to ask, for a set X, when is it possible to have a finite measure defined on all subsets of
X, but that assigns zero measure to each singleton set?

Theorem 2.39 (Ulam) Let Ω be the first uncountable ordinal, and let X = [0,Ω). If µ is a fi-
nite measure defined on all subsets of X and such that µ({x}) = 0 for each x ∈ X, then µ is the
zero measure.
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Proof. For any y ∈ X, write Ay = {x ∈ X : x < y}, the set of all predecessors of y. Then
each set Ay is countable, and so there is an injection

f(·, y) : Ay → IN.

Define for each x ∈ X and n ∈ IN

Bx,n = {z ∈ X : x < z, f(x, z) = n} .
If x1, x2 are distinct points in X, then evidently the sets Bx1,n and Bx2,n are disjoint. Since µ
is finite, this means that, for each integer n, µ(Bx,n) > 0 for only countably many x ∈ X. This
means, since X is uncountable, that there must be some x0 ∈ X for which µ(Bx0,n) = 0 for each
integer n.

Consider the union

B0 =
∞⋃

n=1

Bx0,n

and observe that µ(B0) = 0. If y > x0, then f(x0, y) = n for some n ∈ IN. Hence {y ∈ X : x0 < y} ⊂
B0. Thus

X = B0 ∪ {y ∈ X : y ≤ x0} ,
and this expresses X as the union of a set of µ measure zero and a countable set. Hence µ(X) =
0 as required. �

If we assume CH (the continuum hypothesis), it follows from Ulam’s theorem that there is
no finite measure defined on all subsets of the real line and vanishing at points except for the
zero measure itself. This applies not just to the real line, then, but to any set of cardinality c.
This is true even without invoking the continuum hypothesis, but requires other axioms of set
theory. Note that this means that it is not the invariance of Lebesgue measure or its properties
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relative to open and closed sets that does not allow it to be defined on all subsets of the reals.
There is no nontrivial finite measure defined on all subsets of an interval of the real line that
vanishes on singleton sets.

These ideas can be generalized to spaces of higher cardinality. We define an Ulam number
to be a cardinal number with the property of the theorem.

Definition 2.40: A cardinal number ℵ is an Ulam number if whenever X is a set of cardinality
ℵ and µ is a finite measure defined on all subsets of X and such that µ({x}) = 0 for each x ∈ X
then µ is the zero measure.

Certainly, ℵ0 is an Ulam number. We have seen in Theorem 2.39 that ℵ1 is also an Ulam
number. The class of all Ulam numbers forms a very large initial segment in the class of all car-
dinal numbers. It will take more set theory than we choose to develop to investigate this fur-
ther,1 but some have argued that one could consider safely that all cardinal numbers that one
expects to encounter in analysis are Ulam numbers.

Exercises

2:11.1 Show that every set of real numbers that has positive Lebesgue outer measure contains a non-
measurable set.

1 See K. Ciesielski, “How good is Lebesgue measure?” Math. Intelligencer 11(2), 1989, pp. 54–58, for a discus-
sion of material related to this section and for references to the literature. That same author’s text, Set Theory

for the Working Mathematician, Cambridge University Press, London (1997) is an excellent source for students
wishing to go deeper into these ideas. In Section 12.6 we shall return to some related measure problems.
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2:11.2 Show that there exist disjoint sets {Ek} so that

λ∗
( ∞⋃

k=1

Ek

)
<

∞∑

k=1

λ∗ (Ek) .

2:11.3 Show that there exist sets E1 ⊃ E2 ⊃ E3 . . . so that λ∗(Ek) < +∞, for each k, and

λ∗
( ∞⋂

k=1

Ek

)
< lim

k→∞
λ∗ (Ek) .

2:11.4 Let E be a measurable set of positive Lebesgue measure. Show that E can be written as the
disjoint union of two sets E = E1 ∪ E2 so that λ(E) = λ∗(E1) = λ∗(E2).

2:11.5 Let H be a Hamel basis (see Exercise 1:11.3) and H0 a nonempty finite or countable subset of
H. Show that the set of rational linear combinations of elements of H \H0 is nonmeasurable.

2:11.6 Every totally imperfect set of real numbers contains no Cantor set but does contain an uncount-
able measurable set.

2:11.7 Exercise 2:11.6 suggests asking whether there can exist an uncountable set of real numbers that
contains no uncountable measurable subset. Such a set (if it exists) is called a Sierpiński set and
must clearly be nonmeasurable.

(a) Let X be a set of power 2ℵ0 and let E be a family of subsets of X, also of power 2ℵ0 , with
the property that X is the union of the family E , but is not the union of any countable sub-
family. Assuming CH, show that there is an uncountable subset of X that has at most count-
ably many points in common with each member of E .

(b) By applying (a) to the family of measure zero Gδ subsets of IR, show that, assuming CH,
there exists a Sierpiński set.
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2:11.8 Let µ∗ be an outer measure on a set X, and suppose that E ⊂ X is not µ∗–measurable. Show
that

inf {µ∗(A ∩B) : A, B µ∗–measurable, A ⊃ E, B ⊃ X \ E} > 0.

2:11.9 A cardinal number ℵ is an Ulam number if and only if the following: if µ∗ is an outer measure
on a set X and C is a disjointed family of subsets of X with (i) card(C) ≤ ℵ, (ii) the union of every
subfamily of C is µ∗–measurable, (iii) µ∗(C) = 0 for each C ∈ C, and (iv) µ

(⋃
C∈C C

)
<∞, then

µ


 ⋃

C∈C
C


 = 0.

2:11.10 If S is a set of Ulam numbers and card(S) is an Ulam number then the least upper bound of S
is an Ulam number.

2:11.11 The successor of any Ulam number is an Ulam number. [Hint: See Federer, Geometric Measure
Theory, Springer (1969), pp. 58–59, for a proof of these last three exercises.]

2.12 More About Method I

Let us review briefly our work to this point from the perspective of building a measure-theoretic
framework for modeling some geometric or physical phenomena. In an attempt to satisfy our
sense that “the whole should be the sum of its parts,” we created the structure of an algebra of
sets A with an additive set function defined on A. This structure had limitations—the algebra
might be too small for our purposes. For example, the algebra generated by the half-open inter-
vals on (0, 1] consisted only of finite unions of such intervals (and ∅ of course). Even singletons
are not in the algebra. The notion of countable additivity in place of additivity helped here—it
gave rise to a σ-algebra of sets and a measure.
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We then turned to the problem of how to obtain a measure space that could serve as a model
for a given phenomenon for which we had a “primitive notion.” We saw that we can always ob-
tain a measure from an outer measure via the Carathéodory process and that Method I might
be useful in obtaining an outer measure suitable for modeling our phenomenon. We say “might
be useful” instead of “is useful” because there still are two unpleasant possibilities: our “primi-
tive” sets T need not be measurable and, even if they are, it need not be true that

τ(T ) = µ(T )

for all T ∈ T . Such flaws might not be surprising insofar as we have placed only minimal re-
quirements on τ and T . What sorts of further restrictions will eliminate these two flaws?

Let us return to the family of half-open intervals on (0, 1]. Here we have an increasing func-
tion f defined on [0, 1], and we obtain τ from f by

τ((a, b]) = f(b) − f(a),

with τ extended to be additive on the algebra T generated by the half-open intervals. In this
natural setting, we have some additional structure. The family T is an algebra of sets, and τ is
additive on T . This structure suffices to eliminate one of the unpleasant possibilities. Note that
the proof is nearly identical to that for Corollary 2.38, but there, since the open intervals that
were used for the covering family did not form an algebra, it was not so easy to carve up the
sets.

2.12.1 Regularity for Method I outer measures

Theorem 2.41: Let µ∗ be constructed from a covering family T and a premeasure τ by
Method I, and let (X,M, µ) be the resulting measure space. If T is an algebra and τ is addi-
tive on T , then T ⊂ M and µ∗ is regular.
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Proof. By Theorem 2.37, it is enough to check that each member of T is µ∗–measurable. Let
T ∈ T . To obtain that T ∈ M, it suffices to show that, for each E ⊂ X for which µ∗(E) <∞,

µ∗(E) ≥ µ∗(E ∩ T ) + µ∗(E ∩ T̃ ) (23)

where we are using our usual notation for complementation, i.e., T̃ denotes X \ T .
Let ε > 0. Choose a sequence {Tn} from T such that

E ⊂
∞⋃

n=1

Tn

and

∞∑

n=1

τ(Tn) < µ∗(E) + ε.

Since τ is additive on T , we have, for all n ∈ IN

τ(Tn) = τ(Tn ∩ T ) + τ(Tn ∩ T̃ ).

But

E ∩ T ⊂
∞⋃

n=1

(Tn ∩ T ) and E ∩ T̃ ⊂
∞⋃

n=1

(Tn ∩ T̃ ). (24)
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Thus

µ∗(E) + ε >
∞∑

n=1

τ(Tn) =
∞∑

n=1

τ(Tn ∩ T ) +
∞∑

n=1

τ(Tn ∩ T̃ )

≥
∞∑

n=1

µ∗(Tn ∩ T ) +
∞∑

n=1

µ∗(Tn ∩ T̃ )

≥ µ∗(E ∩ T ) + µ∗(E ∩ T̃ ),

the last inequality following from (24). Since ε is arbitrary, (23) follows. �

Primitive notions like area, volume, and mass that are fundamentally additive might well
lead to a τ , T combination that satisfies the hypotheses of Theorem 2.41.

2.12.2 The identity µ(T ) = τ(T ) for Method I measures

We next ask whether the hypotheses of Theorem 2.41 remove the other flaw that we mentioned:
τ(T ) need not equal µ(T ). To address this question, we look ahead.

A result of Section 12.6 enters our discussion. There is a finitely additive measure τ defined
on all subsets of [0, 1] such that τ = λ on the class L of Lebesgue measurable sets. We men-
tioned this example in Section 2.11, where we proved too that, if µ is a finite measure on 2[0,1]

with µ({x}) = 0 for all x ∈ [0, 1], then µ(E) = 0 for all E ⊂ [0, 1].
Suppose now that we take T = 2[0,1] and τ the finitely additive extension of λ mentioned

above and apply Method I to obtain µ∗ and µ. Theorem 2.41 guarantees that all members of T
are measurable. But this means that every subset of [0, 1] is measurable. From the material in
Section 2.11 just mentioned, this implies that µ ≡ 0. Since τ = λ on L, τ and µ cannot agree
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on any set of positive Lebesgue measure. Thus, even though T and τ had enough structure to
guarantee all subsets of [0, 1] measurable, the measure µ did not retain anything of the primi-
tive notion of length provided by τ !

Our development of Lebesgue measure on [0, 1] actually provides a clue for removing the
remaining flaw. Recall that in Section 2.1 we first extended the primitive notion of λ(I), the
length of an interval, to λ(G), G open. This anticipated a form of σ-additivity. We then de-
fined λ(F ), F closed. We can extend λ by additivity to the algebra T generated by the family
of open sets (or, equivalently, by the family of closed sets). Taking τ = λ on T , one can show
that τ is σ-additive according to the following definition.

Definition 2.42: Let A be an algebra of sets, and let α be additive on A. If

α(
∞⋃

n=1

An) =
∞∑

n=1

α(An)

whenever {An} is a sequence of pairwise disjoint sets from A for which
∞⋃

n=1

An ∈ A,

we say that α is σ-additive on A.

Thus if α ≥ 0, it can fail to be a measure only when A is not a σ-algebra. It may well hap-
pen that when a concept is “fundamentally” additive, a τ , T combination can be found such
that τ is σ-additive on T . See Exercise 2:13.4.

Theorem 2.43: Under the hypotheses of Theorem 2.41, if τ is σ-additive on T , then µ(T ) =
τ(T ) for all T ∈ T .
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Proof. We first show that, if {Tn} is any sequence of sets in T , T ∈ T and T ⊂ ⋃∞
n=1 Tn, then

τ(T ) ≤
∞∑

n=1

τ(Tn). (25)

Let B1 = T ∩ T1 and, for n ≥ 2, let

Bn = T ∩ Tn \ (T1 ∪ · · · ∪ Tn−1).

Then, for all n ∈ IN, Bn ⊂ T ∩ Tn, Bn ∈ T , the sets Bn are pairwise disjoint, and T =
⋃∞

n=1Bn.
Since τ is σ-additive on T ,

τ(T ) =
∞∑

n=1

τ(Bn) ≤
∞∑

n=1

τ(Tn).

This verifies (25). It now follows that

τ(T ) ≤ inf

{
∞∑

n=1

τ(Tn) :

∞⋃

n=1

Tn ⊃ T, Tn ∈ T
}

= µ∗(T ).

But since {T} covers the set T , µ∗(T ) ≤ τ(T ). Thus τ(T ) = µ∗(T ). Since T is measurable by
Theorem 2.41, µ∗(T ) = µ(T ). �

Exercises

2:12.1 Following the proof of Theorem 2.41, we gave an example of a τ , T combination, T = 2[0,1] and
τ = λ on L, such that the µ resulting from Method I had little connection to length on L. What
would happen if we took the same τ but restricted τ to T = L?
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2.13 Completions

Our presentation of Method I in Section 2.8 seemed simple and natural. It required little of
τ and T . But it had flaws that we removed in Section 2.12 by imposing additional additivity
conditions on τ and T . These conditions seemed natural because τ often represents a primi-
tive notion of size that is intuitively additive. Exercise 2:13.4 provides a possible example of
how we might naturally be led to use Theorems 2.41 and 2.43. On the other hand, these condi-
tions seem to impose serious restrictions on the use of Method I. One might ask, what measure
spaces (X,M, µ) are the Method I result of a τ , T combination that satisfies such additivity
conditions?

Such a space must be complete because any Method I measure is complete. We next show
that the only other restriction on (X,M, µ) is that X not be “too large.”

Definition 2.44: Let (X,M, µ) be a measure space. If µ(X) < ∞, then we say that the mea-
sure space is finite. If X =

⋃∞
n=1Xn with µ(Xn) < ∞ for all n ∈ IN, then we say that the space

is σ-finite.

Theorem 2.45: Let (X,M, µ) be a σ-finite measure space. Let T = M and τ = µ, and apply

Method I to obtain an outer measure µ̂∗ and a measure space (X,M̂, µ̂). Then

1. If A ∈ M̂, then A = M ∪ Z, where M ∈ M and Z ⊂ N ∈ M with µ(N) = 0. Thus

(X,M̂, µ̂) is the completion of (X,M, µ).

2. If µ is the restriction of a regular outer measure µ∗ to its class of measurable sets, then
µ̂∗ = µ∗.
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A

H

N is the shaded region

Figure 2.1. The set N is a measurable cover for H \ A.

Proof. To prove (i), assume first that µ(X) < ∞. Let A ∈ M̂. Now M ⊂ M̂ by Theo-
rem 2.41. Thus µ̂∗ is regular by Theorem 2.37, so A has a µ̂∗-measurable cover H. Since M is a
σ-algebra, Theorem 2.37 and Exercise 2:10.8 show that H can be taken in M. Because X ∈ M,
our assumption that µ(X) <∞ implies that µ̂∗(A) <∞. Since µ̂∗ is additive on M̂,

µ̂∗(H \A) = µ̂∗(H) − µ̂∗(A) = 0.

Now let N be a measurable cover in M for H \A. See Figure 2.1.
By Theorem 2.43, µ̂∗(N) = µ(N), so µ(N) = µ̂∗(H \A) = 0. But

A = (H \N) ∪ (A ∩N).

To verify this, observe first that if x ∈ A, but x /∈ N, then

x ∈ A \N ⊂ H \N.
In the other direction, since N ⊃ H \A, any x ∈ H \N must be in A, and obviously A∩N ⊂ A.

Now let M = H \ N , and let Z = A ∩ N . Then M ∈ M and Z ⊂ N with µ(N) = 0. The
equality A = M ∪ Z is the required one, and the proof of part (i) of the theorem is complete

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



172 Measure Spaces Chapter 2

when µ(X) <∞. The proof when µ(X) = ∞ is left as Exercise 2:13.1.
To prove (ii), let A ⊂ X. By hypothesis, µ comes from a regular outer measure µ∗. Thus

there exists a measurable cover M ∈ M for A. By the definition of µ̂∗,

µ̂∗(A) ≤ µ(M) = µ∗(A).

In the other direction, observe first that, since M is a σ-algebra,

µ̂∗(A) = inf {µ(B) : A ⊂ B ∈ M} .
But if A ⊂ B ∈ M, then µ∗(A) ≤ µ∗(B) = µ(B), so

µ∗(A) ≤ inf {µ(B) : A ⊂ B ∈ M} .
Therefore, µ̂∗(A) = µ∗(A). �

Corollary 2.46: Every complete σ-finite measure space (X,M, µ) is its own Method I
Carathéodory extension. That is, an application of Method I to T = M and τ = µ results
in the space (X,M, µ).

Proof. Observe that the completion of a complete measure space is the space itself and apply
part (i) of Theorem 2.45. �

The hypotheses of Theorem 2.45 and Corollary 2.46 cannot be dropped. See Exercises 2:13.2
and 2:13.3.

Exercises

2:13.1 Prove part (i) of Theorem 2.45 when µ(X) = ∞.
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2:13.2 Let X = IR, M = {A : A is countable or IR \A is countable} , and define

µ(A) =

{
cardinality A, A is finite;
∞, A is infinite.

(a) Show that µ is a complete measure on M.

(b) Show that µ̂ (See Theorem 2.45) is not the completion of µ.

(c) Show that µ is not the restriction to its measurable sets of any outer measure.

(d) Reconcile these with Theorem 2.45 and Corollary 2.46.

2:13.3 Let (X,M, µ) be as in Example 2.29. Apply the process of Theorem 2.45 and determine whether
µ̂∗ = µ∗.

2:13.4♦ Suppose that we have a mass distribution on the half-open square S = (0, 1] × (0, 1] in IR2, and
we know how to compute the mass in any half-open “interval” (a, b]×(c, d]. Suppose that singleton
sets have zero mass. We wish to obtain a measure space (X,M, µ) to model this distribution based
only on the ideas we have developed so far.

First try: Take T as the half-open intervals in S, together with ∅, and let τ(T ) be the mass of T
for T ∈ T . Apply Method I to get µ∗ and then (X,M, µ).

(a) Can we be sure that M is a σ-algebra and µ is a measure on M? Can we be sure that
T ⊂ M? If T ∈ M, must µ(T ) = τ(T )?

Second try: We note that τ is intuitively additive. So let T 1 be the algebra generated by T , and
extend τ to τ1 so that τ1 is additive on T 1.

(b) Can we do this? That is, can we be sure that τ1(T1), T1 ∈ T 1, does not depend on the
decomposition of T1 into a union of members of T ? If so, what are the answers to the
questions posed in part (a) when we apply Method I to T 1 and τ1?
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Third try: We believe mass is fundamentally σ-additive. But T 1 is only an algebra. So we verify
that τ1 is σ-additive on T 1. Can we now answer the three questions in part (a) affirmatively?

2.14 Additional Problems for Chapter 2

2:14.1 Criticize the following “argument” which is far too often seen:

“If G = (a, b) then G = [a, b]. Similarly, if G =
⋃∞

i=1(ai, bi) is an open set, then G =⋃∞
i=1[ai, bi] so that G and G differ by a countable set. Since every countable set has

Lebesgue measure zero, it follows that an open set G and its closure G have the same
Lebesgue measure.”(?)

2:14.2 Let A be a set of real numbers of Lebesgue measure zero. Show that the set {x2 : x ∈ A} also
has measure zero.

2:14.3 Let A be the set of real numbers in the interval (0, 1) that have a decimal expansion that con-
tains the number 3. Show that A is a Borel set and find its Lebesgue measure.

2:14.4 Let E be a Lebesgue measurable subset of [0, 1], and define

B = {x ∈ [0, 1] : λ(E ∩ (x− ε, x+ ε)) > 0 for all ε > 0} .
Show that B is perfect.

2:14.5 Let E be a Lebesgue measurable subset of [0, 1] and let c > 0. If λ(E ∩ I) ≥ cλ(I) for all open
intervals I ⊂ [0, 1], show that λ(E) = 1.

2:14.6 Let An be a sequence of Lebesgue measurable subsets of [0, 1] and suppose that lim supn→∞ λ(An) =
1. Show that there is some subsequence with

λ

( ∞⋂

k=1

Ank

)
> 0.
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[Hint: Arrange for
∑∞

k=1 (1 − λ (Ank
)) < 1.]

2:14.7♦ Let (X,M, µ) be a measure space. A set A ∈ M is called an atom, if µ(A) > 0 and, for all
measurable sets B ⊂ A, µ(B) = 0 or µ(A \B) = 0. The measure space is nonatomic if there are no
atoms.

(a) For any x ∈ X, if {x} ∈ M and µ({x}) > 0, then {x} is an atom.

(b) Determine all atoms for the counting measure. (The counting measure is defined in Exer-
cise 2:3.9.)

(c) Show that if A ∈ M is an atom then every subset B ⊂ A with B ∈ M and µ(B) > 0 is also
an atom.

(d) Show that if A1, A2 ∈ M are atoms then, up to a set of µ–measure zero, either A1 and A2

are equal or disjoint.

(e) Suppose that µ is σ-finite. Show that there is a set X0 ⊂ X such that X0 is a disjoint union
of countably many atoms of (X,M, µ) and X \X0 contains no atoms.

(f) Show that the Lebesgue measure space is nonatomic.

(g) Give an example of a nontrivial measure space (X,M, µ) with µ({x}) = 0 for all x ∈ X
and so that every set of positive measure is an atom. [Hint: Construct a measure using Exer-
cise 2:2.5.]

2:14.8♦ (Liaponoff’s theorem) Let µ1, . . . , µn be nonatomic measures on (X,M), with µi(X) = 1 for all
i = 1, . . . , n. These measures can be viewed as giving rise to a vector measure

µ : M → [0, 1]n = [0, 1] × [0, 1] × · · · [0, 1]

on (X,M) defined by
µ(A) = (µ1(A), . . . , µn(A))

for each A ∈ M. A theorem of Liaponoff (1940) states that
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The set S of n-tuples (x1, . . . , xn) for which there exists A ∈ M such that µ(A) =
(x1, . . . , xn) is a convex subset of [0, 1]n.

(a) Let (X,M, µ) be a nonatomic measure space with µ(X) = 1. Show that for each γ ∈ [0, 1]
there is a set Eγ ⊂ X such that µ(Eγ) = γ. [Hint: Use some form of Zorn’s lemma (Sec-
tion 1.11) or transfinite induction.]

(b) Show that part (a) follows from Liaponoff’s theorem.

(c) Show that (1/n, 1/n, . . . , 1/n) ∈ S. You may assume the validity of Liaponoff’s Theorem.

(d) Interpret part (c) to obtain the following result, indicating the technical meanings of the
terms in quotation marks.

Given a cake with n ingredients (e.g., butter, sugar, chocolate, garlic, etc.), each nonatomic
and of unit mass and mixed together in any “reasonable” way, it is possible to “cut the cake
into n pieces” such that each of the pieces contains its “share” of each of the ingredients.

2:14.9♦ Show that there exists a set E ⊂ [0, 1] such that, for every open interval I ⊂ [0, 1], λ(I ∩ E) > 0
and λ(I \ E) > 0.

2:14.10 Let {En} be a sequence of measurable sets in a measure space (X,M, µ) with each 0 < µ(En) <
∞. When is it generally possible to select a set A ∈ M with each µ(A ∩ En) > 0 and each
µ(En \A) > 0?

2:14.11 Let K be the Cantor set. Each point x ∈ K has a unique ternary expansion of the form

x = .a1a2a3 . . . (ai = 0 or ai = 2, i ∈ IN).

Let bi = ai/2 and let f(x) = .b1b2b3 . . . , interpreted in base 2. For example, if x = 2
9 = 0.0200 . . .

(base 3), then we would have f(x) = 1
4 = 0.0100 . . . (base 2). Show that if f is extended to be

linear and continuous on the closure of each interval complementary to K, then the the extended
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function f is continuous on [0, 1]. Determine the relationship of this function f to the Cantor func-
tion (Exercise 1:22.13).

2:14.12 Let X = [0, 1] and let τ = λ∗. In each case apply Method I to the family T and determine µ∗

and M. How do things change if τ = λ∗ in part (f)?

(a) T consists of ∅ and [0, 1].

(b) T consists of ∅ and the family of all open subintervals.

(c) T consists of ∅ and all nondegenerate subintervals.

(d) T is B.

(e) T is L.

(f) T is 2X .

[Hint for (f): The nonmeasurable set A discussed in Section 1.10 has λ∗(A) = 0.]

2:14.13♦ Show that every set E ⊂ IR with λ∗(E) > 0 contains a set that is nonmeasurable. [Hint: Let
E ⊂ [− 1

2 ,
1
2 ], and let Ek = E ∩ Ak, where {Ak} is the family of sets appearing in our proof in

Section 1.10 of the existence of sets in IR that are not Lebesgue measurable.]

2:14.14 Suppose that µ∗ is the outer measure on X obtained by Method I from T and τ , and suppose
that µ∗

1 is any other outer measure on X satisfying µ∗
1(T ) ≤ τ(T ) for all T ∈ T . Prove that µ∗

1 ≤
µ∗. Give an example for which µ∗

1(T ) = τ(T ) for all T ∈ T and µ∗
1 6= µ∗. [Hint: Let T = {∅, [0, 1]}

and µ∗
1 = λ∗.]

2:14.15♦ Let T be a covering family, and let τ1 and τ2 be nonnegative functions on T . Let µ∗
1 and µ∗

2

be the associated Method I outer measures. Prove that if µ∗
1(T ) = µ∗

2(T ) for all T ∈ T then µ∗
1 =

µ∗
2.
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2:14.16 Let (X,M, µ) be a measure space with µ(X) = 1, and suppose that µ(M) > 0 for each
nonempty M ∈ M. For each x ∈ X, let

α(x) = inf {µ(E) : E ∈ M, x ∈ E} .

(a) Show that there is a set Ax ∈ M such that x ∈ Ax and µ(Ax) = α(x).

(b) Prove that the sets {Ax} are either disjoint or identical.
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Chapter 3

METRIC OUTER MEASURES

In Chapter 2 we studied the basic abstract structure of a measure space. The only ingredients
are a set X, a σ–algebra of subsets of X, and a measure defined on the σ–algebra. In almost
all cases the set X will have some other structure that is of interest. Our example of Lebes-
gue measure on the real line illustrates this well. While (IR,L, λ) is a measure space, we should
remember that IR also has a great deal of other structure and that this measure space is influ-
enced by that other structure. For instance IR is linearly ordered, is a metric space, and also
has a number of algebraic structures. Lebesgue measure, naturally, interacts with each of these.

In this chapter we study measures in a general metric space. As it happens, the only mea-
sures that are of any genuine interest are those that interact with the metric structure in a
consistent way. In Section 3.2 we introduce the concepts of metric outer measure and Borel
measure, which capture this interaction in the most convenient and useful way. In Section 3.3
we give an extension of the Method I construction that allows us to obtain metric outer mea-
sures. Section 3.4 explores how the measure of sets in a metric space can be approximated by

179
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the measure of less complicated sets, notably open sets or closed sets or simple Borel sets. The
remaining sections develop some applications of the theory to important special measures, the
Lebesgue–Stieltjes measures on the real line and Lebesgue–Stieltjes measures and Hausdorff
measures in IRn.

We begin with a brief review of metric space theory. In this chapter, only the most rudi-
mentary properties of a metric space need be used. Even so the reader will feel more comfort-
able in the ensuing discussion after obtaining some familiarity with the concepts. A full treat-
ment of metric spaces begins in Chapter 9. Some readers may prefer to gain some expertise in
that general theory before studying measures on metric spaces. Abstract theories, such as met-
ric spaces, allow for deep and subtle generalizations. But one can also view them as simplifica-
tions in that they permit one to focus on essentials of the structure.

3.1 Metric Space

Sequence limits in IR are defined using the metric

ρ(x, y) = |x− y| (x, y ∈ IR)

which describes distances between pairs of points in IR. In higher dimensions one develops a
similar theory, but using for distance the familiar expression

ρ(x, y) =

√√√√
n∑

i=1

|xi − yi|2 (x, y ∈ IRn).

The only properties of these distance functions that are needed to develop an adequate the-
ory in an abstract setting are those we have listed in Section 1.1. We can take these as forming

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 3.1. Metric Space 181

our definition.

Definition 3.1: Let X be a set and let ρ : X × X → IR. If ρ satisfies the following conditions,
then we say ρ is a metric on X and call the pair (X, ρ) a metric space.

1. ρ(x, y) ≥ 0 for all x, y ∈ X.

2. ρ(x, y) = 0 if and only if x = y.

3. ρ(x, y) = ρ(y, x) for all x, y ∈ X.

4. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X (triangle inequality).

A metric space is a pair (X, ρ), where X is a set equipped with a metric ρ; in many cases
one simply says that X is a metric space when the context makes it clear what metric is to be
used. Sequence convergence in a metric space (X, ρ) means convergence relative to this dis-
tance. Thus xn → x means that ρ(xn, x) → 0. The role that intervals on the real line play is
assumed in an abstract metric space by the analogous notion of an open ball ; that is, a set of
the form

B(x0, ε) = {x : ρ(x, x0) < ε},
which can be thought of as the interior of a sphere centered at x0 and with radius ε; avoid,
however, too much geometric intuition, since “spheres” are not “round” and do not have the
kind of closure properties that one may expect.
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3.1.1 Metric space terminology

The language of metric space theory is just an extension of that for real numbers. Throughout
(X, ρ) is a fixed metric space. For this chapter we need to understand the notions of diameter,
open sets, and closed sets.

• For x0 ∈ X and r > 0, the set

B(x0, r) = {x ∈ X : ρ(x0, x) < r}
is called the open ball with center x0 and radius r.

• For x0 ∈ X and r > 0, the set

B[x0, r] = {x ∈ X : ρ(x0, x) ≤ r}
is called the closed ball with center x0 and radius r.

• A set G ⊂ X is called open if for each x0 ∈ G there exists r > 0 such that B(x0, r) ⊂ G.

• A set F is called closed if its complement F̃ = X \ F is open.

• A set is bounded if it is contained in some open ball.

• A neighborhood of x0 is any open set G containing x0.

• If G = B(x0, ε), we call G the ε-neighborhood of x0.

• The point x0 is called an interior point of a set A if x0 has a neighborhood contained in
A.
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• The interior of A consists of all interior points of A and is denoted by Ao or, occasionally,
int(A). It is the largest open set contained in A; it might be empty.

• A point x0 ∈ X is a limit point or point of accumulation of a set A if every neighborhood
of x0 contains points of A distinct from x0.

• The closure, A, of a set A consists of all points that are either in A or limit points of A.
(It is the smallest closed set containing A.) One verifies easily that x0 ∈ A if and only if
there exists a sequence {xn} of points in A such that xn → x0.

• A boundary point of A is a point x0 such that every neighborhood of x0 contains points of
A as well as points of Ã = X \A.

• The diameter of a set E ⊂ X is defined as

diameter (E) = sup{ρ(x, y) : x, y ∈ E}.
[We shall take diameter (∅) = 0].

• An isolated point of a set is a member of the set that is not a limit point of the set.

• A set is perfect if it is nonempty, closed, and has no isolated points.

• A set E ⊂ X is dense in a set E0 ⊂ X if every point in E0 is a limit point of the set E.

• The distance between a point x ∈ X and a nonempty set A ⊂ X is defined as

dist(x,A) = inf{ρ(x, y) : y ∈ A}.
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• The distance between two nonempty sets A, B ⊂ X is defined as

dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}.

• Two nonempty sets A, B ⊂ X are said to be separated if they are a positive distance
apart [i.e., if dist(A,B) > 0].

The last three of these notions play an important role in the discussion in Section 3.2, where
they are discussed in more detail. Here we should note that “dist” is not itself a metric on the
subsets of X since the second condition of Definition 3.1 is violated if A ∩B 6= ∅ but A 6= B.

3.1.2 Borel sets in a metric space

The Borel sets in a metric space are defined in the same manner as on the real line and have
much the same properties. We shall use the following formal definition.

Definition 3.2: Let (X, ρ) be a metric space. The family of Borel subsets of (X, ρ) is the
smallest σ–algebra that contains all the open sets in X.

It is convenient to have other expressions for the Borel sets. The family of Borel sets can be
seen to be the smallest σ–algebra that contains all the closed sets in X. But for some applica-
tions we shall need the following characterization.
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Theorem 3.3: The family of Borel subsets of a metric space (X, ρ) is the smallest class B of
subsets of X with the properties

1. If E1, E2, E3, . . . belong to B, then so too does
⋃∞

i=1Ei.

2. If E1, E2, E3, . . . belong to B, then so too does
⋂∞

i=1Ei.

3. B contains all the closed sets in X.

We can also introduce the transfinite sequence of the Borel hierarchy

G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ Gδσδσ . . .

and

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ Fσδσδ . . . ,

just as we did in Section 1.12. Of these, we would normally not go beyond the second stage or
perhaps the third stage in any of our applications.

3.1.3 Characterizations of the Borel sets

It is useful to describe the class of Borel sets in a narrower manner than that of Theorem 3.3.
For easy reference we include a proof of this variant.1

1This proof has been supplied to us by R. B. Burckel.
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Theorem 3.4: The family of Borel subsets of a metric space (X, ρ) is the smallest class B of
subsets of X with the properties:

1. If E1, E2, E3, . . . belong to B, and are pairwise disjoint then the union
⋃∞

i=1Ei also be-
longs to B.

2. If E1, E2, E3, . . . belong to B, then the intersection
⋂∞

i=1Ei also belongs to B.

3. B contains all the closed sets in X.

Proof. It is clear that the Borel sets form a family with these properties. Thus to prove that
this is a characterization we show that any family B with these three properties must contain
all the Borel sets. We first show that every open set U in X is a member of B. The sets

V = {x ∈ X : 0 < dist(x,X \ U) < 1}

and

F = {x ∈ X : dist(x,X \ U) ≥ 1}

satisfy U = V ∪ F , they are disjoint, and F ∈ B since it is closed. Thus, to prove that U ∈ B, it
is sufficient (because of (i) and (iii)) to prove that V ∈ B.

Consider the function f : X → IR defined by

f(x) = dist(x,X \ V ).

This is continuous and f−1((0, 1)) = V .
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We observe that the open interval (0, 1) in IR can be expressed as a union and intersection
of compact subsets in the following manner:

(0, 1) =
∞⋃

m=1

Km ∪
(

∞⋂

k=1

∞⋃

n=1

Cnk

)

where Km and Cnk are compact subsets of (0, 1) and all unions in the identity are disjoint ones.
(See Exercise 3:1.1.)

Consequently

V = f−1((0, 1)) =
∞⋃

m=1

f−1(Km) ∪
(

∞⋂

k=1

∞⋃

n=1

f−1(Cnk)

)

expresses V in a way that allows us to see that it is a member of B. Here we are using property
(i) for the disjoint unions, property (ii) for the intersections, the continuity of f to ensure that
all the sets f−1(Km) and f−1(Cnk) are closed, and finally property (iii) to ensure that all these
sets are members of B. Hence B contains V , and hence also U .

We now have a family of sets containing all open sets, all closed sets and closed under the
operations (i) and (ii). Exercise 3:1.5 can be used to complete the proof, showing that B con-
tains all Borel sets. �
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Exercises

3:1.1♦ Show that the open interval (0, 1) in IR can be expressed as

(0, 1) =

∞⋃

m=1

Km ∪
( ∞⋂

k=1

∞⋃

n=1

Cnk

)

where Km and Cnk are compact subsets of (0, 1) and all unions in the identity are disjoint ones.

[Hint: Let C be the Cantor ternary set in [0, 1] and let {In} be the open components of the set
(0, 1) \ C. Use first Km = Im. Check that these are disjoint and that

(0, 1) \
∞⋃

m=1

Km = C \ {c1, c2, c3, . . . }

where {ci} is a list of all the “endpoints” of the Cantor set. Fix k and describe how to construct a
disjoint collection of closed subsets {Cnk} of the set C so that

C \ {ck} =

∞⋃

n=1

Cnk.

Finally verify the required identity.]

3:1.2 Prove that in a metric space every closed set is a Gδ.

3:1.3 Prove that in a metric space every open set is an Fσ.

3:1.4 Prove Theorem 3.3.

3:1.5♦ Let C be a class of subsets of a metric space (X, ρ) with the following properties:

(a) If E1, E2, E3, . . . are disjoint and belong to C, then so too does
⋃∞

i=1Ei.

(b) If E1, E2, E3, . . . belong to C, then so too does
⋂∞

i=1Ei.
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(c) C contains all the open sets in X.

Prove that C contains all Borel subsets of X. [Hint: Note that C need not itself be closed under
complementation. But that should suggest a look at the family

C0 = {C : C ∈ C and X \ C ∈ C}.
What properties does C0 have?]

3:1.6 A metric space (X, d) is said to be separable if there exists a countable subset of X that is dense
in X. In a separable metric space, show that there are no more than 2ℵ0 open sets and 2ℵ0 closed
sets.

3:1.7 In a separable metric space, show that there are no more than 2ℵ0 Borel sets. [Hint: Use transfi-
nite induction, the ideas of Section 1.12, and Exercise 3:1.6.]

3.2 Measures on Metric Spaces

We begin our discussion with an example of a Method I construction that produces a measure
badly incompatible with the metric structure of IR2. We use this to draw a number of conclu-
sions. It will give us an insight into the conditions that we might wish to impose on measures
defined on a metric space. It also gives us an important clue as to how Method I should be im-
proved to recognize the metric structure.

Example 3.5: Take X = IR2, let T be the family of open squares in X, and choose as a pre-
measure τ(T ) to be the diameter of T . We apply Method I to obtain an outer measure µ∗ and
then a measure space (IR2,M, µ). What would we expect about the measurability of sets in
T ? Since diameter is essentially a one-dimensional concept, while T consists of two-dimensional
sets, perhaps we expect that every nonempty T has infinite measure.
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T1 T2

T3 T4

T0

Figure 3.1. The square T0.

Let T0 ∈ T have side length 3, and let T1, T2, T3 and T4 be in T , each with side length 1,
and as shown in Figure 3.1. Then τ(T0) = 3

√
2, while τ(Ti) =

√
2 for i = 1, 2, 3, 4. It is easy to

verify that, for all T ∈ T , µ∗(T ) = τ(T ) and that

µ∗

(
4⋃

i=1

Ti

)
≤ µ∗(T0) = 3

√
2 < 4

√
2 =

4∑

i=1

µ∗(Ti).

It follows that none of the sets Ti, i = 1, 2, 3, 4, is measurable. A moment’s reflection shows that
no nonempty member of T can be measurable.

We note two significant features of this example.

1. The squares Ti are not only pairwise disjoint, but they are also separated from each other
by positive distances: if x ∈ Ti, y ∈ Tj , and i 6= j, then the distance between x and y
exceeds 1. As we saw, µ∗ is not additive on these sets. Now we know outer measures are
not additive in general, but for Lebesgue outer measure, if µ∗(A∪B) 6= µ∗(A) +µ∗(B) and
A ∩B = ∅, then the sets A and B are badly intertwined, not separated.
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2. The class M of measurable sets is incompatible with the topology on IR2: open sets need
not be measurable.

Indeed, these two features, we shall soon discover, are intimately linked. If we wish open sets
to be measurable, we must have an outer measure which is additive on separated sets, and con-
versely. We take the latter requirement as our definition of a metric outer measure.

3.2.1 Metric Outer Measures

Recall that in a metric space we use

dist(A,B) = inf{ρ(x, y) : x ∈ A and y ∈ B}
as a measure of the distance between two sets A and B. When A = {x}, we write dist(x,B)
in place of dist({x}, B). Although we call dist(A,B) the distance between A and B, dist is not
a metric on the subsets of X. Recall, too, that if dist(A,B) > 0, then we say that A and B
are separated sets. For example, the sets Ti appearing in Example 3.5 are pairwise separated;
indeed, dist(Ti, Tj) ≥ 1 if i 6= j.

Definition 3.6: Let µ∗ be an outer measure on a metric space X. If

µ∗(A ∪B) = µ∗(A) + µ∗(B)

whenever A and B are separated subsets of X, then µ∗ is called a metric outer measure.

Thus metric outer measures are designed to avoid the unpleasant possibility (i) that we ob-
served for the Method I outer measure µ∗ in our example. In Theorem 3.8 we show that the
second unpleasant possibility of our example cannot occur: Borel sets will always be measurable
for metric outer measures.
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3.2.2 Measurability of Borel sets

The first step in proving that Borel sets are measurable with respect to any outer measure is
supplied by the following lemma, due to Carathéodory.

Lemma 3.7: Let µ∗ be a metric outer measure on X. Let G be a proper open subset of X, let
F = X \G be its complement in X and let A ⊂ G. Let

An = {x ∈ A : dist(x, F ) ≥ 1/n} .
Then

µ∗(A) = lim
n→∞

µ∗(An).

Proof. Recall that F denotes the set complementary to G, which in this case must be closed
since G is open. The existence of the limit follows from the monotonicity of µ∗ and the fact
that {An} is an expanding sequence of sets. Since An ⊂ A for all n ∈ IN, µ∗(A) ≥ limn→∞ µ∗(An).
It remains to verify that

µ∗(A) ≤ lim
n→∞

µ∗(An).

Since G is open, dist(x, F ) > 0 for all x ∈ A, so there exists n ∈ IN such that x ∈ An. It follows
that A =

⋃∞
n=1An.

For each n, let

Bn = An+1 \An =

{
x :

1

n+ 1
≤ dist(x, F ) <

1

n

}
.

Then

A = A2n ∪
∞⋃

k=2n

Bk = A2n ∪
∞⋃

k=n

B2k ∪
∞⋃

k=n

B2k+1.
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Thus

µ∗(A) ≤ µ∗(A2n) +
∞∑

k=n

µ∗(B2k) +
∞∑

k=n

µ∗(B2k+1).

If the series are convergent, then

µ∗(A) ≤ lim
n→∞

µ∗(A2n) = lim
n→∞

µ∗(An),

as was to be proved.
The argument to this point is valid for any outer measure. We now invoke our hypothesis

that µ∗ is a metric outer measure. Suppose that one of the series diverges, say
∞∑

k=1

µ∗(B2k) = ∞. (1)

It follows from the definition of the sets Bk that, for each k ∈ IN,

dist(B2k, B2k+2) ≥ 1

2k + 1
− 1

2k + 2
> 0,

so these sets are separated. Thus

µ∗

(
n−1⋃

k=1

B2k

)
=

n−1∑

k=1

µ∗(B2k). (2)

But A2n ⊃ ⋃n−1
k=1 B2k, so

µ∗(A2n) ≥ µ∗

(
n−1⋃

k=1

B2k

)
. (3)
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Combining (2) and (3), we see that

µ∗(A2n) ≥
n−1∑

k=1

µ∗(B2k).

It follows from our assumption (1) that limn→∞ µ∗(A2n) = ∞, so

lim
n→∞

µ∗(An) ≥ µ∗(A).

Finally, if it is the series
∑∞

k=1 µ
∗(B2k+1) that diverges, the argument is similar. We omit the

details. �

Theorem 3.8: Let µ∗ be an outer measure on a metric space X. Then every Borel set in X is
measurable if and only if µ∗ is a metric outer measure.

Proof. Assume first that µ∗ is a metric outer measure. Since the class of Borel sets is the σ-
algebra generated by the closed sets, it suffices to verify that every closed set is measurable. Let
F be a nonempty closed set and let G = X \ F . Then G is open. We show that F satisfies the
measurability condition of Definition 2.30. Let E ⊂ X, let A = E \ F , and let {An} be the
sequence of sets appearing in Lemma 3.7. Then dist(An, F ) ≥ 1/n for all n ∈ IN, and

lim
n→∞

µ∗(An) = µ∗(E \ F ). (4)

Since µ∗ is a metric outer measure and the sets An are separated from F , we have, for each n ∈
IN,

µ∗(E) ≥ µ∗((E ∩ F ) ∪An) = µ∗(E ∩ F ) + µ∗(An).

From (4) we see that

µ∗(E) ≥ µ∗(E ∩ F ) + µ∗(E \ F ).
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The reverse inequality is obvious. Thus F is measurable.
To prove the converse, assume that all Borel sets are measurable. Let A1 and A2 be sepa-

rated sets, say dist(A1, A2) = γ > 0. For each x ∈ A1, let

G(x) = {z : ρ(x, z) < γ/2},
and let

G =
⋃

x∈A1

G(x).

Then G is open, A1 ⊂ G, and G ∩ A2 = ∅. Since G is measurable, it satisfies the measurability
condition of Definition 2.30 for the set E = A1 ∪A2; that is,

µ∗(A1 ∪A2) = µ∗((A1 ∪A2) ∩G) + µ∗((A1 ∪A2) ∩ F ). (5)

But A1 ⊂ G and G ∩A2 = ∅, so (A1 ∪A2) ∩G = A1 and

(A1 ∪A2) ∩ F = A2,

and (5) becomes

µ∗(A1 ∪A2) = µ∗(A1) + µ∗(A2),

as was to be shown. �

Theorem 3.8 shows that metric outer measures give rise to Borel measures, that is, measures
for which every Borel set is measurable. This does not rule out the possibility that there ex-
ist measurable sets that are not Borel sets. Some authors reserve the term Borel measure for a
measure satisfying rather more. For example, one might wish compact sets to have finite mea-
sure or one might demand further approximation properties. The term Radon measure is also
used in this context to denote Borel measures with special properties relative to the compact
sets.
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Exercises

3:2.1 Let us try to fix the problems that arose in connection with Example 3.5 that began this section.
Let T be the family of half-open squares in (0, 1] × (0, 1] of the form (a, b] × (c, d], b − a = d − c,
together with ∅, and let τ(T ) be the diameter of T . Do the finite unions of elements of T form
an algebra of sets? Can τ be extended to the algebra generated by T so as to be additive on this
algebra? Can we use Theorem 2.41 effectively?

3:2.2 Let X = IR2, let T consist of the half-open intervals

T = (a, b] × (c, d]

in X, and let τ(T ) be the area of T . Let µ∗ be obtained from T and τ by Method I. Prove that µ∗

is a metric outer measure. The resulting measure is called two-dimensional Lebesgue measure.

3.3 Method II

As we have seen, the Method I construction applied in a metric space can fail to produce a
metric outer measure. We now seek to modify Method I in such a manner so as to guarantee
that the resulting outer measure is metric. The modified construction will be called Method II.

Let us return to Example 3.5 involving squares in IR2, with τ(T ) the diameter of the square
T . To obtain µ∗(T ), we observe we can do no better than to cover T with itself. If, for exam-
ple, we cover a square T of side length 1 with smaller squares, say ones of diameter no greater
than 1/n, we find that we need more than n2 squares to do the job, and the estimate for µ∗(T )
obtained from these squares exceeds n

√
2. The smaller the squares we use in the cover of T ,

the larger the estimate for µ∗(T ). We do best by simply taking one square, T , for the cover.
Thus the small squares are irrelevant and play no role in the construction, and yet it is pre-
cisely these that should have an influence on the size of the measure. This is the source of our
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problem. We now present a new method for obtaining measures from outer measures that ex-
plicitly addresses this by forcing the sets of small diameter to be taken into account.

Let T be a covering family on a metric space X. For each n ∈ IN, let

T n = {T ∈ T : diameter (T ) ≤ 1/n} .
Then T n is also a covering family for X for each n ∈ IN. Let τ be a premeasure defined on the
family T . For every n ∈ IN, we construct µ∗n by Method I from T n and τ . Since T n+1 ⊂ T n,

µ∗n+1(E) ≥ µ∗n(E)

for all n ∈ IN and for each E ⊂ X. Thus the sequence {µ∗n(E)} approaches a finite or infi-
nite limit. We define µ∗0 as limn→∞ µ∗n and refer to this as the outer measure determined by
Method II from τ and T .

3.3.1 Method II outer measures are metric outer measures

Our next theorem shows that this process that we have called Method II always gives rise to a
metric outer measure.

Theorem 3.9: Let µ∗0 be the measure determined by Method II from a premeasure τ and a
family T . Then µ∗0 is a metric outer measure.

Proof. We first show that µ∗0 is an outer measure. That µ∗0(∅) = 0, and that µ∗0(A) ≤ µ∗0(B)
if A ⊂ B are immediate. To verify that µ∗0 is countably subadditive, let {Ak} be a sequence of
subsets of X. Since µ∗0(E) ≥ µ∗n(E) for all E ⊂ X and n ∈ IN, we have

µ∗n

(
∞⋃

k=1

Ak

)
≤

∞∑

k=1

µ∗n(Ak) ≤
∞∑

k=1

µ∗0(Ak).
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Thus

µ∗0

(
∞⋃

k=1

Ak

)
= lim

n→∞
µ∗n

(
∞⋃

k=1

Ak

)
≤

∞∑

k=1

µ∗0(Ak).

This verifies that µ∗0 is an outer measure.
It remains to show that if A and B are separated then

µ∗0(A ∪B) = µ∗0(A) + µ∗0(B).

Certainly,

µ∗0(A ∪B) ≤ µ∗0(A) + µ∗0(B),

and so it is enough to establish the opposite inequality. We may assume that µ∗0(A∪B) is finite.
Suppose then that dist(A,B) > 0. Choose N ∈ IN such that dist(A,B) > 1/N . Let ε > 0. For
every n ∈ IN there exists a sequence {Tnk} from T n such that

⋃∞
k=1 Tnk ⊃ A ∪B and

∞∑

k=1

τ(Tnk) ≤ µ∗n(A ∪B) + ε.

Then, for n ≥ N and k ∈ IN, no set Tnk can meet both A and B and hence Tnk ∩ A = ∅ or else
Tnk ∩B = ∅. Let

IN1 = {k ∈ IN : Tnk ∩A 6= ∅}

and

IN2 = {k ∈ IN : Tnk ∩B 6= ∅}.
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Then

µ∗n(A) ≤
∑

k∈IN1

τ(Tnk)

and

µ∗n(B) ≤
∑

k∈IN2

τ(Tnk).

Therefore,

µ∗n(A) + µ∗n(B) ≤
∞∑

k=1

τ(Tnk) ≤ µ∗n(A ∪B) + ε.

Since this is true for every ε > 0, we have, for n ≥ N ,

µ∗n(A) + µ∗n(B) ≤ µ∗n(A ∪B).

Because this holds for all n ≥ N , µ∗0(A)+µ∗0(B) ≤ µ∗0(A∪B). Thus µ∗0 is a metric outer measure.
�

3.3.2 Agreement of Method I and Method II measures

Let us return to Example 3.5. Our previous discussion involving covers of a square T with smaller
squares suggests that µ∗0(T ) = ∞ for every square T . This is, in fact, the case. If T is an open
square with unit side length, µ∗n(T ) = n

√
2. Thus

µ∗0(T ) = lim
n→∞

µ∗n(T ) = ∞.
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A similar argument shows that µ∗0(T ) = ∞ for all T ∈ T . This may be no surprise since we
have used a “one-dimensional” concept (diameter) as a premeasure for a two-dimensional set
T . Recall that the Method I outer measure µ∗ had µ∗(T ) = τ(T ), since we could efficiently
cover T by itself. In this example, small squares cannot cover large squares efficiently, and the
Method I outcome differs from that of Method II. Our next result, Theorem 3.10, shows that if
“small squares can cover large squares efficiently” then the Method I and Method II measures
do agree.

Theorem 3.10: Let µ∗0 be the measure determined by Method II from a premeasure τ and a
family T and let µ∗ be the Method I measure constructed from τ and T . A necessary and suf-
ficient condition that µ∗0 = µ∗ is that for each choice of ε > 0, T ∈ T , and n ∈ IN, there is a
sequence {Tk} from T n such that T ⊂ ⋃∞

k=1 Tk and
∞∑

k=1

τ(Tk) ≤ τ(T ) + ε.

Proof. Necessity is clear. If the condition fails for some ε, T , and n, then µ∗0(T ) > µ∗(T ). To
prove sufficiency, observe first that, since T n ⊂ T for all n ∈ IN,

µ∗ ≤ µ∗n ≤ µ∗0. (6)

To verify the reverse inequality, let A ⊂ X and let ε > 0. We may assume that µ∗(A) < ∞. Let
{Ti} be a sequence of sets from T such that A ⊂ ⋃i=1 Ti and

∞∑

i=1

τ(Ti) ≤ µ∗(A) +
ε

2
. (7)
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Let n ∈ IN. Using our hypotheses, we have, for each i ∈ IN, a sequence {Sik} of sets from T n

covering Ti such that
∞∑

k=1

τ(Sik) ≤ τ(Ti) +
ε

2i+1
. (8)

Now A ⊂ ⋃∞
i=1

⋃∞
k=1 Sik, so by (7) and (8) we have

µ∗n(A) ≤
∞∑

i=1

∞∑

k=1

τ(Sik) ≤
∞∑

i=1

[
τ(Ti) +

ε

2i+1

]
≤ µ∗(A) + ε.

Since ε is arbitrary, µ∗n(A) ≤ µ∗(A). This is true for every n ∈ IN, so

µ∗0(A) = lim
n→∞

µ∗n(A) ≤ µ∗(A). (9)

From (6) and (9), we see that µ∗ = µ∗0. �

Corollary 3.11: Under the hypotheses of Theorem 3.10, Method I results in a metric outer
measure.

Method II also has a regularity result identical to Theorem 2.37. We leave the details as
Exercise 3:3.4.

Theorem 3.12: Let µ∗0 be constructed from T and τ by Method II. If all members of T are
measurable, then µ∗0 is regular. In particular, if each T ∈ T is an open set, the measurable
covers can be chosen to be Borel sets of type Gδ.
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Exercises

3:3.1 In the proof of Theorem 3.9, verify that µ∗
0(∅) = 0 and µ∗

0(A) ≤ µ∗
0(B) if A ⊂ B.

3:3.2 Let T consist of ∅ and the open intervals in X = (−1, 1), and let τ((a, b)) = |b2 − a2|. Apply
Method I to obtain µ∗ and Method II to obtain µ∗

0.

(a) Determine the class of µ∗-measurable sets.

(b) Calculate µ∗((0, 1)) and µ∗
0((0, 1)).

3:3.3 Let X = IR, T consist of ∅ and the open intervals in IR. Let τ(∅) = 0 and let τ((a, b)) = (b −
a)−1 for all other (a, b) ∈ T . Let µ1 and µ2 be the measures obtained from T and τ by Methods I
and II, respectively.

(a) Show that µ1(E) = 0 for all E ⊂ X.

(b) Show that µ2(E) = ∞ for every nonempty set E ⊂ X.

Note τ(T ), µ1(T ), and µ2(T ) are all different in this example. While Method I always results in
µ∗(T ) ≤ τ(T ), this inequality is not valid in general when Method II is used. We had already seen
this in our example with squares.

3:3.4 Prove Theorem 3.12.

3:3.5 Verify that in Theorem 3.12, if we do not assume that the sets in T are measurable, we can still
conclude that each set A ⊂ X with finite measure has a cover in T σδ. (Compare with Exer-
cise 2:10.8.)
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3.4 Approximations

In most settings the measure of a measurable set can be approximated from inside or outside by
simpler sets, perhaps open sets or Gδ sets, as we were able to do on IR with Lebesgue measure.
By the use of Theorems 2.36 and 3.12, one can obtain such approximations from sets that were
used in the first place to construct the measure. The approximation theorem that follows is of a
different sort, however, in that it does not involve Methods I or II, or outer measures. We show
how to approximate the measure of any Borel set first from inside by closed sets and then from
outside by open sets for any Borel measure. Recall that for µ to be a Borel measure requires
merely that µ be a measure whose σ–algebra of measurable sets includes all Borel sets.

3.4.1 Approximation from inside

The first approximation theorem asserts conditions under which we can be sure of approximat-
ing the measure of a Borel set by using a closed subset of the Borel set.

Theorem 3.13: Let X be a metric space, µ a Borel measure on X, ε > 0 and B0 a Borel set
with µ(B0) <∞. Then B0 contains a closed set F for which µ(B0 \ F ) < ε.

Proof. We assume first that µ(X) < ∞ and show that all Borel sets have the stated prop-
erty. Let E consist of those sets E ⊂ X that have the property that for any γ > 0 there is a
closed subset K of E for which µ(E \K) < γ. We claim that every Borel set B ⊂ X is a mem-
ber of E .

We show that E contains the closed sets and that it is closed under countable unions and
closed under countable intersections. By Theorem 3.3, it follows that E must contain all the
Borel sets.
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It is clear that E contains the closed sets. Suppose now that E1, E2, . . . belong to E . There
must exist closed sets Ki ⊂ Ei with µ(Ei \Ki) < ε2−i. We get immediately that

µ

(
∞⋂

i=1

Ei \
∞⋂

i=1

Ki

)
≤ µ

(
∞⋃

i=1

(Ei \Ki)

)
<

∞∑

i=1

ε2−i = ε.

Since
⋂∞

i=1Ki is a closed subset of
⋂∞

i=1Ei, we see that the intersection of the sequence {Ei}
belongs to E .

The union can be handled similarly but requires an extra step, since countable unions of
closed sets are not necessarily closed. Note that

lim
n→∞

µ

(
∞⋃

i=1

Ei \
n⋃

i=1

Ki

)
= µ

(
∞⋃

i=1

Ei \
∞⋃

i=1

Ki

)

≤ µ

(
∞⋃

i=1

(Ei \Ki)

)
<

∞∑

i=1

ε2−i = ε.

(It is here that we are using the finiteness assumption, since to invoke the limit requires Theo-
rem 2.21.) Thus, for sufficiently large n, we must have

µ

(
∞⋃

i=1

Ei \
n⋃

i=1

Ki

)
< ε,

and this set,
⋃n

i=1Ki, is a closed subset of
⋃∞

i=1Ei.
To complete the proof we need to address the case µ(X) = ∞. Define a new measure µ0 by

setting µ0(E) = µ(Bo ∩ E) for all E ⊂ X. Then µ0 is a finite Borel measure on X. By what we
have just proved, all Borel sets can be approximated from inside by closed sets. In particular,
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there is a closed set F ⊂ B0 for which µ0(B0 \ F ) < ε. Since µ0(B0 \ F ) = µ(B0 \ F ) we are
done. �

We mention that the discussion following Theorem 3.20 will show that the σ-algebra E in
the proof just given need not consist of all measurable sets. See also Exercise 3:6.3. We now
turn to the approximation from the outside by open sets.

3.4.2 Approximation from outside

The second approximation theorem asserts conditions under which we can be sure of approxi-
mating the measure of a Borel set by using a larger open set that contains the Borel set.

Theorem 3.14: Let X be a metric space, µ a Borel measure on X, ε > 0, and B a Borel set.
If µ(X) < ∞ or, more generally, if B is contained in the union of countably many open sets Oi

each of finite µ-measure, then B is contained in an open set G with µ(G \B) < ε.

Proof. This theorem follows from the preceding. Choose each closed set Ci ⊂ Oi \B in such a
way that

µ ((Oi \ Ci) \B) = µ ((Oi \B) \ Ci) < ε2−i.

Here B ∩Oi is a subset of the open set Oi \ Ci. Define

G =
∞⋃

i=1

(Oi \ Ci).

Then G is open, G contains B, and µ(G \B) < ε. �

For reference let us put the two theorems together to derive a corollary, valid in spaces of
finite measure.
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Corollary 3.15: Let X be a metric space and µ a Borel measure with µ(X) < ∞. For every
ε > 0 and every Borel set B, there is a closed set F and an open set G such that

F ⊂ B ⊂ G,

with

µ(B) − ε < µ(F ) ≤ µ(B) ≤ µ(G) < µ(B) + ε.

3.4.3 Approximation using Fσ and Gδ sets

From these two theorems we easily derive a further approximation theorem that uses slightly
larger classes of sets than the open and closed sets.

Theorem 3.16: Let X be a metric space, and µ a Borel measure on X such that µ(X) is fi-
nite. Then every Borel set B ⊂ X has a subset K of type Fσ and a superset H of type Gδ, such
that

µ(K) = µ(B) = µ(H).

In terms of the language of Exercise 2:1.14, every Borel set in X has a measurable cover of
type Gδ and a measurable kernel of type Fσ. The requirement that µ(X) < ∞ in the statement
of Theorem 3.16 cannot be dropped. See Exercise 3:4.3.

Corollary 3.15 and Theorem 3.16 involve approximations of Borel sets by simpler sets. If
we know that measurable sets can be approximated by Borel sets, then the conclusions of 3.15
and 3.16 can be sharpened. For example, under the hypotheses of Theorem 3.12, if T consists
of Borel sets, every measurable set M has a cover H ∈ B. If µ(X) < ∞, H has a cover H ′

of type Gδ. Thus H ′ is a cover for M as well. If one wished, one could combine the hypotheses
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of 3.12, 3.15, and 3.16 suitably to obtain various results concerning approximations of measur-
able sets by Borel sets, sets of type Gδ, open sets, and so on.

Exercises

3:4.1 Prove Theorem 3.14 in the simplest case where µ(X) <∞.

3:4.2 Prove Theorem 3.16.

3:4.3 Let B denote the Borel sets in IR. Recall that part of the Baire category theorem for IR that as-
serts that a set of type Gδ that is dense in some interval cannot be expressed as a countable union
of nowhere dense sets. For E ∈ B, let µ(E) = λ(E) if E is a countable union of nowhere dense
sets, µ(E) = ∞ otherwise. Show that (IR,B, µ) is a measure space for which the conclusion of
Theorem 3.16 fails.

3:4.4 Let µ be a finite Borel measure on a metric space X. Prove that, for every Borel set B ⊂ X,

µ(B) = inf {µ(G) : B ⊂ G, G open}

and

µ(B) = sup{µ(F ) : F ⊂ B, F closed}.

3.5 Construction of Lebesgue–Stieltjes Measures

The most important class of Borel measures on IRn are those that are finite on bounded sets.
Often these are called Lebesgue–Stieltjes measures after the Dutch mathematician, T. J. Stiel-
tjes (1856–1894), whose integral (see Section 1.19) played a key role in the development of mea-
sure theory by J. Radon (1887–1956) in the second decade of the last century. For the same
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reason, they have also been called Radon measures. Certain of the Hausdorff measures that we
discuss in Section 3.8 are, in contrast, examples of important Borel measures that are infinite
on every open set.

Lebesgue–Stieltjes measures are Borel measures in IRn that can serve to model mass distri-
butions. Some previews can be found in Example 2.10 and Exercises 2:2.14, 2:9.2, and 2:10.7.
We can now use the machinery we have developed to obtain such models rigorously and com-
patibly with our intuition. We consider the one-dimensional situation in detail here and then
outline the construction for IRn in Section 3.7.

Suppose, for each x ∈ IR, that we know the mass of intervals of the form (0, x] or of the
form (x, 0] and that all such masses are finite. Let

f(x) =





mass (0, x], if x > 0;
0, if x = 0;

−mass (x, 0], if x < 0.
(10)

Then f is a nondecreasing function on IR. While f need not be continuous, we require f to be
right continuous. Since monotonic functions have left and right limits at every point, this just
fixes the value of f at its countably many points of discontinuity in a particular way.

We now carry out a program similar to the one we outlined in Exercise 2:13.4. Here we are
dealing with intervals in IR, rather than in IR2. Let T consist of the half-open intervals of the
form (a, b], the empty set, and the unbounded intervals of the form (−∞, b] and (a,∞). For a
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premeasure τ : T → [0,∞], we shall use

τ(T ) =





0, if T = ∅;
f(b) − f(a), if T = (a, b];
f(b) − lima→−∞ f(a), if T = (−∞, b];
limb→∞ f(b) − f(a), if T = (a,∞).

(11)

The limits involved exist, finite or infinite, because f is nondecreasing.
Continuing the program, we let T 1 be the algebra generated by T . One sees immediately

that T 1 consists of all finite unions of elements of T . We wish to extend the premeasure τ to an
additive function τ1 : T 1 → [0,∞]. For T ∈ T 1, write

T = T1 ∪ T2 ∪ · · · ∪ Tn,

with Ti ∈ T for each i = 1, . . . , n, and Ti ∩ Tj = ∅ if i 6= j. We “define”

τ1(T ) = τ(T1) + τ(T2) + · · · + τ(Tn). (12)

The quotes indicate that we must verify that (12) is unambiguous. (Recall our example of squares
in Section 3.2 when τ was the diameter of the square.)

3.17: The set function τ1 is well defined on T 1.

Proof. Consider first the case that T ∈ T . Let

T = (a, b] =
n⋃

i=1

(ai, bi]
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with a1 = a, bn = b, and ai+1 = bi for all i = 1, . . . , n− 1. Thus

τ((a, b]) = f(b) − f(a) =
n∑

i=1

(f(bi) − f(ai)) =
n∑

i=1

τ((ai, bi]).

A similar argument shows that if an unbounded interval T ∈ T is decomposed into finitely
many members of T then (12) holds. Finally, any T ∈ T 1 is a finite union of members of T .
These members can be appropriately combined, if necessary, to become a disjoint collection

{(ai, bi]} n
i=1 with bi < ai+1. (13)

Here it is possible that a1 = −∞ or bn = ∞. Suppose that T is decomposed into a finite dis-
joint union of sets in T , say T =

⋃m
j=1 Tj . Let

Ai = {j : Tj ⊂ (ai, bi]}.
Then, (ai, bi] =

⋃
j∈Ai

Tj . We have already seen that, for all i = 1, . . . , n,

τ((ai, bi]) =
∑

j∈Ai

τ(Tj).

Since any representation of T as a finite disjoint union of members of T heads to the same col-
lection (13), the sum in (12) does not depend on the representation for T . �

Because of Theorem 2.41, we now know that an application of Method I would lead to a
measure space in which every member of T is measurable. This implies that every Borel set is
measurable. To see this, note that an open interval is a countable union of half-open intervals,

(a, b) =

∞⋃

n=1

(a, bn],
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where a < b1 < b2 < · · · < b and limn→∞ bn = b. It follows from Theorem 3.8 that µ∗

is a metric outer measure. From Theorem 2.37 we see that µ∗ is also regular and from Exer-
cise 2:10.8 that each set A ⊂ IR has a Borel set B as a measurable cover. It now follows read-
ily from Theorem 3.16 that B can be taken to be of type Gδ (left as Exercise 3:5.1). What we
do not yet know is that the members of T 1, or even of T , have the right measure; that is, that
µ∗(T ) = τ(T ). To obtain this result, it suffices to show that τ1 is σ-additive on T 1. We can
then invoke Theorem 2.43.

3.18: The set function τ1 is σ-additive on T 1.

Proof. To show that τ1 is σ-additive on T 1, we must show that, if {Tn} is a sequence of pair-
wise disjoint sets in T 1 whose union T is also in T 1, then

τ1(T ) =
∞∑

n=1

τ1(Tn).

Observe that it is sufficient to consider only the case that T is a single interval, either a finite
half-open interval (a, b], an infinite interval (−∞, b], or an infinite interval (a,∞). Every other
set in T 1 is a finite disjoint union of intervals of these three types.

We address only the case where T = (a, b], a bounded interval; the other cases can be han-
dled similarly. For finite additivity, our work was simplified by the fact that if (a, b] =

⋃n
i=1(ai, bi],

with the sets {(ai, bi]} pairwise disjoint,

f(b) − f(a) =

n∑

i=1

(f(bi) − f(ai)),

because the intervals must form a partition of (a, b].
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This telescoping of the sum is not always possible when dealing with an infinite decompo-
sition of the form (a, b] =

⋃∞
i=1(ai, bi] with the sets {(ai, bi]} pairwise disjoint. For example,

consider

(−1, 1] = (−1, 0] ∪
∞⋃

n=1

(
(n+ 1)−1, n−1

]
.

Here 0 is a right endpoint of an interval in the collection, but not a left endpoint of any other
interval. It is still true that

f(1) − f(−1) = f(0) − f(−1) +
∞∑

n=1

[
f(n−1) − f((n+ 1)−1)

]
,

but this requires handling right-hand limits at 0. In general, if for some i ∈ IN, bi is a limit
point of the set {aj}∞j=1, then bi 6= aj for any j ∈ IN. Thus we do not get the cancelations
from which we benefited when we had telescoping sums. Moreover, there can be infinitely many
points of this type to handle. Note that it is only the right endpoints that have this feature.

Let us look at the situation in some detail. Let A = {ai} and B = {bi}. Then A ⊂ B ∪
{a}, but B is not necessarily contained in A. A simple diagram can illustrate that B \ A can be
infinite. Now

[a, b] =
⋃

(ak, bk) ∪B ∪ {a}.
It follows that B ∪ {a} is a countable closed set. Let J0 = [f(a), f(b)] and, for k ∈ IN, let Jk =
[f(ak), f(bk)]. Since f is nondecreasing,

⋃∞
k=1 Jk ⊂ J0, and the intervals Jk have no interior

points in common. Because f is right continuous at x = a,

J0 ⊂
∞⋃

k=1

Jk ∪ f(B) ∪ {f(a)}.
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B is countable, so f(B) is also countable, and hence

λ(f(B) ∪ {f(a)}) = 0,

where, as usual, λ denotes the Lebesgue measure. It follows that
∞∑

k=1

(f(bk) − f(ak)) = λ

(
∞⋃

k=1

Jk

)
≤ λ(J0)

≤ λ

(
∞⋃

k=1

Jk ∪ f(B) ∪ {f(a)}
)

=
∞∑

k=1

λ(Jk) =
∞∑

k=1

(f(bk) − f(ak)).

Thus f(b) − f(a) = λ(J0) =
∑∞

k=1(f(bk) − f(ak)), so that

τ1((a, b]) =
∞∑

k=1

τ1((ak, bk])

as required. �

We have now completed the program. We can finally conclude that an application of Method I
will give rise to an outer measure µ∗f and then to a measure space (X,Mf , µf ) with

µf ((a, b]) = f(b) − f(a).

We call µf the Lebesgue–Stieltjes measure with distribution function f . We shall also use such
phrases as µf is the measure “induced by” f or “associated with” f . Observe that for c ∈ IR
the function f + c can also serve as a distribution function for µf . When dealing with finite
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Lebesgue–Stieltjes measures, it is often convenient to choose f so that limx→−∞ f(x) = 0.
Moreover, when all the measure is located in some interval I, it may be convenient merely to
specify f only on I itself (as, for example, we do in Exercise 3:5.5). Technically, this amounts to
extending f to all of IR in such a way that µf (IR \ I) = 0. (Such an extension would be required
for Exercise 3:13.5.)

Example 3.19: A probability space is a measure space of total measure 1. If X = IR, the dis-
tribution function can be chosen so that limx→−∞ f(x) = 0 and will then satisfy limx→∞ f(x) =
1. For a measurable set A, µf (A) represents the probability that a random variable lies in A.
As a concrete example, if φ is the standard normal density (bell-shaped curve),

φ(x) =
1√
2π
e−

1
2
x2

(−∞ < x <∞),

then
∫∞
−∞ φ (x) dx = 1, and one can take f(x) =

∫ x
−∞ φ (t) dt as an associated distribution

function.
In the setting of probability, the “mass” of a Borel set A is interpreted as the probability

of the “event” A occurring. Thus the probability that a standard normal random variable Z
satisfies a < Z ≤ b is

Pr(a < Z ≤ b) = f(b) − f(a) =

∫ b

a
φ (x) dx.

More generally, for any Borel set A we would have

Pr(Z ∈ A) = µf (A) =

∫

A
φ(x) dx,

where the integral must be interpreted in the Lebesgue sense. (We will have to wait until Chap-
ter 5 for this.)
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Exercises

3:5.1 Prove that, for any Lebesgue–Stieltjes measure µ, every A ⊂ X has a measurable cover of type Gδ

and a measurable kernel of type Fσ.

3:5.2 Use Theorems 3.9 and 3.10 to give another proof that a Lebesgue–Stieltjes outer measure µ∗
f is a

metric outer measure.

3:5.3 Let

f(x) =





0, if x < 0;
1, if 0 ≤ x < 1;
2, if x ≥ 1.

Show that µf ((0, 1)) < µf ((0, 1]) < µf ([0, 1]).

3:5.4 Let X = IR and

µ(A) =

{
n, if card A ∩ IN = n;
∞, if A ∩ IN is infinite.

Construct a distribution function f such that µf = µ.

3:5.5 Let f be the Cantor function, and let µf be the associated Lebesgue–Stieltjes measure. Calculate
µf ((1

3 ,
2
3 )) and µf ((K ∩ ( 2

9 ,
1
3 )), where K is the Cantor ternary set.

3:5.6 Let µf be a Lebesgue–Stieltjes measure. Show that

µf ((a, b)) = lim
x→b−

(f(x) − f(a))

and calculate µf ({b}).

3:5.7♦ The term Lebesgue–Stieltjes measure is often used to apply to what would more properly be
called a “Lebesgue–Stieltjes signed measure.”
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(a) What should we mean by a Lebesgue–Stieltjes signed measure associated with a function f
that is not nondecreasing? [Hint: If f = f1 − f2 where f1 and f2 are nondecreasing what
should one use?]

(b) Let

f(x) =





1, if x < −1;
x2, if −1 ≤ x ≤ 1;
1, if 1 < x.

Let µf be the associated Lebesgue–Stieltjes measure. Calculate the Jordan decomposition for
the signed measure µf , and compute

µf ((−1, 1)) and V (µf , (−1, 1)).

(c) Let f : [a, b] → IR be a function of bounded variation and let

F (x) = V (f ; [a, x]) (a ≤ x ≤ b)

be its total variation function. What is the relation between the Lebesgue-Stieltjes measure
for F and the signed Lebesgue-Stieltjes measure for f? [Hint: Compare |µf | and µF .]

[Note that functions of bounded variation give rise to Lebesgue–Stieltjes signed measures via their
decomposition into a difference of two nondecreasing functions.]

3:5.8♦ Let (X,M, µ) be a measure space. A set A ∈ M is called an atom if µ(A) > 0 and for all mea-
surable sets B ⊂ A, µ(B) = 0 or µ(A \B) = 0. (See Exercise 2:14.7.)

(a) Give an example of a space (IR,M, µ) for which [0, 1] is an atom.

(b) Let (IR,Mf , µf ) be a Lebesgue–Stieltjes measure space. Prove that, if A is an atom in this
space, A contains a singleton atom with the same measure. That is, there exists a ∈ A for
which µf ({a}) = µf (A). One also uses the term “point mass” to describe a singleton atom of
µf .
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(c) A measure µ is nonatomic if there are no atoms. Prove that a Lebesgue–Stieltjes measure is
nonatomic if and only if its distribution function is continuous.

3.6 Properties of Lebesgue–Stieltjes Measures

We investigate now some of the important properties of Lebesgue–Stieltjes measures in one di-
mension. The first theorem provides a sense of the generality of such measures.

Theorem 3.20: Let f be nondecreasing and right continuous on IR. Let µ∗f be the associated
Method I outer measure, and let (IR,Mf , µf ) be the resulting measure space. Then

1. µ∗f is a metric outer measure and thus all Borel sets are µ∗f -measurable.

2. If A is a bounded Borel set, then µf (A) <∞.

3. Each set A ⊂ IR has a measurable cover of type Gδ.

4. For every half-open interval (a, b], µf ((a, b]) = f(b) − f(a).

Conversely, let µ∗ be an outer measure on IR with (X,M, µ) the resulting measure space. If
conditions (i), (ii), and (iii) are satisfied by µ∗ and µ, then there exists a nondecreasing, right-
continuous function f defined on IR such that µ∗f (A) = µ∗(A) for all A ⊂ IR. In particular,
µf (A) = µ(A) for all A ∈ M.

Proof. Most of the proof of the first half of the theorem is contained in our development.
The converse direction needs some justification, since our concept of “mass” was not made pre-
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cise. Define f on IR by

f(x) =





µ((0, x]), if x > 0;
0, if x = 0;

−µ((x, 0]), if x < 0.

It is clear that f is nondecreasing. To verify that f is right continuous, let x ∈ IR and let {δn}
be a sequence of positive numbers decreasing to zero. Suppose, without loss of generality, that
x > 0. Then

(0, x] =
∞⋂

n=1

(0, x+ δn].

Since µ((0, x+ δ1]) <∞ by (ii), we see from Theorem 2.21, part (ii), that

µ((0, x]) = lim
n→∞

µ((0, x+ δn]),

that is, f(x) = limn→∞ f(x+ δn), and f is right continuous.
To show that µ∗f = µ∗, we proceed in stages. We start by showing agreement on half-open

intervals, then open intervals, open sets, bounded Gδ sets, bounded sets, and finally arbitrary
sets.

First, it follows from the definition of f that

µf ((a, b]) = µ((a, b])

for every finite half-open interval (a, b]. Next, observe that, since both µ and µf are σ-additive,
and every open interval is a countable disjoint union of half-open intervals, µ(G) = µf (G) for
every open interval G. This extends immediately to all open sets G. Now let H be any bounded
set of type Gδ. Write H =

⋂∞
n=1Gn, where {Gn} is a decreasing sequence of bounded open sets.

That the sequence {Gn} can be chosen decreasing follows from the fact that the intersection of
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a finite number of open sets containing H is also an open set containing H. Since µf (Gn) =
µ(Gn) for every n ∈ IN, it follows from (ii) and Theorem 2.21, part (ii), that µf (H) = µ(H).
Thus µf and µ agree on all bounded sets of type Gδ. (We needed these sets to be bounded so
that we could apply the limit theorem.)

Now let A be any bounded subset of IR. By (iii), there exist sets H1 and H2 of type Gδ such
that H1 ⊃ A, H2 ⊃ A, µf (H1) = µ∗f (A), and µ(H2) = µ∗(A). Let H = H1 ∩H2. Then A ⊂ H.
It follows that

µ∗f (A) = µ(H) = µ∗(A).

Finally, let A be any subset of IR. For n ∈ IN, let

An = A ∩ [−n, n].

Then µ∗f (An) = µ∗(An). Since both µ∗f and µ∗ are regular outer measures, we obtain

µ∗f (A) = lim
n→∞

µ∗f (An) = lim
n→∞

µ∗(An) = µ∗(A)

from Exercise 2:10.2. �

3.6.1 How regular are Borel measures?

We should add here a word about regularity of Borel measures. One might expect, given the
nice approximation properties of Borel measures, that in any setting in which the Borel sets are
measurable one would find a Borel regular measure. This is not the case; a Borel measure may
behave quite weirdly on the non-Borel sets. Our next example gives such a construction that
shows in particular that condition (iii) in Theorem 3.20 cannot be dropped.

Example 3.21: Let (IR,M, µ) be an extension of Lebesgue measure λ to a σ-algebra larger

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



220 Metric Outer Measures Chapter 3

than L. (See Exercise 3:13.13.) Thus L is a proper subset of M, and µ = λ on L. Let A ∈ M,
and suppose that A is bounded, say A ⊂ I = [a, b]. Suppose further that A and I \ A have
Borel covers with respect to µ. Let H1 and H2 be such covers. Thus A ⊂ H1, I \ A ⊂ H2,
µ(H1) = µ(A), and µ(H2) = µ(I \ A). We may assume that H1 and H2 are also λ∗-covers of A
and I \ A, respectively, since we could intersect H1 and H2 with such Borel covers. Since µ = λ
on L,

µ(A) = µ(H1) = λ(H1) = λ∗(A)

and

µ(I \A) = µ(H2) = λ(H2) = λ∗(I \A).

Then

µ(I) = µ(A) + µ(I \A) = λ∗(A) + λ∗(I \A).

We see from the regularity of λ∗ that A ∈ L. It follows that there are µ-measurable sets A
without Borel covers: if A ⊂ B ∈ B, then µ(B) > µ(A).

We can apply this discussion to the converse part of Theorem 3.20 to show that the regu-
larity condition (iii) cannot be dropped. Let us first apply the machinery of Theorem 2.45. We

arrive at the complete measure space (IR,M̂, µ̂). It is clear that µ̂ is a Borel measure that is fi-

nite on bounded Borel sets, but not every A ∈ M̂ has a Borel cover with respect to µ̂. We show
that there is no nondecreasing, right-continuous function f such that

µf = µ̂ on M̂. (14)

Thus, for all such functions, µ∗f 6= µ∗.

Suppose, by way of contradiction, that there is a function f so that µf = µ̂ on M̂. Since
µ̂ = λ on L, the function f must be of the form f(x) = x+ c, c ∈ IR. Otherwise, there would be
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an interval (a, b] such that

µf ((a, b]) = f(b) − f(a) 6= b− a = λ((a, b]).

It follows that µf is Lebesgue measure. But M̂ contains sets that are not Lebesgue measurable,

so µf is not defined on all of M̂, contradicting (14).

3.6.2 A characterization of finite Borel measures on the real line

We do, however, have the following theorem that illustrates the generality of Lebesgue–Stieltjes
measures. In particular, every finite Borel measure on IR agrees with some Lebesgue–Stieltjes
measure on the class of Borel sets. This is of interest in certain disciplines, such as probability,
in which measure space models have finite measure. See Exercise 3:13.4 for an improvement of
Theorem 3.22.

Theorem 3.22: Let µ be a Borel measure on IR with µ(B) <∞ for every bounded Borel set B.
Then there exists a nondecreasing, right-continuous function f such that µf (B) = µ(B) for ev-
ery Borel set B ⊂ IR.

Proof. We leave the proof as Exercise 3:6.1. �

3.6.3 Measuring the growth of a continuous function on a set

Let us return to Theorem 3.20. From condition (iv) we see that

µf ((a, b]) = f(b) − f(a)

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



222 Metric Outer Measures Chapter 3

for every half-open interval (a, b]. If f is continuous, µf ({x}) = 0 for all x ∈ IR (see Exer-
cise 3:5.8), and the four intervals with endpoints a and b have the same µf -measure. We can
interpret that measure as the “growth” of f on the interval:

µf (I) = λ(f(I)).

If one replaces the intervals by arbitrary sets E, one might expect µ∗f (E) = λ∗(f(E)); the outer
measure of E is the amount of “growth” of f on E. This is, in fact, the case.

Theorem 3.23: Let f be continuous and nondecreasing on IR, and let µ∗f be the associated
Lebesgue–Stieltjes outer measure. For every set E ⊂ IR,

µ∗f (E) = λ∗(f(E)).

Proof. Let E ⊂ IR and let ε > 0. Cover E with a sequence of intervals {(an, bn]} so that
∞∑

n=1

(f(bn) − f(an)) ≤ µ∗f (E) + ε.

Let Jn = f((an, bn]). Since f is continuous and nondecreasing, each interval Jn has endpoints
f(an) and f(bn). Now

f(E) ⊂
∞⋃

n=1

Jn

so,

λ∗(f(E)) ≤ λ∗

(
∞⋃

n=1

Jn

)
≤

∞∑

n=1

(f(bn) − f(an)) ≤ µ∗f (E) + ε.
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Since ε is arbitrary,

λ∗(f(E)) ≤ µ∗f (E). (15)

To prove the reverse inequality, let G be an open set containing f(E) so that

λ(G) ≤ λ∗(f(E)) + ε.

Let {Jn} be the sequence of open component intervals of G. For each n ∈ IN, let In = f−1(Jn).
Since f is continuous, each In is open and, since f is nondecreasing, In is an interval. It is clear
that E ⊂ ⋃∞

n=1 In. Thus, for In = (an, bn), we have

µ∗f (E) ≤ µf

(
∞⋃

n=1

In

)
≤

∞∑

n=1

µf (In)

=
∞∑

n=1

(f(bn) − f(an)) =
∞∑

n=1

λ(Jn) = λ(G) ≤ λ∗(f(E)) + ε.

Since ε is arbitrary,

µ∗f (E) ≤ λ∗(f(E)). (16)

The desired conclusion follows from (15) and (16). �

The hypothesis that f be continuous is essential in the statement of Theorem 3.23. Exer-
cise 3:6.4 provides a version that handles discontinuities.

Exercises

3:6.1 Prove Theorem 3.22. [Hint: Follow the proof of Theorem 3.20 to the point that a measurable
cover of type Gδ is not available.]
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3:6.2 Give an example of a σ-finite measure µ on the Borel sets in IR for which no Lebesgue–Stieltjes
measure agrees with µ on the Borel sets. [Hint: Let µ({x}) = 1 for all x ∈ Q.]

3:6.3 Show that there exists a measure space (X,M, µ) with µ(X) < ∞ and all Borel sets measurable,
which also meets the following condition. There exists a measurable set M and an ε > 0 such that
if G is open and G ⊃ M then µ(G) > µ(M) + ε. Compare with Corollary 3.15. [Hint: See the
discussion following Theorem 3.20.]

3:6.4 Let f be nondecreasing, and let µf denote its associated Lebesgue–Stieltjes measure.

(a) Prove that the set of atoms of µf is at most countable.

(b) Let A be the set of atoms of µf . Prove that, for every E ⊂ X,

µ∗
f (E) = λ∗(f(E)) +

∑

a∈A∩E

µf ({a}).

[Hint: See Exercise 3:5.8 and Theorem 3.23.]

3.7 Lebesgue–Stieltjes Measures in IRn

We turn now to a brief, simplified discussion of Lebesgue–Stieltjes measures in n-dimensional
Euclidean space IRn. As before, we are interested in Borel measures that assume finite values
on bounded sets.

For ease of exposition, we limit our discussion to the case n = 2. We wish to model a mass
distribution or probability distribution on IR2. As a further concession to simplification, let us
assume finite total mass, all contained in the half-open square

T0 = (0, 1] × (0, 1] = {(x1, x2) ∈ IR2 : 0 < x1 ≤ 1, 0 < x2 ≤ 1}.
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Let T denote the family of half-open intervals (a1, b1] × (a2, b2] contained in T0; that is, sets of
the form

(a, b] = {(x1, x2) : 0 < a1 < x1 ≤ b1 ≤ 1, 0 < a2 < x2 ≤ b2 ≤ 1},
where a = (a1, a2), b = (b1, b2). Since ∅ = (a, a] for any a ∈ T0, ∅ ∈ T .

Suppose now that for all b ∈ T0 we know the mass “up to b”; more precisely, we have a
function f : T0 → IR such that f(b) represents the mass of (0, b]. We wish to obtain τ from f
as we did in the one-dimensional setting. This will provide a means of measuring our primitive
notion of mass. Since two or more intervals can be pieced together to form a single interval, τ
must be additive on such intervals. We achieve this in the following way. Let T = (a, b] ∈ T .
Two of the corners of T are a = (a1, a2) and b = (b1, b2). The other two corners are (a1, b2) and
(b1, a2). Define a premeasure τ on the covering family T by

τ(T ) = f(b1, b2) − f(a1, b2) − f(b1, a2) + f(a1, a2). (17)

Figure 3.2 illustrates.
We can now proceed as we did before. We extend τ to the algebra T 1 generated by T . This

algebra consists of all finite unions of half-open intervals contained in T0. We then extend τ to
τ1 by additivity and verify that τ1 is actually σ-additive on T 1. The ideas are the same as those
in the one-dimensional case, but the details are messy. Method I leads to a metric outer mea-
sure µ∗f , and each A ⊂ T0 has a measurable cover of type Gδ. Furthermore, every interval (a, b]
is measurable, and

µf ((a, b]) = τ((a, b]),

with τ((a, b]) as given in (17).
In our preceding discussion, we chose the function f to satisfy our intuitive notion of “the

mass up to b.” Suppose that we turn the problem around. We ask which functions f can serve
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T0

T

a1 b1

a2

b2

Figure 3.2. Define τ(T ) = f(b1, b2) − f(a1, b2) − f(b1, a2) + f(a1, a2).

as such distributions. In the one-dimensional case, it sufficed to require that f be nondecreas-
ing and right continuous. The monotonicity of f guaranteed that µf be nonnegative, and right
continuity followed from Theorem 2.21 and the equality

(0, x] =
⋂

δ>0

(0, x+ δ].

In the present setting, f must lead to τ(T ) ≥ 0 in expression (17). This replaces the mono-
tonicity requirement in the one-dimensional case. Right continuity is needed for the same rea-
son that it is needed in one dimension. Here this means right continuity of f in each variable
separately.

Exercises 3:7.1 to 3:7.3 provide illustrations of Lebesgue–Stieltjes measures on T0.
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Exercises

3:7.1 Let f be defined on T0 by

f(x, y) =

{
x
√

2, for y > x;

y
√

2, for y ≤ x.

Let µf be the associated Lebesgue–Stieltjes measure. Prove that for every Borel set B ⊂ T0,

µf (B) = λ(B ∩ L),

where L is the line with equation y = x and λ is one-dimensional Lebesgue measure on L. Observe
that f is continuous, yet certain closed rectangles with one side on L have larger measures than
their interiors.

3:7.2 Let f be defined on T0 by

f(x, y) =

{
x, if y ≥ 1

2 ;
0, if y < 1

2 .

Let µf be the associated Lebesgue–Stieltjes measure. Show that µf represents a mass all of which
is located on the line y = 1

2 .

3:7.3 Let f be defined on T0 by

f(x, y) =

{
x+ y, if x+ y < 1;
1, if x+ y ≥ 1.

Show f is increasing in each variable separately, but that the resulting τ takes on some negative
values. In particular, τ(T0) = −1.

3.8 Hausdorff Measures and Hausdorff Dimension

The measures and dimensional concepts that we shall describe here go back to the work of Fe-
lix Hausdorff in 1919, based on earlier work of Carathéodory, who had developed a notion of
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“length” for sets in IRN . In our language, the length of a set E ⊂ IRN will be its Hausdorff
one-dimensional outer measure, µ∗(1). Considerable advances were made in the years following,
particularly by A. S. Besicovitch and his students. In recent years, the subject has attracted a
large number of researchers because of its fundamental importance in the study of fractal ge-
ometry. A development of this subject would take us too far afield. For such developments, we
refer the reader to the many excellent recent books on the subject.2 Here we give only an in-
dication of how to construct the Hausdorff measures, how the dimensional ideas arise, and an
indication of how the dimension of a set can provide a more delicate sense of the size of a set in
IRN than Lebesgue measure provides.

Let us return once again to our illustration with squares in Section 3.2. This time, how-
ever, in anticipation of our needs, we change the covering family T . We take T to consist of
all open sets in IR2, with τ(T ) = diameter (T ), the diameter of the set T ∈ T . Method II
gives rise to a metric outer measure µ∗0 such that µ∗0(T ) = ∞ for all open squares T ∈ T .
This might have been expected, since diameter is a one-dimensional notion and open squares
are two-dimensional.

Suppose that we take, instead, a different premeasure

τ(T ) = (diameter (T ))3

which is smaller for sets of diameter smaller than 1. Perhaps, now, Method II will give rise to
an outer measure for which squares will have zero measure, a two-dimensional object being
measured by a “three-dimensional” measure. Let T0 be a square of unit diameter, and let m,
n ∈ IN.

2For example, C. A. Rogers, Hausdorff Measures, Cambridge (1970) and K. J. Falconer, The Geometry of

Fractal Sets, Cambridge (1985).
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We cover T0 with (n + 1)2 open squares Ti (i = 1, 2, . . . , (n + 1)2), each of diameter 1/n,
and find for all m ≤ n that

µ∗m(T0) ≤
(n+1)2∑

i=1

τ(Ti) =
(n+ 1)2

n3
. (18)

Consequently, each measure has µ∗m(T0) = 0 and

µ∗0(T0) = lim
m→∞

µ∗m(T0) = 0.

The same is true of any open square. In fact, µ∗0(IR2) = 0.
Consider now a further choice of premeasure

τ(T ) = (diameter (T ))2,

which is intermediate between the two preceding examples. A similar analysis shows that

µ∗m(T0) ≤ (n+ 1)2

n2
(m ≤ n),

so

µ∗0(T0) ≤ 1 = τ(T0) = 2λ2(T0), (19)

where λ2 denotes two-dimensional Lebesgue measure. On the other hand, if T0 ⊂ ⋃∞
k=1 Tk and

Tk ∈ T n, then
∞∑

k=1

τ(Tk) =
∞∑

k=1

(diameter (Tk))2 ≥
∞∑

k=1

λ2(Tk)

≥ λ2(
∞⋃

k=1

Tk) ≥ λ2(T0),
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the first inequality following from the fact that any set of finite diameter δ is contained in a
square of the side length δ. It follows that λ2(T0) ≤ µ∗0(T0). Combine this inequality with (19)
and recognize that T0 is µ∗0-measurable to obtain

λ2(T0) ≤ µ0(T0) ≤ 2λ2(T0).

Let us take a more general viewpoint. Let T consist of the open sets in IRN . For each real
s > 0, let

τ(T ) = (diameter (T ))s,

and let µ(s) be the measure obtained from τ and T by Method II. A bit of reflection suggests
several facts. In the space IR2 (N = 2), we have

µ∗(s)(T ) =

{
0, if s > 2;
∞, if s < 2.

for every T ∈ T ,

and

2 = sup{s : µ(s)(IR2) = ∞} = inf{s : µ(s)(IR2) = 0}.
Similarly, for arbitrary N , we have

N = sup{s : µ(s)(IRN ) = ∞} = inf{s : µ(s)(IRN ) = 0}.
The proofs of the last three assertions are not difficult. One can actually show that if λN is

Lebesgue N -dimensional measure in IRN and if we use

τ(T ) = (diameter (T ))N

then µ(N) is a multiple of λN , a multiple that depends on the dimension N . For example, in IR2

(N = 2), this multiple can be proved to be 4/π. In the special case on the real line IR (N = 1),
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we are using as premeasure

τ(T ) = diameter (T ),

which is just the length if T is an open interval. Method II reduces to Method I in this case
and we have µ(1) = λ. Thus the multiple connecting Lebesgue one-dimensional measure and
µ(1) is 1.

3.8.1 Hausdorff dimension

These concepts can be extended to a more general setting and will allow us to define a notion
of dimension for subsets of a metric space.

Definition 3.24: Let X be a metric space, let T denote the family of all open subsets of X,
and let s > 0. Define a premeasure τ on T by

τ(T ) = (diameter (T ))s.

Then the outer measure µ∗(s) obtained from τ and T by Method II is called the Hausdorff
s-dimensional outer measure, and the resulting measure µ(s), the Hausdorff s-dimensional mea-
sure.

We know that µ∗(s) is a metric outer measure by Theorem 3.9 and that it is regular, with
covers in Gδ by Theorem 3.12. These measures are all translation invariant, since the premea-
sures are easily seen to be so. We could have taken T = 2X in the definition, but our work in
Section 3.2 indicates advantages to having T consist of open sets. Furthermore, for E ⊂ X,
s > 0, and ε > 0, there exists an open set G ⊃ E such that

(diameter (G))s < (diameter (E))s + ε.
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It follows (Exercise 3:8.1) that the outer measures µ∗(s) that we obtain do not depend on whether
we take for our covering family T = 2X or T = G, the family of open sets in X.

Our first theorem shows that, in general, the behavior we have seen in IRN using s = 1,
2, 3 must occur. For any set E ⊂ X, there is a number s0 so that for s > s0 the assigned s-
dimensional measure is zero, while for s < s0 the s-dimensional measure is infinite.

Theorem 3.25: If µ∗(s)(E) <∞ and t > s, then µ∗(t)(E) = 0.

Proof. Write δ(T ) for diameter (T ), where T is any subset of our metric space X. Let n ∈ IN
and let {Ti} be a sequence from T such that E ⊂ ⋃∞

i=1 Ti and δ(Ti) ≤ 1/n, for all i ∈ IN. Then,
for all i ∈ IN,

(δ(Ti))
t

(δ(Ti))s
= (δ(Ti))

t−s ≤
(

1

n

)t−s

,

and

µ∗(t)n (E) ≤
∞∑

i=1

(δ(Ti))
t ≤

(
1

n

)t−s ∞∑

i=1

(δ(Ti))
s. (20)

Since (20) is valid for every covering of E by sets in T n,

µ∗(t)n (E) ≤
(

1

n

)t−s

µ∗(s)n (E).

Now let n→ ∞ to obtain limn→∞ µ
∗(t)
n (E) = µ∗(t)(E) = 0. �

Note that this theorem shows that, for s < 1, µ(s) is a Borel measure on IR that assigns
infinite measure to every open set. In fact, µ(s) is not even σ-finite on IR (Exercise 3:8.8). Thus
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we have an important example of regular Borel measures on IR that are not Lebesgue–Stieltjes
measures.

Theorem 3.25 justifies Definition 3.26.

Definition 3.26: Let E be a subset of a metric space X, and let µ∗(s)(E) denote the Hausdorff
s-dimensional outer measure of E. If there is no value s > 0 for which µ∗(s)(E) = ∞, then we
let dim (E) = 0. Otherwise, let

dim (E) = sup{s : µ∗(s)(E) = ∞}.
Then dim (E) is called the Hausdorff dimension of E.

Suppose that K is a Cantor set, that is a nonempty, bounded nowhere dense perfect set in
IR. It is possible that λ(K) > 0, in which case µ(1)(K) = λ(K), but if λ(K) = 0, Lebesgue
measure can contribute no additional information as to its size. Hausdorff dimension, however,
provides a more delicate sense of size. Exercises 3:8.2 and 3:8.3 show that there exists Cantor
sets in [0, 1] of dimension 1 and 0 respectively. Exercise 3:8.11 shows that the Cantor ternary
set has dimension log 2/ log 3. Moreover, one can show that for every s ∈ [0, 1] there exists a
Cantor set of dimension s. If

dim (K1) = s1 < s2 =dim (K2),

then for t ∈ (s1, s2), µ(t)(K1) = 0, while µ(t)(K2) = ∞. Thus the measure µ(t) distinguishes
between the sizes of K1 and K2.
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3.8.2 Hausdorff dimension of a curve

Hausdorff dimension has an intuitive appeal when familiar objects are under consideration. We
have noted, for example, that dim(IRN ) = n. What about dim (C), where C is a curve, say in
IR3? Before we jump to the conclusion that dim(C) = 1, we should recall that there are curves
in IR3 that fill a cube.3 Such curves must have dimension 3. And there are curves in IR2, even
graphs of continuous functions f : IR → IR, that are of dimension strictly between 1 and 2. But
for rectifiable curves, that is, curves of finite arc length, we have the expected result, which we
present in Theorem 3.27.

First, we review a definition of the length of a curve. By a curve in a metric space (X, ρ),
we mean a continuous function f : [0, 1] → X. The length of the curve is

sup
m∑

i=1

ρ(f(xi−1), f(xi)),

where the supremum is taken over all partitions

0 = x0 < x1 < · · · < xm = 1

of [0, 1]. The set of points C = f [0, 1] is a subset of X, and it is the dimension of the set C that
is our concern. The proof uses elementary knowledge of compact sets in metric spaces. The
continuous image of a compact set is again compact. Also, the diameter of a compact set K
is attained; that is, there are points x, y ∈ K so that ρ(x, y) is the diameter of K.

3See, for example, G. Edgar, Measure, Topology and Fractal Geometry , Springer (1990), for the construction of
such curves.
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Theorem 3.27: Let f : [0, 1] → X be a continuous, nonconstant curve in a metric space X,
and let ℓ be its arc length. Then, for C = f([0, 1]),

1. 0 < µ(1)(C) ≤ ℓ.

2. If f is one to one, then µ(1)(C) = ℓ.

Thus, if ℓ <∞, dim(C) = 1.

Proof. Write δ(T ) for diameter (T ) for any set T ⊂ X. We prove first that µ(1)(C) ≤ ℓ. If
ℓ = ∞, there is nothing to prove, so that assume ℓ < ∞. It is convenient here to use the result
of Exercise 3:8.1 and to use coverings of C by arcs of C. If A1, . . . , Am is a collection of subarcs
of C such that C =

⋃m
i=1Ai, and δ(Ai) ≤ 1/n, for all i = 1, . . . ,m, then

µ∗(1)n (C) ≤
m∑

i=1

δ(Ai). (21)

We wish to relate the right side of (21) to the definition of ℓ.
First, let us obtain the arcs Ai formally. Let n ∈ IN. Since f is uniformly continuous, there

exists γ > 0 such that

ρ(f(x), f(y)) <
1

n

whenever x, y ∈ [0, 1] and |x− y| < γ. Let

0 = x0 < x1 · · · < xm = 1

be a partition of [0, 1] with |xi − xi−1| < γ for all i = 1, . . . ,m. Then the arcs Ai = f([xi−1, xi])
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cover C, and
1

n
> δ(Ai) ≥ ρ(f(xi−1), f(xi))

for all i = 1, . . . ,m. It follows from the compactness of [xi−1, xi] that Ai is compact for each i.
Thus the diameter of Ai is actually achieved by points f(yi) and f(zi), with

xi−1 ≤ yi ≤ zi ≤ xi.

This means that

δ(Ai) = ρ(f(yi), f(zi)).

We now use the partition

0 ≤ y1 ≤ z1 ≤ y2 ≤ z2 ≤ · · · ≤ ym ≤ zm ≤ 1

to obtain a lower estimate for ℓ. Continuing (21), we have

µ∗(1)n (C) ≤
m∑

i=1

δ(Ai) =
m∑

i=1

ρ(f(yi), f(zi)) ≤ ℓ. (22)

Letting n→ ∞, we infer that

µ∗(1)(C) = lim
n→∞

µ∗(1)n (C) ≤ ℓ.

That

µ(1)(C) ≤ ℓ

now follows from the fact that C is µ∗(1)-measurable. That 0 < µ(1)(C) follows from the fact
that if 0 ≤ a < b ≤ 1 then

µ(1)(f [a, b]) ≥ ρ(f(a), f(b)). (23)

(See Exercise 3:8.7.) This completes the proof of part (i).
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Suppose now that f is one-one. Let

0 = x0 < x1 < · · · < xm = 1

be a partition of [0, 1], and note that the sets f([xi−1, xi)) are pairwise disjoint Borel sets. Thus,
using (23) on each arc,

m∑

i=1

ρ(f(xi−1), f(xi)) ≤
m∑

i=1

µ(1)(f([xi−1, xi)))

= µ(1)

(
m⋃

i=1

f([xi−1, xi))

)

= µ(1)(f([0, 1)))

= µ(1)(f([0, 1])) = µ(1)(C).

This is valid for all partitions, and so ℓ ≤ µ(1)(C). In view of part (i), ℓ = µ(1)(C). �

3.8.3 Exceptional sets

We end this section with a comment about “exceptional sets”. Consider the following state-
ments about a nondecreasing function f defined on an interval I. Let

D = {x : f is discontinuous at x},
N = {x : f is nondifferentiable at x},
N ′ = {x : f has no derivative, finite or infinite, at x}.

Then
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1. D is countable.

2. λ(N) = 0.

3. µ(1)(G) = 0 where G ⊂ IR2 consists of the points on the graph of f corresponding to
points of continuity in N ′.

Each of these statements indicates that a nondecreasing function has some desirable prop-
erty outside some small exceptional set. The notion of smallness differs in these three state-
ments. Observe that statement (iii) involves a subset of IR2. The weaker statement, that λ2(G) =
0, provides much less information than statement (iii). We shall prove a theorem corresponding
to assertion (ii) later in Chapter 7.

We shall encounter a number of theorems involving exceptional sets. Cardinality and mea-
sure are only two of the many frameworks for expressing a sense in which a set may be small.
The notion of first category set is another such framework; we study this intensively in Chap-
ter 10. We mention another sense of smallness involving “porosity” in Exercise 7:8.12.

Exceptional sets of measure zero are encountered so frequently that we employ special ter-
minology for dealing with them. Suppose that a function-theoretic property is valid except, per-
haps, on a set of µ–measure zero. We then say that this property holds almost everywhere, or
perhaps µ–almost everywhere or even for almost all members of X. This is frequently abbrevi-
ated as a.e. For example, statement (ii) above could be expressed as “f is differentiable a.e.”

Exercises

3:8.1 Verify that, for all s > 0 and E ⊂ X, µ∗(s)(E) has the same value when T = G as when T = 2X .
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3:8.2 Let P be a Cantor set in IR with λ(P ) > 0. What is dim (P )?

3:8.3 Construct a Cantor set in IR of dimension zero. [Hint: Control the sizes of the intervals compris-
ing the sets An in Example 2.1.]

3:8.4 Recall that a function f : IR → IR is called a Lipschitz function if there exists M > 0 such that
|f(y)−f(x)| ≤M |y−x| for all x, y ∈ IR. Show that if f is a Lipschitz function then, for all E ⊂ IR,
dim (f(E))≤ dim (E).

3:8.5 Show how to construct a set A in IR such that λ(A) = 0, but dim (A) = 1.

3:8.6 Give an example of a continuous curve C of finite length such that µ(1)(C) < ℓ.

3:8.7 Prove that if f : [0, 1] → X is a continuous curve in X and 0 ≤ a < b ≤ 1 then

µ(1)(f [a, b]) ≥ ρ(f(a), f(b)).

[Hint: Define g : f([a, b]) → IR by g(w) = ρ(f(a), w). Use g to obtain a comparison between
µ(1)(f [a, b]) and the length of the interval [0, ρ(f(a), f(b))].]

3:8.8 Show that, for s < 1, (IR,B, µ∗(s)) is not a σ-finite measure space.

3:8.9 Let X = IR but supplied with the metric ρ(x, y) = 1 if x 6= y. What is the result of applying
Method II to T = G, τ = diameter (T ). (What are the families T n?)

3:8.10 Suppose that we were trying to measure the length of a hike. We count our steps, each of which
is exactly 1 meter long, and arrive at a distance that we publish in our trail guide. A mouse does
the same thing, but its steps are only 1 centimeter long. Since it must walk around rocks and
other objects that we ignore, it will report a longer length. An insect’s measurement would be
still longer, and a germ, noticing every tiny undulation, would measure the distance as enormous.
Probably, the actual distance along an ideal curve covering the trail is infinite. A better sense of
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“size of the trail” can be given by its Hausdorff dimension. Benoit Mandelbrot4 discusses the dif-
ferences in reported lengths of borders between countries. He also provides estimates of the di-
mensions (between 1 and 2) of these borders. Express our fanciful discussion of trail length in the
more precise language of coverings, Hausdorff measures, and Hausdorff dimension.

3:8.11 Let K be the Cantor set, and let s = log 2/ log 3. Cover K with 2n intervals, each of length 3−n.
Show that

µ
∗(s)
3n (K) ≤ 1.

Show that these intervals are the most economical ones with which to cover K. Deduce that dim(K) =
log 2/ log 3 and µ∗(s)(K) = 1.

3.9 Methods III and IV

In applications of measure theory to analysis, one may need to construct an appropriate mea-
sure to serve as a tool in the investigation. We have already seen the usefulness of Methods I
and II, both of which were developed by Carathéodory. In this section we extend this collec-
tion of methods by adopting a new approach, but one again built on the same theme of refining
some crude premeasure into a useful outer measure. These methods can also be used to develop
Lebesgue–Stieltjes and Hausdorff measures. We shall use them in Section 7.6 to construct total
variation measures for arbitrary continuous functions.

We assume that X is a metric space and that a covering relation H, in the sense of the fol-
lowing definition, has been specified.

Definition 3.28: By a covering relation on a metric space X we mean a collection of pairs
(C, x) where C ⊂ X and x ∈ X.

4B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co. (1982).
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Most often in applications, when (C, x) ∈ H then the point x would be a member of C and
it is in this sense that such collections have been named as “covering” relations. This covering
relation H establishes a relationship under which points x are “attached” to certain selected
sets C by the requirement that (C, x) ∈ H. For example, a simple and useful such relation
would be to take x is attached to C if x ∈ C; a slight variant would have x ∈ C. If the sets
in T are balls, then a useful version is to have x is attached to C to mean that C is centered at
x. In general, the geometry and the application dictate how this can be interpreted. No special
assumptions are needed on the relationship in general.

We suppose that a premeasure τ is defined on H, i.e., τ : H → IR with

0 ≤ τ(C, x) ≤ ∞ [(C, x) ∈ H].

We assume, just as for Methods I and II, that there is no structure on τ , and we will require
that τ(∅, x) = 0 if this happens to be defined (although it usually is not). As before, this crude
premeasure will be refined into a genuine outer measure by some kind of approximation process.

Here, however, we shall use packings rather than coverings. The idea of a covering esti-
mate, we recall, is to approximate the measure of a set E by some minimal covering of E using
sets from a covering. Naturally, overlapping of sets would occur even in a good covering. For a
packing, we allow no overlap.

Definition 3.29: A finite subset π of H is said to be a packing if

π = {(Ii, xi) : i = 1, 2, 3, . . . , n}
and Ii ∩ Ij = ∅ for i 6= j.
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Definition 3.30: Let τ be a premeasure on H. Then the variation of τ on a packing π ⊂ H is
defined as

V (τ, π) =
n∑

i=1

τ(Ci, xi)

where

π = {(Ii, xi) : i = 1, 2, 3, . . . , n}
is the packing.

Definition 3.31: Let τ be a premeasure on H. Then the variation of τ on a covering relation
β ⊂ H is defined as

V (τ, β) = sup{V (τ, π) : π ⊂ β and π is a packing}.

We shall find ways of using the variational estimates V (τ, β) to obtain our measures. The
first step is to define the collection of covers that will play a role in the computation. (Recall
the notation B(x, δ) for the open ball in the metric space X centered at x and with radius δ.)
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Definition 3.32: Let H be a covering relation on a metric space X. Let E ⊂ X.

1. A family β ⊂ H is said to be a full cover of E (relative to H) if for every x ∈ E there is a
δ > 0 so that

(C, x) ∈ H and C ⊂ B(x, δ) ⇒ (C, x) ∈ β.

2. A family β ⊂ H is said to be a fine cover of E (relative to H) if, for every x ∈ E and ev-
ery ε > 0, either

there exists at least one pair (C, x) ∈ β for which C ⊂ B(x, ε)

or else no such pair (C, x) exists in all of H.

The fine covers are closely related to the notion of a Vitali cover in the literature (see Sec-
tion 7.1). They play a key role in the study of differentiation of functions and integrals.

3.9.1 Constructing measures using full and fine covers

We now define our two methods of constructing outer measures.

Definition 3.33: Let H be a covering relation on a metric space X and τ a premeasure on H.
For every E ⊂ X, we define

1. τ•(E) = inf{V (τ, β) : β ⊂ H a full cover of E}.

2. τ◦(E) = inf{V (τ, β) : β ⊂ H a fine cover of E}.

The set functions τ• and τ◦ will be called the Method III and Method IV outer measures (re-
spectively) generated by τ .
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Theorem 3.34: Let H be a covering relation on a metric space X and τ a premeasure on H.
Then τ• and τ◦ are metric outer measures on X and τ◦ ≤ τ•.

Proof. Most of the details of the proof are either elementary or routine. Here are two details
that may not be seen immediately.

First, let us check the countable subadditivity of τ•. Suppose that E is contained in a union⋃∞
n=1En and that each τ•(En) is finite. Then for any ε > 0 and n = 1, 2, 3, . . . there is a full

cover βn ⊂ H of En so that

V (τ, βn) ≤ τ•(En) + ε2−n.

Observe that β =
⋃∞

n=1 βn is a full cover of E. Hence

τ•(E) ≤ V (τ, β) ≤
∞∑

n=1

V (τ, βn) ≤
∞∑

n=1

(
τ•(En) + ε2−n

)
.

From this one sees that

τ•(E) ≤
∞∑

n=1

τ•(En).

Second, let us consider how to prove that τ• is a metric outer measure. Suppose that A, B
are subsets of X a positive distance apart. Let β be a full cover of A ∪B with

V (τ, β) ≤ τ•(A ∪B) + ε.

Because of this separation, we may choose two disjoint open sets G1 and G2 covering A and B,
respectively. Consider the families

β1 = {(C, x) ∈ β : C ⊂ G1}
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and

β2 = {(C, x) ∈ β : C ⊂ G2}.
Then β1 is a full cover of A and β2 is a full cover of B. If (C1, x1) ∈ β1 and (C2, x2) ∈ β2 then
certainly the sets C1 and C2 are disjoint. This means that

τ•(A) + τ•(B) ≤ V (τ, β1) + V (τ, β2) ≤ V (τ, β) ≤ τ•(A ∪B) + ε.

From this inequality and the subadditivity of τ• the identity,

τ•(A ∪B) = τ•(A) + τ•(B)

can be readily obtained. The remaining details of the proof are left as exercises. �

Example 3.35: Let H0 denote the set of all pairs ([u, v], w) where [u, v] is a compact interval
on the real line and w a point in [u, v]. This is a covering relation on IR; we take for ℓ([u, v], w)
the length of the interval [u, v], i.e.,

ℓ([u, v], w) = v − u.

Then ℓ is a premeasure and it is possible to prove that

ℓ◦ = ℓ• = λ∗.

This is known as the Vitali covering theorem. That is, both measures recover the Lebesgue
outer measure. This will be discussed in greater detail in Section 7.6.

Example 3.36: Let H0 be as in Example 3.35 and define the premeasure τg by requiring that
τ([u, v], w) = g(v) − g(u), where g is a continuous nondecreasing function on the real line. Then
an extension of the Vitali covering theorem can be proved asserting that

τ◦g = τ•g = µ∗g.
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That is, both measures recover the Lebesgue–Stieltjes outer measure µ∗g generated by the mono-
tonic function g. This too will be discussed in greater detail in Section 7.6.

Example 3.37: Again let H0 be as in Examples 3.35 and 3.36. For a premeasure take, τs([u, v], w) =
(v − u)s, where 0 < s < 1. Then τ◦s can be shown to be exactly the s-dimensional Hausdorff
measure, and the larger measure τ•s is indeed larger and plays a role in many investigations un-
der the name “packing measure.”

3.9.2 A regularity theorem

Here is a simple regularity theorem that illustrates some methods that can be used in the study
of these measures. In any application, one would need to adjust the ideas to the geometry of
the situation.

Theorem 3.38: Let C be a collection of subsets of a metric space X and define the covering
relation

H = {(C, x) : C ∈ C and x is an interior point of C}.
Let τ be any premeasure on H. Let E ⊂ X with τ•(E) < ∞ and let ε > 0. Then there is an Fσ

set C1 ⊃ E and there is an Fσδ set C2 ⊃ E such that

τ•(C1) < τ•(E) + ε and τ•(C2) = τ•(E).

Proof. There is a full cover β ⊂ H of E so that

V (τ, β) < τ•(E) + ε.

Choose δ(x) > 0 for each x ∈ E so that

C ∈ C, x ∈ int(C), and C ⊂ B(x, δ) ⇒ (C, x) ∈ β.
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Define

En = {x ∈ E : δ(x) > 1/n}
and consider the closed sets {En}. One checks, directly from the definition, that β is a full
cover (relative to H) of each set En. Thus

τ•
(
En

)
≤ V (τ, β) < τ•(E) + ε

and so also, since this is a metric outer measure,

τ•

(
∞⋃

n=1

En

)
≤ τ•(E) + ε.

The set C1 =
⋃∞

n=1En is an Fσ set that contains E and affords our desired approximation to
τ•(E). The set C2 of the theorem can now be obtained by taking an intersection of an appro-
priate sequence of closed sets. �

Exercises

3:9.1♦ Let H be a covering relation on a metric space X.

(a) Show that every full cover of a set is also a fine cover of that set.

(b) Let β be a full (fine) cover of E and suppose that G is an open set containing E. Then

β1 = {(C, x) ∈ β : C ⊂ G}
is also a full (fine) cover of E.

(c) Let βn be a full (fine) cover of En for each n = 1, 2, 3, . . . . Show that
⋃∞

n=1 βn is a full (fine)
cover of

⋃∞
n=1En.
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(d) Suppose that β1, β2, . . . are subsets of H and τ any premeasure. Show that

V

(
τ,

∞⋃

n=1

βn

)
≤

∞∑

n=1

V (τ, βn).

(e) If β1 is a full cover of E and β2 is a full cover of E then β1 ∩ β2 is a full cover of E.

(f) If β1 is a fine cover of E and β2 is a full cover of E, then β1 ∩ β2 is a fine cover of E.

(g) If β1 is a fine cover of E and β2 is a fine cover of E, then β1 ∩ β2 need not be a fine cover of
E.

3:9.2 Complete the proof of Theorem 3.34 by verifying that τ◦ ≤ τ•. [Hint: In the preceding exercise
we checked that every full cover was also a fine cover.]

3:9.3♦ Let Hr be the covering relation consisting of all pairs ([u, v], u) (u, v ∈ IR). Suppose that f is a
real function. Show that the collection

β = {([x, y], x) : f(y) − f(x) > c}
is a full cover (relative to Hr) of the set

{
x : lim inf

y→x+
[f(y) − f(x)] > c

}

and a fine cover of the (larger) set
{
x : lim sup

y→x+
[f(y) − f(x)] > c

}
.

3:9.4♦ Define upper and lower derivates for a function F : IR → IR as

DF (x) = inf
δ>0

sup

{
F (v) − F (u)

v − u
: x ∈ [u, v], 0 < v − u < δ

}
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and

DF (x) = sup
δ>0

inf

{
F (v) − F (u)

v − u
: x ∈ [u, v], 0 < v − u < δ

}

Let H0 be the covering relation consisting of all pairs ([u, v], w), u, v ∈ IR, u ≤ w ≤ v. Let α ∈ IR,
and let

β =

{
([u, v], w) :

F (v) − F (u)

v − u
> α, w ∈ [u, v] ⊂ [a, b]

}
.

Prove that β is a full cover (relative to H0) of the set

E1 = {x ∈ (a, b) : DF (x) > α}
and a fine cover of the larger set

E2 = {x ∈ (a, b) : DF (x) > α}.
3:9.5 In the proof of Theorem 3.38, show in detail that β is a full cover of each set En.

3.10 Mini-Vitali Theorem

Let us return to Example 3.35. The covering relation we used, H0, denotes the set of all pairs
([u, v], w) where [u, v] is a compact interval on the real line and w a point in [u, v]. We employ
the premeasure

ℓ([u, v], w) = v − u (u ≤ w ≤ v).

The choice of letter ℓ here suggests “length.” The classical Vitali covering theorem asserts that

ℓ◦ = ℓ• = λ∗.

Thus Lebesgue outer measure λ∗ can be realized by Methods I and II using coverings, and
equally well realized by Methods III and IV using packings from full and fine covers. We will
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discuss the Vitali covering theorem in depth in Section 7.1.
The Mini-Vitali theorem, rather easier to prove, is the same assertion about sets of measure

zero. A set of Lebesgue measure can be characterized in three different ways, using coverings,
using full covers, and using fine covers. In the language of the measures above, we shall prove
that λ(E) = 0 if and only if either ℓ◦(E) = 0 or ℓ•(E) = 0. We state and prove this theorem
now and use it, in Section 3.11 to obtain our first proof of the celebrated Lebesgue differentia-
tion theorem.

Theorem 3.39 (Mini-Vitali Covering Theorem) The following are three equivalent state-
ments that assert that a set E of real numbers has Lebesgue measure zero:

1. For every ε > 0 there is an open set G containing E for which λ(G) < ε.

2. For every ε > 0 there is a full cover (relative to H0) β of E for which V (ℓ, β) < ε.

3. For every ε > 0 there is a fine cover (relative to H0) β of E for which V (ℓ, β) < ε.

The proof follows after we establish some simple covering lemmas.

3.10.1 Covering lemmas

We begin with an elementary covering lemma for finite families of compact intervals on the real
line. Recall that we are using throughout the fixed covering relation

H0 = {([u, v], w) : u < v, u ≤ w ≤ v}.
All statements about our covers concern subsets of H0.
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Lemma 3.40: Let β be a finite subset of the covering relation H0. Then there is a packing π ⊂
β,

π = {([ci, di], ei) : i = 1, 2, . . . ,m},
for whicha

⋃

([u,v],w)∈β

[u, v] ⊂
m⋃

i=1

3 ∗ [ci, di].

aBy 3 ∗ [u, v] we mean the interval centered at the same point as [u, v] but with three times the length.

Proof. For [c1, d1] simply choose the largest interval available. Note that 3 ∗ [c1, d1] will then
include any other interval [u, v] for which ([u, v], w) ∈ β and for which [u, v] intersects [c1, d1].
See Figure 3.3.

For [c2, d2] choose the largest interval from among those that do not intersect [c1, d1]. Note
that together 3 ∗ [c1, d1] and 3 ∗ [c2, d2] include any interval of the family that intersects either
[c1, d1] or [c2, d2]. Continue inductively, choosing ([ck+1, dk+1], ek+1) ∈ β so that [ck+1, dk+1] is
the largest interval available that does not intersect one the previously chosen intervals [c1, d1],
[c2, d2], . . . , [ck, dk]. Stop when you run out of intervals-pairs to select. �

Our second covering lemma is nearly as elementary, and is just an observation about the
structure of open sets.
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3 ∗ [c1, d1]

[u, v]

[c1, d1]

Figure 3.3. Note that 3 ∗ [c1, d1] will include any shorter interval [u, v] that intersects [c1, d1].

Lemma 3.41: Let β be any subset of H0. Then the set

G =
⋃

([u,v],w)∈β

(u, v)

is an open set that contains all but countably many points of the set

E =
⋃

([u,v],w)∈β

[u, v].

Proof. Certainly G is open, since it is a union of a family of open intervals. Any point that is
in E but not in G must be an endpoint of a component interval of G. For example if a ∈ E but
not in G then there must be an element ([a, b], c) or ([b, a], c) in β. In the former case (a, b) ⊂ G
but [a, b) 6⊂ G. In the latter case (a, b) ⊂ G but (a, b] 6⊂ G. But the collection of endpoints of
the component intervals of G is countable. Consequently E \G is countable. �

Our next lemma is the key to the argument for our proof of the mini version of the Vitali
covering theorem.
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Lemma 3.42: Let β ⊂ H0. Write

G =
⋃

([u,v],w∈β

(u, v).

Then G is an open set and, if g = λ(G) is finite, then there must exist a packing π ⊂ β,

π = {([xk, yk], zk) : k = 1, 2, . . . , p}
for which

p∑

k=1

(yk − xk) ≥ g/6. (24)

In particular

G′ = G \
⋃

([u,v],w)∈π

[u, v]

is an open subset of G and λ(G′) ≤ 5g/6.

Proof. It is clear that the set G of the lemma, expressed as the union of a family of open in-
tervals, must be an open set. Let {(ai, bi)} be the sequence of component intervals of G. We
know then that the Lebesgue measure of G must be

g = λ(G) =

∞∑

i=1

(bi − ai).

Choose an integer N large enough that
N∑

i=1

(bi − ai) > 3g/4.
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Inside each open interval (ai, bi), for i = 1, 2, . . . , N , choose a compact interval [ci, di] so that

N∑

i=1

(di − ci) > g/2.

Write

K =
N⋃

i=1

[ci, di]

and note that K is a compact set covered by the family

{(u, v) : ([u, v], w) ∈ β}.
Consequently there must be, by the Heine-Borel theorem, a finite subset

β1 = {([u1, v1], w1), ([u2, v2], w2), ([u3, v3], w3), . . . , ([um, vm], wm)}
from β for which

K ⊂
m⋃

i=1

(ui, vi).

By the simple covering Lemma 3.40 there is a packing π ⊂ β1,

π = {([xk, yk], zk) : k = 1, 2, . . . , p}
for which

N⋃

i=1

[ci, di] ⊂
m⋃

i=1

(ui, vi) ⊂
p⋃

k=1

3 ∗ [xk, yk].
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Thus
p∑

k=1

3(yk − xk) ≥
N∑

i=1

(di − ci) > g/2.

Statement (24) and the estimate on λ(G′) then follow. �

3.10.2 Proof of the Mini-Vitali covering theorem

We use these elementary covering lemmas now to complete our proof of Theorem 3.39. To sort
out the three concepts being compared in the statement of the theorem define:

1. A set E is of measure zero if, for every ε > 0, there is an open set G ⊃ E for which
λ(G) < ε.

2. E is full null if for every ε > 0 there is a full cover β ⊂ H0 for which V (ℓ, β) < ε.

3. E is fine null if for every ε > 0 there is a fine cover β ⊂ H0 for which V (ℓ, β) < ε.

Every full null set is clearly a fine null set; this is because every full cover is also a fine cover.
Every set of measure zero is a full null set by a simple covering argument. Let ε > 0 and, sup-
posing that E is a set of measure zero, choose an open set G containing E for which λ(G) <
ε/2. Then

β = {([u, v], w) : w ∈ E, [u, v] ⊂ G}
is a full cover (relative to H0) of E. If π is any packing contained in β, then certainly

V (ℓ, π) =
∑

([u,v],w∈π

(v − u) ≤ λ(G) < ε/2.
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Consequently V (ℓ, β) ≤ ε/2 < ε. Hence E is full null.
To complete the proof we show that every fine null set is a set of measure zero. Let us sup-

pose that E is not a set of measure zero. We show that it is not fine full then. Define

ε0 = inf{λ(G) : G open and G ⊃ E}.
Since E is not measure zero, ε0 > 0.

Let β be an arbitrary fine cover of E. Define

G =
⋃

([u,v],w)∈β

(u, v).

This is an open set and, by Lemma 3.41, G covers all of E except for a countable set. It follows
that λ(G) ≥ ε0, since if λ(G) < ε0 we could add to G a small open set G′ that contains the
missing countable set of points and for which the combined set G ∪G′ is an open set containing
E but with measure smaller than ε0.

By Lemma 3.42 there must exist a packing π ⊂ β for which
∑

([u,v],w)∈π

(v − u) ≥ ε0/6. (25)

In particular V (ℓ, β) ≥ ε0/6. But that means that E is not a fine null set, since this is true for
every fine cover β.

3.11 Lebesgue differentiation theorem

Using the mini-Vitali theorem, we can prove that functions of bounded variation on the real
line are differentiable at every point excepting possibly a set of Lebesgue measure zero. We
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will return to this theorem in Section 7.2 and give, at that time, another rather more revealing
proof that uses the full Vitali covering theorem. Here we shall need only the mini-version.

Definition 3.43: The total variation of a function F : [a, b] → IR on that interval is the num-
ber V (F ; [a, b]) defined as the supremum of the values

n∑

i=1

|F (si) − F (si−1)|

taken over all choices of points

a = s0 < s1 < · · · < sn−1 < sn = b.

Definition 3.44: A function F : [a, b] → IR is said to have bounded variation on [a, b] provided
that V (F ; [a, b]) <∞.

Note that, should F be monotonic on [a, b] then

V (F ; [a, b]) = |F (b) − F (a)|.
Thus all monotonic functions have bounded variation.

Theorem 3.45 (Lebesgue differentiation theorem) Suppose that F : [a, b] → IR is a func-
tion of bounded variation. Then F is differentiable at almost every point in (a, b).

Corollary 3.46: Let F : [a, b] → IR be a monotonic function. Then F is differentiable at al-
most every point in (a, b).
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The proof uses the upper and lower derivates. To analyze how a derivative F ′(x) may fail
to exist we split that failure into two pieces, an upper and a lower derivative, defined already in
Exercise 3:9.4. We will show that, for almost every point x in (a, b),

DF (x) > −∞, DF (x) <∞,

and

DF (x) = DF (x).

From these three assertions it follows that F has a finite derivative F ′(x) at almost every point
x in (a, b).

3.11.1 A geometrical lemma

The proof employs an elementary geometric lemma that Donald Austin5 used in 1965 to give
a simple proof of this theorem. Our proof of the differentiation theorem is essentially his, but
written in different language. See also the version of Michael Botsko6.

5D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Amer. Math. Soc. 16 (1965)
220–221.

6M. W. Botsko, An elementary proof of Lebesgue’s differentiation theorem. Amer. Math. Monthly 110 (2003),
no. 9, 834–838.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 3.11. Lebesgue differentiation theorem 259

Lemma 3.47 (Austin’s lemma) Let G : [a, b] → IR, α > 0 and suppose that G(a) ≤ G(b).
Let

β =

{
([u, v], w) :

G(v) −G(u)

v − u
< −α, w ∈ [u, v] ⊂ [a, b]

}
.

Then, for any nonempty packing π ⊂ β,

α


 ∑

([u,v],w)∈π

(v − u)


 < V (G; [a, b]) − |G(b) −G(a)|.

Proof. To prove the lemma, let π1 be a partition of [a, b] that contains the packing π. By a
partition we mean a finite collection of interval-point pairs {([ci, di], ei)} with nonoverlapping
(not disjoint) intervals that exhausts the interval [a, b]. This is clearly possible.

Now write

|G(b) −G(a)| = G(b) −G(a) =
∑

([u,v],w)∈π1

[G(v) −G(u)]

=
∑

([u,v],w)∈π

[G(v) −G(u)] +
∑

([u,v],w)∈π1\π

[G(v) −G(u)]

< −α


 ∑

([u,v],w)∈π

[v − u]


+ V (G; [a, b]).

The statement of the lemma follows. �

As a corollary we can replace G with −G to obtain a similar statement.
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Corollary 3.48: Let G : [a, b] → IR, α > 0 and suppose that G(b) ≤ G(a). Let

β =

{
([u, v], w) :

G(v) −G(u)

v − u
> α, w ∈ [u, v] ⊂ [a, b]

}
.

Then, for any nonempty packing π ⊂ β,

α


 ∑

([u,v],w)∈π

(v − u)


 < V (G; [a, b]) − |G(b) −G(a)|.

3.11.2 Proof of the Lebesgue differentiation theorem

We now prove Theorem 3.45. The first step in the proof is to show that, at almost every point t
in (a, b),

DF (t) = DF (t).

If this is not true then there must exist a pair of rational numbers r and s for which the set

Ers = {t ∈ (a, b) : DF (t) < r < s < DF (t)}
is not a set of measure zero. This is because the union of the countable collection of sets Ers

contains all points t for which DF (t) 6= DF (t).
Let us show that each such set Ers is fine null in the language of the Mini-Vitali theorem;

we then know that Ers is a set of Lebesgue measure zero. Write α = (s − r)/2, B = (r + s)/2,
G(t) = F (t) −Bt. Note that

Ers = {t ∈ (a, b) : DG(t) < −α < 0 < α < DG(t)}.
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Since F has bounded variation on [a, b], so too does the function G. In fact

V (G; [a, b]) ≤ V (F ; [a, b]) +B(b− a).

Let ε > 0 and select points

a = s0 < s1 < · · · < sn−1 < sn = b

so that
n∑

i=1

|G(si) −G(si−1)| > V (G; [a, b]) − αε.

Let E′
rs = Ers\{s1, s2, . . . , sn−1}. Let us call an interval [si−1, si] black if G(si)−G(si−1) ≥ 0

and call it red if G(si) −G(si−1) < 0.
For each i = 1, 2, 3, . . . , n we define a covering relation βi as follows. If [si−1, si] is a black

interval then

βi =

{
([u, v], w) :

G(v) −G(u)

v − u
< −α, w ∈ [u, v] ⊂ [si−1, si]

}
.

If, instead, [si−1, si] is a red interval then

βi =

{
([u, v], w) :

G(v) −G(u)

v − u
> α, w ∈ [u, v] ⊂ [si−1, si]

}
.

Let β =
⋃n

i=1 βi. It is easy to check that this collection β is a fine cover of E′
rs (cf. Exercise 3:9.4).

Let π be any nonempty packing contained in β. Write πi = π ∩ βi. By Lemma 3.47 applied
to the black intervals and Corollary 3.48 applied to the red intervals we obtain that

α


 ∑

([u,v],w)∈πi

(v − u)


 < V (G; [si−1, si]) − |G(si) −G(si−1)|.
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Consequently

α


 ∑

([u,v],w)∈π

(v − u)


 = α




n∑

i=1

∑

([u,v],w)∈πi

(v − u)




≤
n∑

i=1

V (G; [si−1, si]) −
n∑

i=1

|G(si −G(si−1)|

≤ V (G; [a, b]) − [V (G; [a, b]) − αε] = αε.

We have proved that β is a fine cover of E′
rs with the property that∑

([u,v],w)∈π

(v − u) < ε

for every packing π ⊂ β. In the earlier language we have shown that V (ℓ, β) ≤ ε. It follows that
E′

rs is fine null, and hence a set of Lebesgue measure zero. So too then is Ers since the two sets
differ by only a finite number of points.

We know now that the function F has a derivative, finite or infinite, almost everywhere in
(a, b). We wish to exclude the possibility of the infinite derivative, except on a set of measure
zero.

Let

E∞ = {t ∈ (a, b) : DF (t) = ∞}.
Choose any B so that F (b)−F (a) ≤ B(b− a) and set G(t) = F (t)−Bt. Note that G(b) ≤ G(a)
which will allow us to apply Corollary 3.48.

Let ε > 0 and choose a positive number α large enough so that

V (G; [a, b]) − |G(b) −G(a)| < αε.
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Define

β =

{
([u, v], w) :

G(v) −G(u)

v − u
> α, [u, v] ⊂ [a, b]

}
.

This is a fine cover of E∞. Let π be any packing π ⊂ β. By our corollary then

α
∑

([u,v],w)∈π

(v − u) < V (G; [a, b]) − |G(b) −G(a)| < αε.

We have proved that β is a fine cover of E∞ with the property that∑

([u,v],w)∈πi

(v − u) < ε

for every packing π ⊂ β. It follows that E∞ is fine null, and hence a set of measure zero. The
same arguments will handle the set

E−∞ = {t ∈ (a, b) : DF (t) = −∞}.

Exercises

3:11.1 Suppose that F , F1 and F2 are real-valued functions defined on an interval [a, b].

(a) Compute V (F ; [a, b]) if F is monotonic on [a, b].

(b) Estimate V (F1 + F2; [a, b]).

(c) Estimate V (rF1 + sF2; [a, b]).

(d) Estimate V (F1 · F2; [a, b]).

3:11.2 Compute V (F ; [0, 1]) where F is given by the formula F (x) = x sin(1/x).

3:11.3 Show that V (F ; [0, 1]) <∞ if F is the continuous function given by the formula F (x) = x2 sin(1/x).
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3:11.4 Show that every function that has bounded variation on an interval is bounded there.

3:11.5 Let {Fk} be a sequence of functions on a compact interval [a, b] such that

sup
k
V (Fk, [a, b]) <∞.

If F (x) = limk→∞ Fk(x) for all x in [a, b] show that F has bounded variation on [a, b].

3:11.6 Give an example of a sequence of functions {Fk} such that V (Fk; [a, b]) < ∞ for each k and
for which F (x) = limk→∞ Fk(x) exists at every point, but for which F does not have bounded
variation on [a, b].

3.12 Additional Remarks on Special Sets

We end this chapter with some additional remarks concerning monotonic functions, Cantor sets,
and nonatomic measures. Any subset of the real line that is nonempty, bounded, perfect, and
nowhere dense is said to be a Cantor set.7

3.12.1 Cantor sets

We have already discussed Cantor-like functions in Exercise 1:22.13. These are continuous, non-
decreasing functions that map a Cantor set onto an interval. Speaking loosely, we can say that
Cantor functions do all their rising on a Cantor set.

Our first theorem gives an indication of the role of Cantor sets in the rising of a nondecreas-
ing function.

7More generally, a set K in a metric space X is said to be a Cantor set if K is homeomorphic to the classical
Cantor set (cf. Exercise 3:12.2).
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Theorem 3.49: Let A ⊂ [0, 1], and let f : A → IR be a nondecreasing function. If λ∗(f(A)) >
0, then A contains a Cantor set.

Proof. We may assume that f is bounded on A. Otherwise, we do our work on an appropri-
ate smaller interval I. We begin by extending f to a nondecreasing function f̂ defined on all of
[0, 1]. Let

f̂(x) =

{
inf f, for 0 ≤ x ≤ inf A;
sup{f(t) : t ∈ A, t ≤ x}, for inf A < x ≤ 1.

Then f̂ is nondecreasing on [0, 1].
Our objective is to find a Cantor set P of positive measure such that P ⊂ f(A) and f−1

maps P homeomorphically into A. To do this, we first remove from consideration any points of
discontinuity of f̂ , as well as any intervals on which f̂ is constant. Since f̂ is nondecreasing, its
set D of points of discontinuity is countable. Thus

λ(f̂(D)) = 0. (26)

Now, for each y ∈ f(A), the set f̂−1(y) is an interval, since f̂ is nondecreasing. Let I be the
family of such intervals that are not degenerate. The intervals in I are pairwise disjoint and
each has positive length. Thus I is countable, say I = {Ik}. Let G =

⋃∞
k=1 Ik. Since f̂ is con-

stant on each member of I, f̂(G) is countable and

λ(f̂(G)) = 0. (27)

Let M = f(A) \ f̂(D ∪G). It follows from (26) and (27) that λ∗(M) > 0. Let y ∈ M . There
exists x ∈ A such that f(x) = y. We see from the definition of the set M that

f̂(t) < y for t < x and f̂(t) > y for t > x.
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Thus f̂−1(y) = {x}. It follows that f̂−1 is strictly increasing on the set M , and f̂−1(M) ⊂ A.
Note that, since M ⊂ f(A) and f̂−1(M) ⊂ A, f̂−1 = f−1 on M .

The set E of points of discontinuity of f−1 : M → A is countable. Thus there is a Cantor
set P of positive measure contained in M \E. Since f−1 is continuous and strictly increasing on
P , the set K = f−1(P ) is also a Cantor set (see Exercise 3:12.1), and K is a subset of A. It is
clear that f maps the Cantor set K onto the set P of positive measure. �

Exercise 3:13.14 at the end of this chapter shows that we cannot replace the monotonicity
hypothesis with one of continuity in Theorem 3.49.

3.12.2 Bernstein sets

We observed in Section 2.1 how nineteenth century misconceptions about nowhere dense sub-
sets of IR may have delayed the development of measure theory. Cantor sets were not part of
the mathematical repertoire until late in the nineteenth century. Nowadays, Cantor sets appear
in diverse areas of mathematics. Our familiarity with them makes it difficult to visualize an un-
countable set that does not contain a Cantor set, though this is, in fact, possible. We have ear-
lier (e.g., Exercises 1:22.7 and 1:22.8) discussed totally imperfect sets; that is, an uncountable
set of real numbers that contains no Cantor set. We have shown the existence of Bernstein sets
(a set such that neither it nor its complement contains a Cantor set). The existence can be ob-
tained by a cardinality argument (which is especially simple under the continuum hypothesis).

Bernstein sets have a number of interesting properties relative to Lebesgue measure and
Lebesgue–Stieltjes measures. Let f be continuous and nondecreasing on [0, 1], with f([0, 1]) =
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[0, 1]. Suppose that neither A nor its complement Ã contains a Cantor set. Then

λ∗(A) = λ∗(Ã) = 0.

It follows that

λ∗(A) = λ∗(Ã) = 1.

Now f(A) ∪ f(Ã) = [0, 1]. By Theorem 3.49,

λ∗(f(A)) = λ∗(f(Ã)) = 0.

Thus

λ∗(f(A)) = λ∗(f(Ã)) = 1

and the set A cannot be measurable with respect to any nonatomic Lebesgue–Stieltjes mea-

sure except the zero measure. We know, by Exercise 3:13.13, that there are extensions λ of λ

for which the set A is λ-measurable. Similarly, there are extensions µf of any given Lebesgue–
Stieltjes measure for which A is µf -measurable. But such extensions are not Lebesgue–Stieltjes
measures. See the discussion following the proof of Theorem 3.20.

Arguments similar to the ones we have given show that if A is totally imperfect then, for
every nonatomic Lebesgue–Stieltjes measure µf , either µf (A) = 0 or A is not µf -measurable.
Which alternative applies depends on whether λ(f(A)) = 0 or λ∗(f(A)) > 0.

3.12.3 Lusin sets

We turn now to the opposite phenomenon. Are there sets that are measurable with respect to
every nonatomic Lebesgue–Stieltjes measure? Since Lebesgue–Stieltjes measures are Borel mea-
sures, the question should be asked about non-Borel sets.
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To address this question, we construct another example of an unusual set of real numbers
(cf. Exercise 1:22.9), called occasionally a Lusin set.

Lemma 3.50: Assuming the continuum hypothesis, there exists a set X of real numbers such
that X has cardinality c, yet every nowhere dense subset of X is countable.

Proof. We shall construct a set X ⊂ [0, 1] so that, if A is a nowhere dense subset of the
space X using the Euclidean metric, then A is countable. To construct the set X, arrange the
nowhere dense closed subsets of [0,1] into a transfinite sequence {Fα}, 0 ≤ α < Ω, where Ω is
the first uncountable ordinal. For each α < Ω, consider the difference

Fα \
⋃

β<α

Fβ .

Since the interval [0,1] is complete, uncountably many of these differences must be nonempty.
Let X be a set that contains exactly one point from each such difference. Then X has cardinal-
ity c.

We now show that if N is a nowhere dense subset of [0,1] then N ∩ X is countable. Since
N is also nowhere dense in [0,1], there exists α < Ω such that N = Fα. The construction of X
implies that, for γ > α, X ∩ Fγ ∩ Fα = ∅. Thus

N ∩X ⊂
⋃

β≤α

Fβ ,

so N ∩X is countable. The same is true of N ∩X. Since any set that is nowhere dense in X is
also nowhere dense in [0,1], we infer that every nowhere dense subset of X is countable. �

For this space X, we have the following.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 3.12. Additional Remarks on Special Sets 269

Theorem 3.51: The space X has the following properties.

1. The only finite nonatomic Borel measure µ on X is the zero measure.

2. Any nondecreasing function f on X maps X onto a set of measure zero.

3. For every nonatomic Lebesgue–Stieltjes measure µf on the real line, X is µf -measurable
and µf (X) = 0.

Proof. Let D be a countable dense subset of X, and let ε > 0. Since µ is nonatomic, µ(D) =
0. By Corollary 3.15, there exists an open set G containing D such that µ(G) < ε. The set G
is a dense and open subset of X. Thus X \G is nowhere dense in X. But for this space X, this
implies that X \G is countable. Since µ is nonatomic, µ(X \G) = 0. It follows that

µ(X) = µ(G) + µ(X \G) < ε.

Since ε is arbitrary, µ(X) = 0. This proves (i). The proof of (ii) is similar. We leave it as Exer-
cise 3:12.5. Part (iii) follows directly from part (ii) and Theorem 3.23. �

It is a fact (proved later in Theorem 11.11) that every uncountable analytic set in IR con-
tains a Cantor set. Since all Borel sets are analytic, it follows that every uncountable Borel set
in IR has positive measure with respect to some nonatomic Lebesgue–Stieltjes measure. The
space X is not a Borel subset of IR. It has cardinality c, yet has universal measure zero. This
means every finite, nonatomic Lebesgue–Stieltjes measure gives X measure zero. The space
X can be used to show that there is no nontrivial nonatomic measure defined on all subsets of
[0, 1]. This gives another proof of Theorem 2.39 of Ulam, here using the continuum hypothesis.
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Theorem 3.52: If µ is a nonatomic, finite measure defined on all subsets of [0, 1], then
µ([0, 1]) = 0.

Proof. Let h be a one-to-one function mapping X onto [0, 1]. Define ν on 2X by

ν(E) = µ(h(E)).

Then ν is a finite, nonatomic measure on 2X . By Theorem 3.51 (i), ν(X) = 0. In particular,
µ([0, 1]) = µ(h(X)) = ν(X) = 0. �

There is nothing special about the interval [0, 1]. The proof of Theorem 3.52 works equally
well for any set of cardinality c. Nontrivial finite, nonatomic measures cannot be defined for all
subsets of any set Y of cardinality c. It is perhaps curious that this statement is one of pure
set theory: no metric or topological conditions are imposed on Y . The proof here, however, did
make heavy use of a strange property of the metric space X.

Exercises

3:12.1♦ Let P ⊂ IR be a Cantor set and suppose that f : P → IR is continuous and strictly increasing.
Show that f(P ) is also a Cantor set.

3:12.2 Show that any two Cantor sets on the real line are homeomorphic.

3:12.3 In this exercise we introduce the concepts of a connected set and a totally disconnected set in
our context of Cantor sets. We will return to connectedness in Exercise 10:8.6.

Definition A metric space X is connected if it cannot be expressed as a disjoint union
of two nonempty open sets. A subset S of X is connected if S is a connected metric
space.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 3.12. Additional Remarks on Special Sets 271

Definition A metric space X is totally disconnected if it contains no connected subsets
apart from the empty set and singleton sets. A subset S of X is totally disconnected if
S is a totally disconnected metric space.

(a) Prove that the only connected sets in IR are intervals, singleton sets (i.e., sets containing only
one point), and the empty set.

(b) Prove that a set of real numbers is totally disconnected if and only if it contains no interval.

(c) Prove that a nonempty set of real numbers is a Cantor set if and only if it is compact, has no
isolated points, and is totally disconnected.

(d) Prove that a Cantor set in any metric space8 is compact, has no isolated points, and is to-
tally disconnected.

(e) Prove, in fact, that a set in a metric space is a Cantor set if and only if it is a nonempty
compact set that has no isolated points and is totally disconnected.

3:12.4 Show that if A ⊂ [0, 1] is totally imperfect then, for every Lebesgue–Stieltjes measure µf , either
µf (A) = 0 or A is not µf -measurable. [Hint: For the second alternative, apply Theorem 3.23 to A

and its complement Ã.]

3:12.5 Verify part (ii) of Theorem 3.51.

3:12.6 The only finite, nonatomic Borel measure on the space X appearing in Theorem 3.51 is the zero
measure. If one tries to imitate the proof of Theorem 3.52 to show that every nonatomic, finite
Borel measure on [0, 1] is the zero measure, one step fails. Which is it?

8As mentioned earlier, a Cantor set in a metric space is one that is homeomorphic to the classical Cantor set.
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3:12.7♦ Let h be continuous and strictly increasing on IR. Prove that h(B) is a Borel set if and only if
B is a Borel set. [Hint: Let S be the family of all sets A ⊂ IR such that h(A) is a Borel set. Show
that S is a σ-algebra that contains the closed sets. For the “only if” part, consider h−1.]

3.13 Additional Problems for Chapter 3

3:13.1 Let µ be a regular Borel measure on a compact metric space X such that µ(X) = 1, and let E be
the family of all closed subsets F of X such that µ(F ) = 1.

(a) Prove that the intersection of any finite subcollection of E also belongs to E .

(b) Prove that the intersection H of the sets in E is a nonempty compact set.

(c) Prove that µ(H) = 1.

(d) Prove that µ(H ∩ V ) > 0 for each open set V with H ∩ V 6= ∅.

(e) Prove that if K is a compact subset of X such that µ(K) = 1 and µ(K ∩ V ) > 0 for each
open set V with K ∩ V 6= ∅ then H = K.

3:13.2 Let X be a well-ordered set that has a last element Ω such that if x ∈ X then the set of prede-
cessors of x,

{y ∈ X : y < x},
is countable. Let Y = {y ∈ X : y < Ω}, and let M be a σ–algebra of subsets of Y that contains at
least all singleton sets. Prove that for any measure on M the following assertions are equivalent:

(a) For every a ∈ Y , µ({x ∈ Y : x ≤ a}) <∞.

(b) The set P = {x ∈ Y : µ({x}) > 0} is countable and µ(P ) <∞.
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3:13.3 Let A and B be sets. The set

A△B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B)

is called the symmetric difference of A and B.

Prove that there exists a countable family A of open sets in [0, 1] with the following property: For
every ε > 0 and E ∈ L, there exists A ∈ A with λ(A△E) < ε. Thus the countable family A can be
used to approximate all members of L. We shall see later that λ(A△B) is “almost” a metric on L.

3:13.4 Let E be defined as in the proof of Theorem 3.13. Let (X, B̂, µ̂) be the completion of (X,B, µ).

(a) Show that E ⊃ B̂. [Hint: Use Theorems 2.37, 2.45, and 3.16.]

(b) Use part (a) to improve Theorem 3.22 to give the conclusion µf (E) = µ̂(E) for all E ∈ E .

3:13.5 Let I be an interval in IR. Show how one can reduce a theory of Lebesgue–Stieltjes measures on
I to the theory that we developed for Lebesgue–Stieltjes measures on IR.

3:13.6♦ Let f be continuous on [0, 1]. Let T consist of ∅ and the closed intervals in [0, 1]. Let τ([a, b]) =
|f(b) − f(a)|, and let µ∗

1 and µ∗
2 be the associated Method I and Method II outer measures, respec-

tively.

(a) Is µ∗
1 equal to µ∗

2?

(b) What relationship exists between the measure µ2 and the variation of f?

(c) What is the answer to (b) if f is piecewise monotonic?

3:13.7 Let R0 be the unit square. Divide R0 into 8 rectangles of height 1
2 and width 1

4 , as indicated in
Figure 3.4. Now divide each of the rectangles Ri into 8 or 10 rectangles, giving rise to the situa-
tion depicted in Figure 3.4 for R2. Continue this process by cutting heights in half and widths into
4 or 5 parts in such a way that Rk+1 ⊂ Rk, and Rk is compact and connected. Let R =

⋂∞
k=1R

k.
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R0

R1 = R1 ∪ R2 ∪ R3 ∪ R4.

R1

R2

R3

R4

Figure 3.4. The rectangles R0, and Ri (i = 1 . . . 4) in Exercise 3:13.7.

Figure 3.5. The rectangles R2 (the shaded region).

(a) Show that this intersection R is the graph of a continuous function g. (The construction of
this function is due to James Foran.)

(b) Show that for each c ∈ [0, 1] the set {x : g(x) = c} is a Cantor set.

(c) Let T consist of ∅ and the closed intervals in [0, 1], and let τ([a, b]) = |g(b) − g(a)|. Let µ∗
0 be

the Method II outer measure obtained from T and τ . Calculate µ∗
0(E) for E ⊂ [0, 1].

[Hint: Calculate µ∗
0([0, 1]).]

(d) Compare your answer to part (c) with your answer to part (b) of Exercise 3:13.6.
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3:13.8♦ Prove that there exists a set E ⊂ [0, 1] with E ∈ L, but F (E) /∈ L, where F is the Cantor
function. [Hint: Use Exercise 2:14.13.]

3:13.9♦ Let f be continuous on [a, b]. Prove that the following statements are equivalent.

(a) There exists E ⊂ [a, b] such that E ∈ L, but f(E) /∈ L.

(b) There exists E ⊂ [a, b] such that λ(E) = 0, but λ∗(f(E)) 6= 0.

3:13.10♦ Let µ1 and µ2 be measures defined on a common σ-algebra M. We say that µ1 is absolutely
continuous with respect to µ2, written µ1 ≪ µ2, if µ1(E) = 0 whenever µ2(E) = 0, E ∈ M. Let
M = B, and let F be the Cantor function. Is µF ≪ λ? Is λ≪ µF ?

3:13.11♦ Refer to Exercise 3:13.10. Let µg be a continuous Lebesgue–Stieltjes measure on B.

(a) Prove that µg ≪ λ if and only if, for E ∈ B and λ(E) = 0, λ(g(E)) = 0.

(b) Prove that if λ≪ µg then g is strictly increasing.

3:13.12 Let {Ln} be a sequence of pairwise disjoint Lebesgue measurable sets in IR, let L =
⋃∞

n=1 Ln,
and let E ⊂ IR.

(a) Prove that λ∗(L∩E) =
∑∞

n=1 λ
∗(Ln ∩E). [Hint: Let H be a measurable cover for L∩E, Hn

for Ln ∩ E with the sets Hn pairwise disjoint.]

(b) Prove that λ∗(L ∩ E) =
∑∞

n=1 λ∗(Ln ∩ E).

[Outline of proof: Let K be a measurable kernel for L ∩ E. Justify the inequalities

λ∗(L ∩ E) = λ(K) =

∞∑

n=1

λ(Ln ∩K)

≤
∞∑

n=1

λ∗(Ln ∩ E) ≤ λ∗(L ∩ E).
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3:13.13♦ (Extending L and λ) Let X = [0, 1].

(a) Prove that, for each E ⊂ X and L ∈ L,

λ(L) = λ∗(L ∩ E) + λ∗(L ∩ Ẽ).

(b) Let E ⊂ X, E /∈ L. Let L be the algebra generated by L and {E}. Show that L consists of
all sets of the form

L = (L1 ∩ E) ∪ (L2 ∩ Ẽ) with L1, L2 ∈ L.

(c) Define λ on L by

λ(L) = λ∗(L ∩ E) + λ∗(L ∩ Ẽ).

Let T = L, τ = λ and let (X,L, λ) be the measure space obtained by an application of

Method I. Prove that λ = λ on L. Thus (X,L, λ) is an extension of (X,L, λ) and contains
sets not in L.

(d) Show that λ(E) = λ∗(E). Thus E has a Gδ cover with respect to λ. That is, there exists

H ∈ Gδ such that H ⊃ E and λ(H) = λ(E) = λ∗(E). Does Ẽ also have such a cover in Gδ?

3:13.14 We stated Theorem 3.49 for nondecreasing functions. That hypothesis cannot be dropped. Let
g : [0, 1] → IR be a continuous function all of whose level sets are uncountable9 (e.g., the con-
tinuous function g of Exercise 3:13.7). Show that there exists a totally imperfect set A such that
g(A) = [0, 1]. This exercise shows that, unlike monotonic functions, continuous functions can rise
on totally imperfect sets.

[Hint: A proof can be based on the continuum hypothesis and transfinite induction. Let {yα}, α <
Ω, be a well-ordering of the interval [0, 1], and let {Pα}, α < Ω, be a well-ordering of the Cantor

9One might imagine that such functions are rare, but see Exercise 10:8.4.
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sets in [0, 1]. Choose a1 such that f(a1) = y1. Now choose b1 ∈ P1 \ {a1}. Proceed inductively. If
we have {aβ} ⊂ [0, 1] and {bβ} ⊂ [0, 1] for all β < α, choose

aα ∈ [0, 1] \
⋃

β<α

({aβ} ∪ {bβ})

such that f(aα) = yα. Then choose

bα ∈ [0, 1] \


⋃

β≤α

{aβ} ∪
⋃

β<α

{bβ}




such that bα ∈ Pα. Let

A =
⋃

α<Ω

{aα} and B =
⋃

α<Ω

{bα}.

Then f(A) = [0, 1]. If P is a Cantor set in [0, 1], there exists α such that P = Pα. By construction,
bα ∈ Pα and A ∩B = ∅. Thus bα /∈ A, so A does not contain P .]

3:13.15 Use the continuum hypothesis to prove the existence of a set A of real numbers such that A
and its complement Ã are both totally imperfect. [Hint: Modify the argument in Exercise 3:13.14
to choose points aα and bα from Pα.]
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Chapter 4

MEASURABLE FUNCTIONS

We saw in Section 1.20 that the definition of the Lebesgue integral of a function f involves the
measure of sets such as

{x : α ≤ f(x) < β}.
We devote this chapter to the study of functions for which these sets, and others defined by
similar inequalities, are necessarily measurable. These will be called measurable functions. We
shall see that, for a given measure space (X,M, µ), the class of µ-measurable functions is well
behaved with respect to the elementary algebraic operations and with respect to various oper-
ations involving limits. The proofs here will follow readily from our requirement that M be a
σ-algebra, together with a bit of set-theoretic algebra. We provide the necessary development in
Sections 4.1 and 4.2.

In Chapters 2 and 3 we saw that, while measurable sets can be quite complicated, one can
under certain circumstances approximate measurable sets, and even nonmeasurable sets, by
simpler sets. For example, when dealing with the Lebesgue–Stieltjes measure space (IR,Mf , µf ),
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we know that every set M ∈ Mf has a Gδ cover and an Fσ kernel, and we know that for every
ε > 0 there exists an open set G and a closed set F such that F ⊂ M ⊂ G and µf (G \ F ) < ε.
Such approximations have allowed us to deal with measurable sets that might be unwieldy to
combine or manipulate by replacing them with simpler sets that we can handle. Similar simpli-
fications are also available when dealing with measurable functions. In Sections 4.4 and 4.5 we
see that, under suitable hypotheses on a measure space (X,M, µ), measurable functions can be
approximated by simpler functions in several ways. In particular, for many important classes of
measure spaces, the approximating functions can be taken to be continuous.

We also need to discuss convergence of sequences of measurable functions. Of the several
notions of convergence that we encounter in Section 4.2, the “preferred” notion may be uniform
convergence. It became apparent in the middle of the nineteenth century that a number of the-
orems that are easy to prove when uniform convergence is assumed in appropriate places are
either false or more difficult to prove when weaker forms of convergence are hypothesized. In
Section 4.3 we show that, on a finite measure space, a sequence {fn} of measurable functions
that is known to converge in some weaker sense actually converges “almost uniformly,” that is,
uniformly when one ignores a set of small measure.

Thus three fundamental concepts in analysis—set, convergence, and function—allow approx-
imations by more tractable objects. Although one gives up a bit at the stages where one makes
the approximation, the conclusion reached at the end of the argument is still often the best pos-
sible.

4.1 Definitions and Basic Properties

We begin with Lebesgue’s original definition of a measurable function.
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Definition 4.1: Let (X,M, µ) be a measure space, and let

f : X → [−∞,∞].

The function f is measurable if for every α ∈ IR the set

Eα(f) = {x : f(x) > α}
is a measurable set.

A special case of this definition has its own terminology.

Definition 4.2: Let X be a metric space, and let f : X → [−∞,∞]. The function f is a Borel
function or is Borel measurable if the set

Eα(f) = {x : f(x) > α}
is a Borel set for every α ∈ IR.

Observe that measurability of f depends on the σ-algebra M under consideration, but not
on the measure µ. Nonetheless, one often sees phrases asserting that a function f is µ-measurable
with no specific mention of the measure space that is assumed.

Example 4.3: Take (IR,L, λ) as the measure space. Let f be a continuous function, g be a
discontinuous increasing function, and h = χ

A
for some set A ⊂ IR. Then, for every α ∈ IR,

Eα(f) is open and Eα(g) is an interval. Thus both f and g are measurable. For h we find that

Eα(h) =





∅, if α ≥ 1,
A, if 0 ≤ α < 1,
IR, if α < 0.
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Hence h is λ-measurable if and only if A ∈ L. If we had taken (IR,B, λ) as our measure space,
then f and g are measurable (and hence Borel functions) because open sets and arbitrary inter-
vals are Borel sets, and h is measurable if and only if A is a Borel set.

Example 4.4: If M = {∅, X}, only constant functions are measurable, while if M = 2X , all
functions are measurable. In particular, if X is countable and each singleton set is measurable,
then every function on X is measurable.

Theorem 4.5 shows that there is nothing special about the specific inequality we chose in
Definition 4.1.

Theorem 4.5: Let (X,M, µ) be a measure space. The following conditions on a function f are
equivalent.

1. f is measurable.

2. For all α ∈ IR, the set {x : f(x) ≥ α} ∈ M.

3. For all α ∈ IR, the set {x : f(x) < α} ∈ M.

4. For all α ∈ IR, the set {x : f(x) ≤ α} ∈ M.

Proof. Suppose that f is measurable and let α ∈ IR. Observe that

{x : f(x) ≥ α} =

∞⋂

n=1

{
x : f(x) > α− 1

n

}
.
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Since f is measurable, each set in the intersection is measurable and, hence, so is the inter-
section itself. This proves that (i)⇒ (ii). The implication (ii)⇒ (iii) follows directly from the
equality

{x : f(x) < α} = X − {x : f(x) ≥ α} .
The implication (iii)⇒ (iv) follows from the equality

{x : f(x) ≤ α} =
∞⋂

n=1

{
x : f(x) < α+

1

n

}
.

Finally, the implication (iv)⇒ (i) follows by complementation in (iii). It now follows that all
four statements are equivalent. �

Simple arguments show that various other sets associated with a measurable function f are
measurable, for example, the sets

{x : f(x) = α} and {x : α ≤ f(x) ≤ β}.
Note that measurability of a function f is related to the mapping properties of f−1. In fact,
measurability of f is equivalent to the condition that f−1 take Borel sets to measurable sets.
(The proof is left as Exercise 4:1.2.)

Theorem 4.6: Let (X,M, µ) be a measure space and f a real-valued function on X. Then f is
measurable if and only if f−1(B) ∈ M for every Borel set B ⊂ IR.

Our next example shows that we cannot replace Borel sets with arbitrary measurable sets
in this theorem. It also shows that the mapping properties of f (as opposed to f−1) may be
quite different for measurable functions. (The reader may wish to consult Exercises 2:14.13
and 3:13.8 to 3:13.10 before proceeding with this example.)
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Example 4.7: We work with the Lebesgue measure space (IR,L, λ). Let K be the Cantor
ternary set, and let P be a Cantor set of positive measure. Write a = min {x : x ∈ P} and
b = max {x : x ∈ P}. Exercise 4:1.13 shows that there exists a strictly increasing continuous
function h that maps [a, b] onto [0, 1] and maps P onto K.

Let A be a nonmeasurable subset of P , and let E = h(A). Since E ⊂ K, λ(E) = 0 and, in
particular, E is Lebesgue measurable. It follows that

1. h−1(E) = A. Thus, even for the strictly increasing continuous function h, the inverse
image of a measurable set need not be measurable.

2. The function h−1 is also continuous and strictly increasing. It maps the zero measure set
E onto a nonmeasurable set.

3. Let f = h−1 and let µf be the associated Lebesgue–Stieltjes measure on [0, 1]. Then µf is
not absolutely continuous with respect to λ, since λ(K) = 0, but by Theorem 3.23

µf (K) = λ(f(K)) = λ(P ) > 0.

Observe that part (i) offers another proof that there are Lebesgue measurable sets that are
not Borel sets. The set E is Lebesgue measurable. If it were a Borel set, then A = h−1(E)
would also be measurable by Theorem 4.6.

4.1.1 Combining measurable functions

We next consider various ways that measurable functions combine to give rise to other measur-
able functions. Note first that, because we are allowing infinite values for our functions, expres-
sions such as f + g and fg require some caution. We cannot interpret ∞−∞ nor 0 ×∞. Thus
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we will require some comment assuring us that the functions are defined. Often this is taken for
granted.

Theorem 4.8: Let (X,M, µ) be a measure space. Let f and g be measurable functions on X.
Let φ : IR → IR be continuous, and let c ∈ IR. Then, provided the following functions are
defined,

1. cf is measurable.

2. f + g is measurable.

3. φ ◦ f is measurable (where f must be finite-valued).

4. fg is measurable.

Proof. The proof of (i) is trivial for finite-valued functions. We interpret c × ±∞ = ±∞ for
c > 0 and c × ±∞ = ∓∞ for c < 0. Then cf is easily shown to be measurable for all c 6= 0
and any measurable function f . Just work separately on the (measurable) sets X1 = {x ∈ X :
−∞ < f(x) <∞}, X2 = {x ∈ X : −∞ = f(x)}, and X3 = {x ∈ X : f(x) = ∞}.

To verify (ii) for finite-valued functions, observe first that for, any α ∈ IR, the function α− g
is measurable. Now let {qk} be an enumeration of the rational numbers. Then

{x : f(x) + g(x) > α} = {x : f(x) > α− g(x)}

=
∞⋃

k=1

({x : f(x) > qk} ∩ {x : g(x) > α− qk}).
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This set is clearly measurable. Since this is true for all α ∈ IR, f + g is measurable. For func-
tions that are permitted to assume values ±∞ some extra bookkeeping would be needed, left as
Exercise 4:1.7.

In statement (iii) we cannot allow infinite values since φ(f(x)) would not be defined if f(x) =
±∞. To verify (iii) then, let α ∈ IR, and observe that

(φ ◦ f)−1((α,∞)) = f−1(φ−1((α,∞))).

Since φ is continuous, the set G = φ−1((α,∞)) is open, and since f is measurable, f−1(G) ∈
M. This verifies (iii).

Let us prove part (iv). Suppose first that f and g are finite-valued. Then

4f(x)g(x) = (f(x) + g(x))2 − (f(x) − g(x))2 (1)

at every point x ∈ X. From parts (i) and (ii) we see that f + g and f − g are measurable. Take
the continuous function φ(t) = t2 and apply part (iii) to conclude that both (f+g)2 and (f−g)2

are measurable. Finally, then, parts (i) and (ii) applied again to the identity (1) shows that the
product fg is measurable. The case for functions that are permitted to assume values ±∞ is
left as Exercise 4:1.8. �

In part (iii) of Theorem 4.8, note the order of composition: the function f maps X to IR
and the continuous function φ maps IR to IR, thus φ ◦ f is defined, while f ◦ φ may not be. If
X = IR then the latter composition f ◦ φ would also be defined. Must it, too, be measurable?
Exercise 4:1.10 shows that it may not be.
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Exercises

4:1.1 Let (X,M, µ) be a measure space. Show that for an arbitrary function f on X the class {A ⊂ IR :
f−1(A) ∈ M} is a σ-algebra.

4:1.2♦ Let (X,M, µ) be a measure space. Show that a function f : X → IR is measurable if and only if
{A ⊂ IR : f−1(A) ∈ M} contains all Borel sets.

4:1.3 Let (X,M, µ) be a measure space and suppose that f : X → IR ∪ {−∞} ∪ {+∞}. Show that it is
possible for f to fail to be measurable and yet the family

{A ⊂ IR : f−1(A) ∈ M}
contains all Borel sets. Compare with Exercise 4:1.2. Give a correct formulation of the statement
in Exercise 4:1.2 that permits f to assume infinite values.

4:1.4 Suppose that, for each rational number q, the set {x : f(x) > q} is measurable. Can we conclude
that f is measurable?

4:1.5 Let S0 be a family of subsets of IR such that all open sets belong to the smallest σ-algebra con-
taining S0. If f−1(E) is measurable for all E ∈ S0 then f is measurable. Apply this to obtain
another proof of the preceding exercise and another proof of Theorem 4.5.

4:1.6 Show that there exists a function f : IR→ IR such that, for each α ∈ IR, the set {x : f(x) = α} is in
L, but f is not Lebesgue measurable.

[Hint: Map a nonmeasurable set onto (0, 1) and its complement onto (1, 2) in an appropriate man-
ner.]

4:1.7 Complete the proof of Theorem 4.8, part (ii) by discussing the case where f and g are permitted
to have infinite values.

4:1.8 Complete the proof of Theorem 4.8, part (iv) by discussing the case where f and g are permitted
to have infinite values.
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4:1.9 Provide conditions under which a quotient of measurable functions is measurable.

4:1.10 Give an example of a continuous function φ and a Lebesgue measurable function f , both defined
on [0, 1], such that f ◦ φ is not measurable. Give an example of a nonmeasurable function f on
[0, 1] such that |f | is measurable. [Hint: See Example 4.7.]

4:1.11 Let (X,M, µ) be a measure space. Suggest conditions under which there can exist a nonmeasur-
able function f on X for which |f | is measurable.

4:1.12 Show that a measurable function f defined on [0, 1] has the property that for every ε > 0 there is
a Mε > 0 so that

λ ({x ∈ [0, 1] : |f(x)| ≤Mε}) ≥ 1 − ε

if and only if f is finite almost everywhere.

4:1.13♦ Let E and F be any two Cantor sets in IR. Let I = {Ik} and J = {Jk} be the sequences of
intervals complementary to E and F , respectively.

(a) Show that to each pair of distinct intervals Ii and Ik in I there exists an interval Ij ∈ I
between Ii and Ik.

(b) Use part (a) to show that there exists an order-preserving correspondence between I and J .
That is, there exists a function γ mapping I onto J such that if I, I ′ ∈ I and J = γ(I),
while J ′ = γ(I ′), then J is to the left of J ′ if and only if I is to the left of I ′.

(c) For each Ii ∈ I, let fi be continuous and strictly increasing on Ii, and map Ii onto the inter-
val γ(Ii). Use the functions fi to obtain a strictly increasing continuous function f mapping⋃∞

i=1 Ii onto
⋃∞

i=1 Ji.

(d) Extend f to be a continuous strictly increasing function mapping IR onto IR and E onto F .
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4:1.14 Let T consist of ∅ and the open squares in IR2, and let τ(T ) be the diameter of T . Use Method I
to obtain an outer measure µ∗ and a measure space (IR2,M, µ). Is every continuous function f :
IR2 → IR measurable with respect to M? What would your answer be if we had used Method II
instead of Method I?

4:1.15 Let f : IR → IR be continuous.

(a) Show that f maps compact sets to compact sets.

(b) Show that f maps sets of type Fσ to sets of the same type.

(c) Show that, if f is also one-one, then f maps Borel sets to Borel sets.

(d) Show that, if f is also Lipschitz, then f maps sets of Lebesgue measure zero to sets of the
same type.

(e) Show that, if f is Lipschitz, then f maps Lebesgue measurable sets to sets of the same type.

(We have seen in Example 4.7 that a one-to-one continuous function f : IR → IR need not map
Lebesgue measurable sets to Lebesgue measurable sets. We mention that, without the assumption
that f be one to one, we cannot be sure that f maps Borel sets to Borel sets. It is true that a con-
tinuous function f maps Borel sets onto Lebesgue measurable sets. Proofs appear in Chapter 11.)

4:1.16 Let (X,M, µ) be a complete measure space with X a metric space.

(a) Prove that if all Borel sets are measurable each function f that is continuous a.e. is measur-
able.

(b) Prove that if every continuous function f : X → IR is measurable then M ⊃ B.

[Hint: Let G be open in X. Let f(x) = dist(x,X \ G). See Section 3.2. Show that f is con-
tinuous and f−1((0,∞)) = G.]

(c) Let X = [0, 1], M = {∅, X}, and let f(x) = x. Is f measurable?
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4:1.17 Suppose that there exists1 a Lebesgue nonmeasurable subset E of IR2 such that E intersects ev-
ery horizontal or vertical line in exactly one point. Use this set to show that there exists a func-
tion f : IR2 → IR such that f is Borel measurable in each variable separately, yet f is not Lebesgue
measurable. Note also that the restriction of f to any horizontal or vertical line has only one point
of discontinuity. Compare with Exercise 4:1.16 (a).

4:1.18 In part (iii) of Theorem 4.8 we had to assume f finite. Otherwise the function φ ◦ f is not de-
fined on the set {x : f(x) = ±∞}. Suppose that (X,M, µ) is complete. Since the measurability
of a function does not depend on its values on a set of measure zero, one can discuss the measur-
ability of functions defined only a.e. Formulate how this can be done, and then prove part (iii) of
Theorem 4.8 under the assumption that f is finite a.e.

4:1.19 Let (X,M, µ) be a measure space and Y a metric space. Give a reasonable definition for a func-
tion f : X → Y to be measurable. How much of the theory of this section and the next can be
done in this generality?

4.2 Sequences of Measurable Functions

Several forms of convergence of a sequence of functions are important in the theory of inte-
gration. Two of these forms, pointwise convergence and uniform convergence, form part of the
standard material of courses in elementary analysis. We assume that the reader is familiar with
these forms of convergence. We discuss two other forms in this section: almost everywhere con-
vergence and convergence in measure. We first show that the class of measurable functions is
closed under certain operations on sequences.

1This can be proved under the assumption of the continuum hypothesis. For the construction of such a set
without assuming CH, see E. K. van Douwen, Fubini’s theorem for null sets, Amer. Math. Monthly 96 (1989),
no. 8, 718–721.
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Theorem 4.9: Let (X,M, µ) be a measure space, and let {fn} be a sequence of measurable
functions on X. Then each of the functions supn fn, infn fn, lim supn fn and lim infn fn is
measurable.

Proof. Since {
x : sup

n
fn(x) ≤ α

}
=

∞⋂

n=1

{x : fn(x) ≤ α} ,

the function supn fn is measurable. That infn fn is measurable follows from the identity

inf
n
fn = − sup

n
(−fn).

The identities

lim sup
n

fn = inf
k

sup
n≥k

fn and lim inf
n

fn = sup
k

inf
n≥k

fn

supply the measurability of the other two functions. �

It follows that the set {
x : lim sup

n
fn(x) = lim inf

n
fn(x)

}

is a measurable set. This is precisely the set of convergence of the sequence {fn}. Here one
must allow the possibility that fn(x) → ±∞. It is also true that the set on which {fn} con-
verges to a finite limit is measurable. See Exercise 4:2.4. It follows readily that if {fn(x)} con-
verges for all x ∈ X then the limit function f(x) = limn fn(x) is measurable.
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4.2.1 Convergence almost everywhere

We shall see in Chapter 5 that the integral of a function f does not depend on the values that
f assumes on a set of measure zero. It is also true that one can often assert no more than that
the sequence {fn} converges for almost every x ∈ X. This form of convergence suffices in many
applications. We present a formal definition.

Definition 4.10: Let {fn} be a sequence of finite a.e., measurable functions on a measurable
set E ⊂ X. If there exists a function f such that

lim
n→∞

|fn(x) − f(x)| = 0

for almost all x ∈ E, we say that {fn} converges to f almost everywhere on E, and we write

lim
n
fn = f [a.e.] or fn → f [a.e.] on E.

The usual slight variation in language applies when E = X.

It is now clear that if fn → f [a.e.] then f is measurable. A bit of care is needed in inter-
preting this statement if the measure space is not complete. Removing the set of measure zero
on which {fn} does not converge to f leaves a measurable set on which the sequence converges
pointwise, and f is measurable on that set.

We mention that some authors provide slightly different definitions for convergence [a.e.].
For example, the concept makes sense without the functions being measurable or finite a.e., so
more inclusive definitions are possible. We shall rarely deal with nonmeasurable functions or
with functions that take on infinite values on sets of positive measure. By imposing the extra
restrictions in our definition, we focus on the way convergence [a.e.] actually arises in our devel-
opment. Observe that if fn → f [a.e.] then our definition guarantees that f is finite a.e.
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4.2.2 Convergence in measure

We turn now to another form of convergence, closely related to pointwise convergence.

Definition 4.11: Let (X,M, µ) be a measure space, and let E ∈ M. Let {fn} be a sequence
of finite a.e., measurable functions on E. We say that {fn} converges in measure on E to a
measurable function f and we write

lim
n
fn = f [meas] or fn → f [meas] on E

if for any pair (ε, η) of positive numbers there corresponds N ∈ IN such that, if n ≥ N , then

µ({x ∈ E : |fn(x) − f(x)| ≥ η}) < ε.

Equivalently, fn → f [meas] if, for every η > 0,

lim
n
µ({x ∈ E : |fn(x) − f(x)| ≥ η}) = 0.

These notions of convergence are used, too, in probability theory. There convergence a.e. is
called “convergence almost surely” and convergence in measure is called “convergence in prob-
ability.” We shall see in Section 4.3 that, when µ(X) < ∞, convergence [a.e.] implies conver-
gence [meas]. Thus in probability theory where the space has measure 1, almost sure conver-
gence always implies convergence in probability. In general, this is not so, as the next example
shows.

Example 4.12: Let

fn(x) =
x

n
.
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Each function fn is finite and Lebesgue measurable on IR. One verifies easily that fn → 0 [a.e.],
but {fn} does not converge in measure to any function on IR.

Our next example shows that it is possible for fn → 0 [meas] without {fn(x)} converging for
any x. This example also illustrates a feature of this convergence that will play a role in inte-
gration theory. Even though the sequence has no pointwise limit, we can still write

lim
m→∞

∫ 1

0
fm dλ = 0 =

∫ 1

0
lim

m→∞
fm dλ,

provided that limm→∞ fm is taken in the sense of convergence in measure.

Example 4.13: (A sliding sequence of functions) For nonnegative integers n, k, with 0 ≤
k < 2n and m = 2n + k, let

Em =

[
k

2n
,
k + 1

2n

]
.

Let f1 = χ
[0,1]

and, for n > 1, fm = χ
Em

. We see that

f2 = χ
[0, 1

2 ]
, f3 = χ

[ 1
2
,1]
,

f4 = χ
[0, 1

4 ]
, f5 = χ

[ 1
4
, 1
2 ]
, f6 = χ

[ 1
2
, 3
4 ]
, f7 = χ

[ 3
4
,1]
,

f8 = χ
[0, 1

8 ]
, . . .

Every point x ∈ [0, 1] belongs to infinitely many of the sets Em, and so

lim sup
m

fm(x) = 1,
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while

lim inf
m

fm(x) = 0.

Thus {fm} converges at no point in [0, 1], yet λ(Em) = 2−n for m = 2n + k. As m → ∞,
n→ ∞ also. For every η > 0,

λ({x : fm(x) ≥ η}) ≤ 1

2n
.

It follows that fm → 0 [meas] on the interval [0, 1].

4.2.3 Pointwise convergence and convergence in measure

If we study Example 4.13 further, we might note that, while the sequence {fm} converges at no
point, suitable subsequences converge [a.e.]. For example, f2n(x) → 0 for each x 6= 0. It is true,
in general, that such convergent subsequences exist. This is the first of our attempts at finding
relations among the various notions of convergence.

Theorem 4.14: If fn → f [meas], there exists a subsequence {fnk
} such that fnk

→ f [a.e.].

Proof. For each k ∈ IN, choose nk ∈ IN such that

µ

({
x : |fn(x) − f(x)| ≥ 1

2k

})
<

1

2k

for every n ≥ nk. We choose the sequence {nk} to be increasing. Let

Ak =

{
x : |fnk

(x) − f(x)| ≥ 1

2k

}
,
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and let A = lim supk Ak. Since
∑∞

k=1 µ(Ak) < 1 < ∞, it follows that µ(A) = 0 by the Borel–
Cantelli lemma (Exercise 2:4.8). Let x 6∈ A. Then x is a member of only finitely many of the
sets Ak. Thus there exists K such that, if k ≥ K,

|fnk
(x) − f(x)| < 1

2k
.

It follows that {fnk
} → f [a.e.]. �

In Section 4.3 we shall introduce yet another form of convergence and obtain some more
relations that exist among the various modes of convergence.

Exercises

4:2.1 Let {fn} be a sequence of finite functions on a space X, and let α ∈ IR. Prove that

{
x : lim inf

n
fn(x) > α

}
=

∞⋃

m=1

∞⋃

k=1

∞⋂

n=k

{
x : fn(x) − α ≥ 1

m

}
.

Use this to provide another proof of the fact that a pointwise limit of measurable functions is mea-
surable.

4:2.2 Let {An} be a sequence of measurable sets, and write fn(x) = χ
An

(x). Describe in terms of the

sets {An} what it means for the sequence of functions {fn} (a) to converge pointwise, (b) to con-
verge uniformly, (c) to converge almost everywhere, and (d) to converge in measure.

4:2.3 Characterize convergence in measure in the case where the measure is the counting measure.

4:2.4 Show that if {fn} is a sequence of measurable functions then the set of points x at which {fn(x)}
converges to a finite limit is measurable.
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4:2.5 Prove that if, for each n ∈ IN, fn is finite a.e. and if fn → f [a.e.] then f is finite [a.e.].

[Hint: This is a feature of Definition 4.10 and may not be true for other definitions of a.e. conver-
gence.]

4:2.6 Verify that the sequence {fn} in Example 4.12 converges to 0 [a.e.], but does not converge [meas].

4:2.7 Prove that if fn → f and gn → g both in measure then fn + gn → f + g in measure.

4:2.8 (a) Prove that if fn → f [meas], gn → g [meas], and µ(X) <∞ then fngn → fg [meas].

[Hint. Consider first the case that fn → 0 [meas] and gn → 0 [meas].]

(b) Use fn(x) = x and gn(x) = 1/n to show that the finiteness assumption in part (a) cannot be
dropped.

4:2.9 Let X = IN, M = 2IN, and µ({n}) = 2−n. Determine which of the four modes of convergence
coincide in this case. [Hint: Uniform and pointwise do not coincide here.]

4:2.10 Let (X,M, µ) be a measure space with µ(X) <∞. Prove that fn → f [meas] if and only if every
subsequence {fnk

} of {fn} has a subsequence {fnkj
} such that fnkj

→ f [a.e.].

4:2.11 Let {fn} be a sequence of measurable functions on a finite measure space (X,M, µ), and let αn

be a sequence of positive numbers. Suppose that
∞∑

n=1

µ ({x ∈ X : |fn(x)| > αn}) <∞.

Prove that

−1 ≤ lim inf
n→∞

fn(x)

αn
≤ lim sup

n→∞

fn(x)

αn
≤ 1

for µ–almost every x ∈ X.
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4.3 Egoroff’s Theorem

We saw in Section 4.2 that neither of the two forms of convergence, convergence a.e. and con-
vergence in measure, implies the other. We now develop a third form of convergence that is
stronger than these two, but weaker than uniform convergence. If {fn} converges uniformly to
f on X, we write

lim
n
fn = f [unif] or fn → f [unif].

Almost uniform convergence is just uniform convergence off a set of arbitrarily small measure.

Definition 4.15: Let (X,M, µ) be a measure space. Let {fn} be a sequence of finite a.e., mea-
surable functions on X. We say that {fn} converges almost uniformly to f on X if for every
ε > 0 there exists a measurable set E such that µ(X \ E) < ε and {fn} converges uniformly to
f on E. We then write

lim
n
fn = f [a.u.] or fn → f [a.u.].

It is instructive to compare convergence [a.u.] with convergence [meas]. Suppose that fn →
f [meas] on X. Let ε > 0. Then there exists N ∈ IN such that, for all n ≥ N ,

|fn(x) − f(x)| < ε

for all x in a set An with µ(X \ An) < ε. The sets An can vary with n. In Example 4.13, the
sets X \ An “slide” so much that {fn(x)} converge for no x ∈ [0, 1]. Convergence [a.u.] requires
that a single set E suffice for all sufficiently large n: the set E does not depend on n.

Almost uniform convergence, in general, implies both convergence [a.e.] and convergence
[meas]. (We leave verification of these facts as Exercise 4:3.1.) Neither converse is true. Exam-
ple 4.13 and the functions fn(x) = x/n, x ∈ IR, show this.
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On a finite measure space convergence [a.u.] and convergence [a.e.] are equivalent. This is
a form of a theorem due to D. Egoroff (1869–1931) (also transliterated sometimes as Egorov).
One obtains the immediate corollary that, when µ(X) < ∞, convergence [a.e.] implies conver-
gence [meas]. If the measure space is not finite then different conditions are needed2.

Theorem 4.16 (Egoroff) Let (X,M, µ) be a measure space with µ(X) < ∞. Let {fn} be a
sequence of finite a.e., measurable functions such that fn → f [a.e.]. Then fn → f [a.u.].

Proof. For every n, k ∈ IN, let

Ank =
∞⋂

m=n

{
x : |fm(x) − f(x)| < 1

k

}
.

The function f is measurable, from which it follows that each of the sets Ank is measurable.
Let

E =
{
x : lim

n
|fn(x) − f(x)| = 0

}
.

Since fn → f [a.e.], E is measurable, µ(E) = µ(X), and for each k ∈ IN, E ⊂ ⋃∞
n=1Ank. For

fixed k, the sequence {Ank}∞n=1 is expanding, so that

lim
n
µ(Ank) = µ

(
∞⋃

n=1

Ank

)
≥ µ(E) = µ(X).

Since µ(X) <∞,

lim
n
µ(X \Ank) = 0. (2)

2See R. G. Bartle, An extension of Egorov’s theorem. Amer. Math. Monthly 87 (1980), no. 8, 628–633.
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Now let ε > 0. It follows from (2) that there exists nk ∈ IN such that

µ(X \Ankk) < ε2−k. (3)

We have shown that for each ε > 0 there exists nk ∈ IN such that inequality (3) holds. Let

A =
∞⋂

k=1

Ankk.

We now show that µ(X \ A) < ε and that fn → f [unif] on A. It is clear that A is measurable.
Furthermore,

µ(X \A) = µ

(
∞⋃

k=1

(X \Ankk)

)
≤

∞∑

k=1

µ (X \Ankk) <
∞∑

k=1

ε

2k
= ε.

We see from the definition of the sets Ank that, for m ≥ nk,

|fm(x) − f(x)| < 1

k

for every x ∈ Ankk and therefore for every x ∈ A. Thus fn → f [unif] on A as we wished to
show. �

One often restricts one’s attention to some measurable subset E of X. It is clear how the
concepts and results of this section apply to this setting. For example, if µ(E) < ∞, then fn →
f [a.u.] on E whenever fn → f [a.e.] on E, even if µ(X) = ∞.
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[meas] [a.e.]

[a.u.]

[unif]

�
�

�
�

���

A
A
A
A
AAU

@
@@R

������ ?

Figure 4.1. Comparison of modes of convergence in a general measure space.

4.3.1 Comparisons

We summarize our comparison of the modes of convergence with two figures.3 In each case,
we assume that {fn} is a sequence of finite a.e., measurable functions on X. Figure 4.1 shows
the situation in a general measure space. Figure 4.2 gives the implications that are valid when
µ(X) < ∞. Where an arrow is missing, a counterexample is needed. The sliding sequence of
Example 4.13 shows that convergence in measure does not imply any of the other forms of con-
vergence, even when µ(X) < ∞. The sequence {xn} shows uniform convergence is not implied
by any other form of convergence. Finally, the sequence {x/n} shows that convergence [a.e.]
does not in general imply convergence [a.u.] or convergence [meas].

We view the implications given in the figures as preliminary comparisons of four forms of
convergence. In Chapter 5, we shall study a fifth form of convergence, called mean convergence,

3These figures have been popular for many years, since appearing in M. E. Munroe, Introduction to Measure

and Integration, Addison-Wesley (1953).
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[meas] [a.e.]

[a.u.]

[unif]

�
�

�
�

���

A
A
A
A
AAU

@
@@R

������ ?
6

�

Figure 4.2. Comparison of modes of convergence in a finite measure space.

and indicate its “place” in the diagrams. We shall also provide a third diagram that applies
even when µ(X) = ∞ if functions in the sequence are suitably dominated by some integrable
function. Exercise 4:3.4 provides an example in this spirit, but not expressed in the language of
integration.

Exercises

4:3.1 Prove that if fn → f [a.u.] on X then fn → f [a.e.] on X and fn → f [meas] on X.

4:3.2 By quoting results of this section or by other means, verify each implication appearing in the fig-
ures. Also verify that no additional implications can be added to the diagrams.

4:3.3 Let αn be a sequence of positive numbers converging to zero. If f is continuous, then certainly
f(x − αn) converges to f(x). Find a bounded measurable function on [0, 1] such that the sequence
of functions fn(x) = f(x− αn) is not a.e. convergent to f .

[Hint: Take the characteristic function of a Cantor set of positive measure.]
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4:3.4♦ Let {fn} be a sequence of Lebesgue measurable functions on [0,∞) such that |fn(x)| ≤ e−x for
all x ∈ [0,∞). If fn → 0 [a.e.], then fn → 0 [a.u.].

[Hint: The only place where we used our assumption that µ(X) < ∞ in the proof of Theorem 4.16
was to obtain the limit in equation (2).]

4:3.5 Prove another version of Egoroff’s theorem:

Theorem Let (X,M, µ) be a finite or σ-finite measure space. Let {fn} be a sequence
of finite a.e., measurable functions such that fn → f [a.e.]. Then there is a partition of
X into a sequence E0, E1, E2, . . . of disjoint measurable sets such that µ(E0) = 0 and
fn → f uniformly on each Ei, i ≥ 1.

4.4 Approximations by Simple Functions

A recurring theme in our development has been to find approximations to complicated objects
by simpler ones. Naturally, we wish to do the same for measurable functions. The simplest
measurable functions in a general space are those that are linear combinations of characteristic
functions of measurable sets. In this section we show that these simple functions can be used to
approximate general measurable functions. The simplest measurable functions in a metric space
are continuous. In the next section we show that all measurable functions in a metric space fur-
nished with an appropriate measure can be approximated by continuous functions.

We have not seen many examples of measurable functions and may not appreciate just how
they come about or just how complicated they may, at first, appear. Thus it is instructive to
begin with an example that exhibits some interesting features.
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Example 4.17: We work on the interval I0 = (0, 1). Each x ∈ I0 has a unique base 2 expan-
sion x = .a1a2 . . . that does not end in a string of 1’s. For each i ∈ IN, ai is a function of x with
only a finite number of discontinuities. Thus ai is Borel measurable. For each n ∈ IN, let

fn(x) =
a1(x) + a2(x) + · · · + an(x)

n
.

Finally, let

f(x) = lim sup
n

fn(x).

One verifies easily that f is Borel measurable. Observe that, while fn(x) depends only on the
first n bits in the binary expansion of x, f depends only on the “tail” of the expansion. If

x = .a1a2 . . . and y = .b1b2 . . .

and if there exists j,N ∈ IN such that

bk+j = ak for all k ≥ N,

then f(x) = f(y). One can also verify that, for every nondegenerate interval I ⊂ I0, f maps I
onto the interval [0,1]. For example, any x whose expansion has the tail .1000 will map onto 1

4
(decimal), and the set of all such x is dense in I0. (Some other features of f and related func-
tions appear in Exercise 4:4.2.)

Notice one remarkable feature of the Borel measurable function f : it takes every one of its
values on a dense set.4 Despite this apparent complexity, we can still approximate such a func-
tion by much simpler functions, indeed by a continuous function as we will see in the next sec-
tion.

4Functions with this property can arise quite naturally. See Exercise 7:8.15.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



304 Measurable Functions Chapter 4

Definition 4.18: Let E1, E2, . . . , En be pairwise disjoint measurable sets, and let c1, c2, . . . , cn
be real numbers. Let

f = c1χE1
+ · · · + cnχEn

.

Then f is called a simple function.

We can deduce that a simple function is one that takes on only finitely many values, all
real. Each value is assumed on a measurable set. Our restriction that the sets Ei be measurable
guarantees that simple functions are measurable. If the sets E1, E2, . . . , En are measurable but
not assumed to be pairwise disjoint the definition would be equivalent, but it is less transparent
then exactly what values the function assumes.

Theorem 4.19 (Approximation by simple functions)
Let (X,M, µ) be a measure space, and let f be measurable on X. Then there exists a sequence
{fn} of simple functions such that

lim
n
fn(x) = f(x) for all x ∈ X.

If f(x) ≥ 0 for all x ∈ X, the sequence {fn} can be chosen to be a nondecreasing sequence, so
that fn(x) ≤ fn+1(x) for all n ∈ IN and x ∈ X. If f is bounded on X, then fn → f [unif ].

Proof. Suppose first that f is nonnegative. Fix n ∈ IN. For each k = 1, 2, . . . , n2n, let

Jk =

[
k − 1

2n
,
k

2n

)
.

Let

fn(x) =

{
k−1
2n , if f(x) ∈ Jk;
n, otherwise.
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The intervals Jk are pairwise disjoint, and

n2n⋃

k=1

Jk = [0, n).

Since f is measurable, so is the function fn. It is clear that fn is a simple function and that
fn(x) ≤ f(x) for all x ∈ X. It is also clear for every x ∈ X, that fn+1(x) ≥ fn(x). Also

fn+1(x) − fn(x) ≤ 1

2n+1

if f(x) ≤ n, and

fn+1(x) − fn(x) ≤ 1

if n < f(x). It follows that

lim fn(x) = f(x)

and that the convergence is uniform if f is bounded. [Indeed, if 0 ≤ f(x) ≤ M for all x ∈ X,
then

fn+1(x) − f(x) ≤ 1

2n

for all n ≥M , so that the convergence is uniform.]
In the general case, f need not be nonnegative. Let

f+(x) =

{
f(x), if f(x) ≥ 0;
0, if f(x) < 0;

and let

f−(x) =

{
−f(x), if f(x) < 0;
0, if f(x) ≥ 0.
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Then f = f+−f−. Each of the functions f+ and f− is measurable and nonnegative. Thus there
exist sequences {gn} and {hn} of simple functions having the desired properties with respect to
f+ and f−, respectively. For each n ∈ IN, let

fn = gn − hn.

The sequence {fn} has all the required properties. �

4.4.1 Approximation by bounded, measurable functions

Our next result provides a sense of how measurable functions that are finite a.e. can be approx-
imated by bounded measurable functions. Since these, in turn, can be approximated uniformly
by simple functions, we are close to an understanding of the structure of arbitrary measurable
functions.

Theorem 4.20: Suppose that f is finite a.e. and measurable on X with µ(X) < ∞. Let ε > 0.
Then there exists a bounded measurable function g such that

µ ({x : g(x) 6= f(x)}) < ε.

Proof. Let

A∞ = {x : |f(x)| = ∞} ,
and for every k ∈ IN let

Ak = {x : |f(x)| > k} .
By hypothesis, µ(A∞) = 0. The sequence {Ak} is a descending sequence of measurable sets,
and A∞ =

⋂∞
k=1Ak. Since µ(X) <∞, it follows from Theorem 2.21 (ii) that

lim
k
µ(Ak) = µ(A∞) = 0.
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Thus there exists K ∈ IN such that µ(AK) < ε. Let

g(x) =

{
f(x), if x 6∈ AK ;
0, if x ∈ AK .

Then g is measurable, and |g(x)| ≤ K for all x ∈ X. Now

{x : g(x) 6= f(x)} = AK

and µ(AK) < ε, so g is the required function. �

Exercises

4:4.1 Show that the following statement is equivalent to (but different from Definition 4.18): A func-
tion f is a simple function if there exists collections E1, E2, . . . , En of measurable sets and real
numbers c1, c2, . . . , cn such that

f = c1χE1
+ · · · + cnχEn

.

4:4.2♦ Let f be the function on (0, 1) defined in Example 4.17.

(a) Prove that f(I) = [0, 1] for every open interval I ⊂ I0. That is, for every c ∈ [0, 1], the set
f−1(c) is dense in I0.

(b) Prove that the graph of f is dense in I0 × [0, 1].

(c) Let

g(x) =

{
f(x), if f(x) 6= x;
0, if f(x) = x.

Show that g has the properties of f given in (a) and (b).

(d) Show that the graph of g is not a connected subset of IR2.
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(e) Show that h(x) = g(x) − x does not have the Darboux property.

We have mentioned that some nineteenth century mathematicians believed that the Darboux
property (intermediate-value property) should be taken as a definition of continuity. They obvi-
ously were not aware of functions such as f and g above, nor of the function h(x) = g(x) − x. The
function h is the sum of a Darboux function with a genuinely continuous function.

4:4.3 Show that the class of simple functions on a measure space is closed under linear combinations
and products.

4:4.4 Characterize those functions that can be expressed as uniform limits of simple functions.

4:4.5 Let I1, I2, . . . , In be pairwise disjoint intervals with [a, b] =
⋃n

k=1 Ik, and let c1, c2, . . . , cn be real
numbers. Let f =

∑n
k=1 ckχIk

. Then f is called a step function.

(a) Show that every step function is a simple function for Lebesgue measure.

(b) Show that the proof of Theorem 4.19 applied to the function f(x) = x on [a, b] shows that f
can be expressed as a uniform limit of step functions.

(c) Can every bounded measurable function on [a, b] be expressed as a uniform limit of step
functions?

(d) Characterize those functions that can be expressed as uniform limits of step functions. (This
is harder.)

4:4.6 Let f : X → [0,+∞] be measurable, and let {rk} be any sequence of positive numbers for which
rk → 0 and

∑∞
k=1 rk = +∞. Then there are measurable sets {Ak} so that

f(x) =

∞∑

k=1

rkχAk
(x)
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at every x ∈ X.

Hint: Inductively define the sets Ak =



x ∈ X : f(x) ≥ rk +

∑

j<k

rjχAj
(x)



.

4.5 Approximation by Continuous Functions

We turn now to the problem of approximating a measurable function by a continuous one. We
shall show that, under suitable hypotheses, we can redefine a measurable function f on a small
set so that the new function g is continuous.

Throughout this section we take X to be a metric space and µ to be a Borel measure with
µ(X) <∞. We also assume the following.

4.21: If E is measurable and ε > 0, then there exists a closed set F ⊂ E such that µ(E \ F ) <
ε.

We recall that when E is also a Borel set this inner approximation by a closed set is always
available (see Corollary 3.15). The force of this assumption is that all measurable sets are as-
sumed to have the same property. For example, if µ is a Lebesgue–Stieltjes measure on IR with
µ(IR) <∞, Theorem 3.20 (iii) can be used to show that assertion 4.21 applies.

Before we embark on our program of approximating measurable functions, even badly be-
haved ones like the function f of Example 4.17, by continuous functions, we discuss briefly the
notions of relative continuity and extendibility.
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Suppose that X is a metric space, and S ⊂ X. Let f : X → IR, and let s0 ∈ S. The
statement that f is continuous at s0 means that

lim
x→s0

f(x) = f(s0).

It may be that f is discontinuous at s0, but continuous at s0 relative to the set S, that is

lim
x→s0, x∈S

f(x) = f(s0).

In other words, the restriction of the function f to the set S is continuous at s0. It is possible
that f |S is continuous, but cannot be extended to a function continuous on all of X. For exam-
ple, f(x) = sinx−1 is continuous on S = (0, 1], but cannot be extended to a continuous function
on [0, 1]. For that, one needs f to be uniformly continuous on S.

4.5.1 Tietze extension theorem

We make use of the Tietze extension theorem that we will establish in Chapter 9 in greater gen-
erality for functions defined on metric spaces. We prove it here only for the case of functions on
the real line.

Theorem 4.22 (Tietze extension theorem) Let S be a closed subset of a metric space X
and suppose that f : S → IR is continuous. Then f can be extended to a continuous function g
defined on all of X. Furthermore, if |f(x)| ≤M on S, then |g(x)| ≤M on X.

Proof. For X = IR, this is easy to prove. Let {(an, bn)} be the sequence of intervals comple-
mentary to S. Define g to be equal to f on S, and to be linear and continuous on each interval
[an, bn] if −∞ < an < bn < ∞. If an = −∞ or bn = ∞, we define g to be the appropriate
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constant on (−∞, bn] or [an,∞). One verifies easily that g is continuous on IR. Note also that if
|f(x)| ≤M on S then |g(x)| ≤M on IR. �

We shall use the Tietze extension theorem in conjunction with “inside” approximation of
measurable sets by closed sets. For this we shall use Corollary 3.15. We approximate X by
closed sets. On these closed sets we shall obtain continuous functions that approximate our
measurable function f . These functions can, in turn, be extended to functions continuous on
all of X. We shall obtain a succession of theorems, each improving the sense of approximation
of f by continuous functions. Each of these theorems is of interest in itself.

4.5.2 Lusin’s theorem

The theorems just discussed culminate in an important theorem discovered independently by
Guiseppe Vitali (1875–1932) and Nikolai Lusin (1883–1950). It is almost universally called
Lusin’s theorem. It asserts that for every ε > 0 there is a continuous function g defined on X
such that g = f except on a set of measure less than ε. (Lusin, often transliterated as Luzin,
was a student of Egoroff, who is known mainly for the theorem on almost uniform convergence
that we have just seen in the preceding section.)

Since we have not yet proved the Tietze extension theorem in a general metric space, the
reader may wish to take X in the theorem to be an interval [a, b] in IR.
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Theorem 4.23: Let (X,M, µ) be a finite measure space with X a metric space and µ a Borel
measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable on X.
Then to each pair (ε, η) of positive numbers corresponds a bounded, continuous function g such
that

µ({x : |f(x) − g(x)| ≥ η}) < ε.

Furthermore, if |f(x)| ≤M on X, then one can choose g so that |g(x)| ≤M on X.

Proof. Suppose first that |f(x)| ≤ M on X. By Theorem 4.19 there exists a simple function
h, also bounded by M , such that

|h(x) − f(x)| < η (x ∈ X).

Let c1, . . . , cm be the values that h assumes on X, and for each i = 1, . . . ,m let

Ei = {x : h(x) = ci} .
The sets Ei are pairwise disjoint and cover X. Choose closed sets F1, . . . , Fm such that, for each
i = 1, . . . ,m, Fi ⊂ Ei and

µ(Ei \ Fi) <
ε

m
.

Let

F = F1 ∪ · · · ∪ Fm.

Then F is closed, F ⊂ X and µ(X \ F ) < ε. Furthermore, the restriction of h to Fi, h|Fi, is
constant for i = 1, . . . ,m. It follows that h|F is continuous.

To see this, we need only note that, if x0 ∈ Fi and xn → x0 with xn ∈ F for all n, then for
n sufficiently large xn ∈ Fi, a set on which h is constant. By the Tietze extension theorem the
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function h|F can be extended to a function g continuous on X with |g(x)| ≤M on X. Since

µ(X \ F ) < ε,

g is the desired function.
The general case in which we do not assume f bounded now follows readily from Theo-

rem 4.20. �

Theorem 4.24: Let (X,M, µ) be a finite measure space with X a metric space and µ a Borel
measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable on X.
There exists a sequence {gk} of bounded, continuous functions for which gk → f [a.u.].

Proof. It follows immediately from Theorem 4.23 that there exists a sequence {fn} of con-
tinuous functions for which fn → f [meas]. By Theorem 4.14, there exists a subsequence {fnk

}
such that fnk

→ f [a.e.]. The desired conclusion now follows from Egoroff’s theorem, by defin-
ing gk = fnk

. �

We are now ready to state and prove the main theorem of this section.

Theorem 4.25 (Lusin) Let (X,M, µ) be a finite measure space with X a metric space and µ
a Borel measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable
on X, and let ε > 0. There exists a continuous function g on X such that f(x) = g(x) for all
x in a closed set F with µ(X \ F ) < ε. If |f(x)| ≤ M for all x ∈ X, we can choose g to satisfy
|g(x)| ≤M for all x ∈ X.
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Proof. By Theorem 4.24, there exists a measurable set E such that µ(X \ E) < ε/2 and a
sequence {gk} of continuous functions on X such that gk → f [unif] on E. By condition 4.21,
there exists a closed set F ⊂ E such that µ(X\F ) < ε. Since gk → f [unif] on E, the restriction
f |F of f to F is continuous. By Tietze’s theorem, this function can be extended to a function g
continuous on all of X, so that g and f have the same bounds on X. �

4.5.3 Further discussion

Let us return for a moment to Example 4.17. How complicated must a continuous function g be
to approximate the function f of that example in the Lusin sense? A theorem in number theory
asserts that almost every number in [0, 1] is “normal”.5 This means that for almost all x ∈ [0, 1]
the binary expansion of x has, in the limit, half the bits equaling zero and half equaling one.
More precisely, for almost every x in the interval [0, 1] with x = .a1a2a3 . . . the binary expan-
sion of x, it is true that

lim
n

a1 + · · · + an

n
= 1

2 .

Thus the function f in Example 4.17 satisfies f(x) = 1
2 a.e. In other words, we can choose g ≡

1
2 and conclude that f = g a.e. The approximation was not so difficult in this case! Here we
have a much stronger result than Lusin’s theorem guarantees. The exceptional set has measure
zero.

When we approximate measurable sets by simpler sets, we get the following results. If we
are willing to ignore sets of arbitrarily small measure, we can take the approximating sets to be
open or closed. If we are willing to ignore only zero measure sets, we must give up a bit of the

5See Hardy and Wright, An Introduction to the Theory of Numbers, Oxford (1938).
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regularity of the approximating sets—we can use sets of type Gδ on the outside and sets of type
Fσ on the inside.

The analogous situation for the approximation of measurable functions would suggest some-
thing similar. If we are willing to ignore sets of arbitrarily small measure, we can choose the ap-
proximating functions to be continuous. This is Lusin’s theorem. Observe that for a continuous
function g the associated sets

{x : α < g(x) < β} and {x : α ≤ g(x) ≤ β}
are open and closed, respectively. One might expect that, if one is willing to ignore only sets
of measure zero, we can choose the approximating functions g in the first Borel class; that is,
one for which the corresponding associated sets are of type Fσ and Gδ, respectively. This is not
quite the case. Instead, g can be taken from the second Borel class where the associated sets
are of type Gδσ and Fσδ, respectively. Exercise 4:6.2 at the end of the chapter deals with the
Borel and Baire classes of functions and with how one can approximate measurable functions by
functions from these classes.

Exercises

4:5.1 Complete the proof of Theorem 4.23 for the case f unbounded.

4:5.2 Show that Lusin’s theorem is valid on (IR,M, µf ), where µf is a Lebesgue–Stieltjes measure, even
if µf (IR) = ∞.

4:5.3 Let X = Q ∩ [0, 1] and M = 2X .

(a) Let µ be the counting measure on X, let Q1 and Q2 be complementary dense subsets of X,
and let f = χ

Q1
. Show that the conclusion of Lusin’s theorem fails. What hypotheses in

Lusin’s theorem fail here?
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(b) Let r1, r2, r3, . . . be an enumeration of the rationals, and let µ be the measure that assigns
value 2−i to the singleton set {ri}. Let f be as in (a). Show how to construct the function g
called for in the conclusion of Lusin’s theorem.

4:5.4 The purpose of this exercise is to show the essential role that the regularity condition 4.21 plays
in the hypotheses of Lusin’s theorem. Let E be a subset of [0, 1] such that both E and its comple-

ment Ẽ are totally imperfect (see Section 3.12). Let f = χ
E

. Let g be Lebesgue measurable, and
suppose that L = {x : f(x) = g(x)} ∈ L.

(a) Show that λ∗(E) = 0 and λ∗(E) = 1.

(b) Show that
E ∩ L = {x : f(x) = 1} ∩ L = {x : g(x) = 1} ∩ L

and hence that E ∩ L ∈ L. Similarly, show that Ẽ ∩ L ∈ L.

(c) Show that E ∩ L ⊂ E and λ∗(E) = 0, and hence that λ(E ∩ L) = 0. Similarly show that

λ(Ẽ ∩ L) = 0 and λ(L) = 0. (Recall that Ẽ denotes the complement of E.)

We have shown that if λ∗(E) = 0 and λ∗(E) = 1, for E ⊂ [0, 1], then the function χ
E

is not
λ-measurable on any set of positive Lebesgue measure. We now use this fact to show that Lusin’s
theorem can fail dramatically when the condition 4.21 is not hypothesized.

Refer to Exercise 3:13.13. Let λ be the extension of λ to the σ-algebra generated by L and

{E}. Note that the measure space ([0, 1],M, λ) does not satisfy the assertion 4.21.

(d) Show that λ(L) = λ(L) = 0.

Thus the λ-measurable function f does not agree with any function that is λ-measurable even
on a set of positive Lebesgue measure. In particular, if g is continuous and f(x) = g(x) for all x in

a closed set F , then λ(F ) = λ(F ) = 0.
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Figure 4.3. Construction of f in Exercise 4:6.1.

(e) Give an example of a λ-measurable function g (even a continuous one) such that λ({x : f(x) = g(x)
1.

4.6 Additional Problems for Chapter 4

4:6.1 Let K be the Cantor ternary set, and let {(an, bn)} be the sequence of intervals complementary to
K in (0, 1). For each n ∈ IN, let cn = (an + bn)/2. Let f = 0 on K be linear and continuous on
[an, cn] and on [cn, bn], with the values f(cn) as yet unspecified (see Figure 4.3). What conditions
on the values f(cn) are necessary and sufficient (a) for f to be continuous, (b) for f to be a Baire
1 function, or (c) for f to be of bounded variation? (See Exercise 4:6.2).

4:6.2♦ (Baire functions and Borel functions) For this problem, all functions are assumed finite
unless explicitly stated otherwise. Let B0 consist of the continuous functions on an interval X ⊂
IR. We do not assume X bounded.

(a) For n ∈ IN, let Bn consist of those functions that are pointwise limits of sequences of func-
tions in Bn−1. The class Bn is called the Baire functions of class n or the Baire-n functions.
Prove that if f ∈ B1 then, for all α ∈ IR, the sets {x : f(x) > α} and {x : f(x) < α} are of
type Fσ.
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(b) Show that, if f ∈ B2, then for all α ∈ IR the sets

{x : f(x) > α} and {x : f(x) < α}
are of type Gδσ.

(c) Show that a function f : X → IR that is continuous except on a countable set is in B1.
(Compare with Exercise 4:1.16.)

(d) Let f = χ
Q

. Show that f ∈ B2 \ B1.

(e) Prove that B1 is closed under addition and multiplication.

(f) Let {Mn} be a sequence of positive numbers and suppose that
∑∞

n=1Mn <∞. Let {fn} ⊂
B1 with |fn(x)| ≤Mn for all n ∈ IN and all x ∈ X. Prove that

∑∞
n=1 fn ∈ B1.

(g) Prove that if fn → f [unif] and fn ∈ B1 for all n ∈ IN then f ∈ B1.

[Hint: Choose an increasing sequence {nk} of positive integers such that limk nk = ∞ and
|fnk

(x) − f(x)| < 2−k on X. Then apply (f) appropriately.]

(h) Prove that the composition of a function f ∈ B1 with a continuous function is in B1.

(i) Prove the converse to part (a): If for every α ∈ IR the sets {x : f(x) > α} and {x : f(x) < α}
are of type Fσ, then f ∈ B1.

(j) Prove that if f is differentiable then f ′ ∈ B1.

(k) Prove that if {fn} ⊂ B1 then sup fn ∈ B2. [This assumes that sup fn is a finite function.]

(l) Prove that if {fn} ⊂ B0 then lim supn fn ∈ B2. [This assumes that lim sup fn is a finite
function.]

(m) Prove that if f is finite a.e. and measurable on X then there exists g ∈ B2 such that f = g
a.e..
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(n) Give an example of a finite Lebesgue measurable function on IR that agrees with no g ∈ B1

a.e..

[Hint: Using Exercise 2:14.9, let f = χ
A

where λ(I ∩ A) > 0 and λ(I \ A) > 0 for every open
interval I. Show that if g ∈ B1 and g = f a.e. then {x : g(x) = 0} and {x : g(x) = 1} are
disjoint, dense subsets of IR of type Gδ. This violates the Baire category theorem for IR.]

(o) The smallest class of functions that contains B0 and is closed under the operation of taking
pointwise limits is called the class of Baire functions. It is true, though difficult to prove,
that for each n ∈ IN there exists f ∈ Bn+1 \ Bn. Show that there exists a Baire function g on
X = [0,∞) that is not in any of the classes Bn.

[Hint: Let g ∈ Bn+1 \ Bn on [n, n+ 1).]

This function is in the class Bω, where ω is the first infinite ordinal. One then defines
Bω+1 as those functions that are limits of sequences of functions in Bω. Using transfinite
induction, one obtains classes Bγ for every countable ordinal. One can show that for every
countable ordinal γ there exist functions f ∈ Bγ \⋃β<γ Bβ . One can also show that the class
of Baire functions on the interval X is exactly the class of Borel measurable functions.

(p) Use the fact that there are Lebesgue measurable sets that are not Borel sets to show that
there are Lebesgue measurable functions that are not Baire functions.

4:6.3 Show that a function f : IR2 → IR that is continuous in each variable separately is a Baire 1
function. (This is the original problem that led Baire to this line of research.)

[Hint: Define

Fn(x, y) = f((i+ 1)2−n, y)[x− i2−n] − f(i2−n, y)[x− (i+ 1)2−n]

if i2−n ≤ x < (i + 1)2−n for some integer i. Show that Fn is continuous on IR2 and 2nFn → f
pointwise.]
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4:6.4 Construct a function f : [0, 1] → [0, 1] as follows. Let {In} be an enumeration of the open intervals
in [0, 1] having rational endpoints. For each n ∈ IN, let Kn ⊂ In be a Cantor set of positive Lebes-
gue measure such that the sequence {Kn} is pairwise disjoint and

∑∞
n=1 λ(Kn) = 1. Define fn on

Kn to be continuous on Kn, nondecreasing, and such that fn(Kn) = [0, 1]. Let

f(x) =

{
fn(x), if x ∈ Kn;
0, if x ∈ [0, 1] \⋃∞

n=1Kn.

(a) Show that f is Lebesgue measurable.

(b) Show that f(I) = [0, 1] for every open interval I ⊂ [0, 1].

(c) Using the sets Kn, find continuous functions on [0, 1] that approximate f in the Lusin sense.

(d) Refer to Exercise 4:6.2. Does there exist g ∈ B1 such that g = f [a.e.]?

(e) Give an example of a function g ∈ B2 for which f = g [a.e.]. [Hint: Easy.]

4:6.5 Measurability can be expressed as a separation property. Let µ∗ be an outer measure on a space
X. Show that a function f : X → [−∞,+∞] is measurable with respect to µ∗ if and only if

µ∗(T ) ≥ µ∗(T ∩ {x ∈ X : f(x) ≤ a}) + µ∗(T ∩ {x ∈ X : f(x) ≥ b})

for all T ⊂ X and all −∞ < a < b < +∞.

4:6.6 Let (X,M, µ) be a measure space and, for every measurable function f : X → [−∞,+∞], define

‖f‖µ = inf {r : µ ({x : |f(x)| > r}) ≤ r} .

(a) Show that µ
(
{x : |f(x)| > ‖f‖µ}

)
≤ ‖f‖µ.

(b) Check the triangle inequality ‖f + g‖µ ≤ ‖f‖µ + ‖g‖µ.

(c) Show that fn → f in µ–measure if and only if ‖fn − f‖µ → 0.
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(d) Show that, if f = χ
A

, then ‖cf‖µ = inf{c, µ(A)} for any 0 ≤ c < ∞. In particular, it is not
true in general that ‖cf‖µ = c ‖f‖µ.

(e) Show that, for c > 0,

‖cf‖µ ≤ max
{
‖f‖µ , c ‖f‖µ

}

and hence that ‖cf‖µ → 0 as ‖f‖µ → 0.

(f) Show that if µ({x : f(x) 6= 0}) <∞ and µ{x : |f(x)| = ∞} = 0 then ‖cf‖µ → 0 as c→ 0.

(g) Show that every Cauchy sequence {gk} in measure has a subsequence that converges both
µ–almost everywhere and in measure.

[Hint: Pick an increasing sequence N(k) so that

‖gi − gj‖µ ≤ 2−n

whenever i ≥ j ≥ N(k).]

(h) Show that if
∞∑

k=1

‖gk+1 − gk‖µ <∞

then {gk} converges to some function g µ–almost everywhere, and ‖gk − g‖µ converges to 0.
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Chapter 5

INTEGRATION

We are now ready to develop a theory of the integral based on our studies of measure spaces
and measurable functions.

We develop all the basic tools of integration theory in this chapter. Sections 5.2, 5.3, and 5.4
define the integral for measurable nonnegative functions and then for measurable real-valued
functions and establish the most immediate properties. The integral can be viewed as a signed
measure. This viewpoint is explored in Sections 5.6 and 5.7 and culminates in the important
and useful Radon–Nikodym theorem in Section 5.8. A deeper perspective on the Radon–Nikodym
theorem will be given in Chapters 7 and 8. The convergence theorems available for the integral
appear in Section 5.9.

The integral as defined here is a formidably different object than the simple limit of Rie-
mann sums that one studies in elementary courses. It is by no means obvious from the defi-
nitions what relation, if any, this theory has to previous integrals studied when it is placed in
the context of Lebesgue measure on the real line. Section 5.5 discusses in detail the relation

322
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between the classical Riemann integral and the Lebesgue integral and gives as well a simple
version of the fundamental theorem of the calculus for the latter. Section 5.10 continues this
theme by comparing the integral here with the improper calculus integral and the generalized
Riemann integral. Both Sections 5.5 and 5.10 can be omitted, but there are good cultural rea-
sons for wanting to know such things.

Finally, Section 5.11 gives an account showing how to extend the definition of the integral to
complex-valued functions. This is needed for several sections in later chapters where integration
of complex-valued functions is used. The related subject of complex-valued measures is devel-
oped in exercises at the end of the chapter.

Before proceeding with this program, we shall begin in Section 5.1 with a discussion of the
Riemann integral, with special attention to its limitations and how the integral we shall define
compares. We shall discover that the class of Riemann integrable functions is not wide enough
to include functions that arise from natural limit processes. The reader who feels no need for
background and motivation can proceed directly to Section 5.2, where the integral is defined.

5.1 Introduction

5.1.1 Scope of the Concept of Integral

The Riemann integral of a real function f on an interval [a, b] is defined as a limit of sums
∫ b

a
f(x) dx = lim

n∑

i=1

f(ξi)(xi+1 − xi). (1)

The way the limit is taken in (1) restricts the scope of the integral to bounded functions f that
are a.e. continuous and restricts the domain to a compact interval [a, b].
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It is important to relax these restrictions. The procedures of Cauchy discussed in Section 1.16
for handling improper integrals allow a modest extension of the integral to accommodate some
unbounded functions and unbounded intervals. The domain could be enlarged by defining an
integral over sets ∫

A
f (t) dt =

∫ b

a
f(t)χ

A
(t) dt,

provided that this exists. Even so, the classes of sets A and functions f for which such a proce-
dure is successful are too small. For example, one might want to integrate a function over the
set of its points of differentiability and that set can be too complicated for this method. More-
over, the class of Riemann integrable functions on an interval [a, b] is not closed under the stan-
dard limit operations, even when questions of unboundedness do not create problems.

There is also the problem of generalizations. The definition of the Riemann integral extends
naturally to functions defined on certain subsets of IRn, but in spaces that do not have this sim-
ple geometry a Riemann-type integral would be hard to conceive. There are many other spaces
for which a concept of integration is needed. The elements of such spaces need not be points in
IRn; they could be other objects such as sequences or functions.

The integral we define in this chapter successfully addresses all these problems. Our frame-
work will involve an arbitrary measure space (X,M, µ). Here X can be any set. The integral
makes sense for any nonnegative or nonpositive measurable function defined on any measur-
able set E. For measurable functions f that take both positive and negative values, the inte-
gral makes sense unless both its positive and negative parts f+ and f− have infinite integrals
over the set E. Since the class of measurable sets is a σ-algebra, and the class of measurable
functions is closed under diverse operations, the various necessary manipulations with sets and
functions will not take us out of our framework.
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An entirely different approach to the problem of extending the Riemann integral can be
taken. Instead of developing an integral within the context of a measure space, one could seek
to reinterpret the limit operation in (1) in some broader sense. Integrals based on Riemann
sums have received considerable attention in recent years, because they can solve certain prob-
lems in IRn that the Lebesgue integral cannot. These integrals generalize sufficiently to include
the Lebesgue integrals and others when dealing with spaces that have certain partitioning prop-
erties. We have already indicated some of the ideas in Section 1.21, and in this chapter we de-
velop them a bit further in Section 5.10.

5.1.2 The Class of Integrable Functions

To fix ideas, we work with functions defined on [0, 1]. Suppose that {fn} is a sequence of Rie-
mann integrable functions that converges pointwise to a function f on [0, 1]. We would like to
be able to assert that, if limn→∞

∫ 1
0 fn (x) dx exists, then f is integrable, and

∫ 1

0
f (x) dx =

∫ 1

0

(
lim

n→∞
fn(x)

)
dx = lim

n→∞

∫ 1

0
fn (x) dx.

When there is not sufficient control on the size of the functions fn, the conclusion can fail
for all forms of integration. For example, for each n = 2, 3, . . . , define fn as follows:

fn(0) = fn

(
2

n

)
= 0, fn

(
1

n

)
= n,

fn continuous and linear on [0, 1/n] and on [1/n, 2/n], and fn(x) = 0 for all x ∈ [2/n, 1]. See
Figure 5.1. In this example,

lim
n→∞

∫ 1

0
fn (x) dx = 1 > 0 =

∫ 1

0
lim

n→∞
fn (x) dx.
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Figure 5.1. Construction of the sequence {fn}.

But for the Riemann integral, the desired conclusion can fail even when |fn(x)| ≤ 1 for all
n ∈ IN and all x ∈ X, simply because the limit function f is not integrable.

Example 5.1: Let q1, q2, . . . be an enumeration of the set Q ∩ [0, 1]. For each n ∈ IN, let

fn(x) =

{
1, if x = q1, . . . , qn;
0, otherwise.

Since fn = 0 except on the finite set q1, . . . , qn,
∫ 1

0
fn (x) dx = 0.

But

lim
n→∞

fn(x) = χ
E

(x)

is a function that is everywhere discontinuous. For any partition P of [0, 1] given by 0 = x0 <
x1 < · · · < xn = 1, the lower and upper Riemann sums of f relative to P are 0 and 1, respec-
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tively, so f is not Riemann integrable. Thus limn→∞

∫ 1
0 fn (x) dx = 0, but

∫ 1

0
lim

n→∞
fn (x) dx

does not exist as a Riemann integral.

This sort of difficulty disappears when dealing with the integral of this chapter. We shall
see that when the sizes of the functions fn are suitably controlled the limit function will be in-
tegrable, and the integral will have the expected value. Furthermore, even convergence in mea-
sure will suffice.

5.1.3 The fundamental theorem of calculus for Riemann integrals

If f is differentiable on [a, b] and f ′ is Riemann integrable, then

f(b) − f(a) =

∫ b

a
f ′ (x) dx.

This is known as the fundamental theorem of the calculus. Within the theory of the Riemann
integral this is easy enough to prove, but the hypothesis that f ′ is Riemann integrable cannot
be removed. It also adds a degree of awkwardness to the theory, since, for every application, the
derivative function that arises must be independently checked for integrability.

The first construction of an everywhere differentiable function with a bounded but noninte-
grable derivative was given by Vito Volterra (1860–1940) (see Section 1.18 and Exercise 5:5.5).
Here we sketch out an even more interesting example due to D. Pompeiu in 1907 of a strictly
increasing differentiable function whose derivative vanishes on a dense set. This derivative can-
not be Riemann integrable. (Note that the Cantor function also has a vanishing derivative on
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a dense set, but it does not offer an example of a Pompeiu type of derivative: it is not differen-
tiable everywhere nor is it strictly increasing.)

Example 5.2: The method employed is due to Cantor and is often described as the “conden-
sation of singularities.” The function f(x) = (x − a)

1
3 has an infinite derivative at x = a and a

finite derivative elsewhere. We can construct a function with many more singularities as follows:
Let q1, q2, . . . be an enumeration of Q ∩ [0, 1], and for each n ∈ IN, let fn(x) = (x− qn)

1
3 . Let

f(x) =

∞∑

n=1

fn(x)

10n
.

The series that defines f is uniformly convergent to f , so f is continuous on [0, 1]. Since each
term of the series is strictly increasing, so is f . One would like to assert that f has a derivative
at each point of [0, 1] and that

f ′(x) =

∞∑

n=1

f ′n(x)

10n
=

∞∑

n=1

(x− qn)−
2
3

3 · 10n
, (2)

but since the series in (2) does not converge uniformly on [0, 1], standard theorems do not ap-
ply. Nonetheless, a more delicate argument1involving details of the series does verify the valid-
ity of (2). In particular, f ′(x) = ∞ for all x ∈ Q ∩ [0, 1].

The function f maps [0, 1] homeomorphically onto an interval [a, b]. In particular, S = f(Q∩
[0, 1]) is dense in [a, b]. Let h = f−1. Then h is continuous and strictly increasing on [a, b], and
h′ = 0 on the dense set S. Also, since f has a finite or infinite derivative everywhere and f ′ is
bounded away from zero, h is differentiable and has a bounded derivative.

1See S. Marcus, Rend. Circolo Mat. Palermo 22 (1963), 1–36.
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The fundamental theorem of calculus asserts that if h′ is integrable then

h(x) − h(a) =

∫ x

a
h′ (t) dt

for all x ∈ [a, b]. Suppose, if possible, that h′ is integrable. Let a < c ≤ b, and let

a = x0 < x1 < · · · < xn = c

be a partition of [a, c]. Since h′ = 0 on a dense subset of [a, c], the lower Riemann sum relative
to the partition is zero. It follows that

∫ c
a h

′ (x) dx = 0. Thus h(c) − h(a) = 0. This is true for
all c ∈ [a, b], from which it follows that h(c) = h(a) for all c ∈ [a, b], and h is constant. It is clear
that h is not constant, thus h′ is not Riemann integrable.

For the integral developed in this chapter applied to the Lebesgue measure space ([a, b],L, λ),
we will have

h(x) − h(a) =

∫ x

a
h′ (t) dt for all x ∈ [a, b].

We end this section with two remarks. We shall see in Section 5.5 that a function f is Rie-
mann integrable on [a, b] if and only if f is bounded and continuous a.e. with respect to Leb-
esgue measure. It follows that the function h′ in Example 5.2 is discontinuous on a set of pos-
itive measure. One can show2 that, if a function f is differentiable on [a, b] and α < β, then
{x : α < f ′(x) < β} is either empty or has positive Lebesgue measure. Thus

T =
{
x : 0 < h′(x) < 1

}

has positive measure. Since h′ = 0 on a dense set, h′ is discontinuous at every point of T . In
particular, this function offers an example of a bounded derivative that fails to be integrable by

2See J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53, (1947), 124–125.
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Riemann’s methods3.

5.2 Integrals of Nonnegative Functions

We shall define an integral for all nonnegative functions f on a measure space (X,M, µ). We
use the notation ∫

X
f dµ,

which is similar in some ways to the familiar calculus notation. Later we may wish to introduce
a dummy variable so that the integral assumes the form∫

X
f(x) dµ(x),

but, for now, we prefer the simpler notation.
There are many different ways of defining the integral in a measure space. Our definition

works immediately for all nonnegative measurable functions. For motivation, let us discuss the
ideas behind Lebesgue’s definition of the integral for a bounded function defined on an interval
[a, b].

Let f be bounded and measurable on [a, b]. Let L and U be simple functions such that L ≤
f ≤ U , say

L =
m∑

i=1

aiχEi
and U =

n∑

i=1

biχFi
.

3For an accessible discussion of the problems arising in integrating derivatives using the Riemann integral see
S. D. Chatterji, The Teaching of Mathematics: A Frequent Oversight Concerning the Integrability of Derivatives,
Amer. Math. Monthly 95 (1988), no. 8, 758–761.
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We would like to define an integral
∫ b
a f (x) dx so that it satisfies

m∑

i=1

aiλ(Ei) ≤
∫ b

a
f (x) dx ≤

n∑

i=1

biλ(Fi),

or, in other notation, ∫ b

a
L (x) dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
U (x) dx.

Since these inequalities are to hold whenever L ≤ f ≤ U , it is natural to define
∫ b

a
f (x) dx = sup

∫ b

a
L (x) dx = inf

∫ b

a
U (x) dx,

where the supremum is taken over all simple functions L ≤ f and the infimum is taken over all
simple functions U ≥ f . It takes only a small argument to show that the integral

∫ b
a f (x) dx is

then well defined (see Exercise 5:2.6), so

sup

∫ b

a
L (x) dx = inf

∫ b

a
U (x) dx.

We then have a definition of the integral similar to Lebesgue’s original definition. Such a defini-
tion is perfectly adequate when we are dealing with a bounded measurable function and when
the underlying measure space (X,M, µ) is finite. One could then extend the definition to un-
bounded functions and to spaces of infinite measure in a variety of ways. (See Exercise 5:12.1
for example.)

Our approach is similar to this but has only two steps. First, we define the integral of an
arbitrary nonnegative measurable function. The function need not be bounded, and the space
need not have finite measure. We do this in this section. Then, in Section 5.4, we extend the
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definition to functions that need not be nonnegative.

5.2.1 The integral of a nonnegative simple function

We begin with the definition of the integral of a nonnegative simple function.

Definition 5.3: Let (X,M, µ) be a measure space, and let φ be a nonnegative simple function
on X. If φ =

∑n
k=1 akχEk

, then
∫

X
φdµ =

n∑

k=1

akµ(Ek).

If for some k, ak = 0 and µ(Ek) = ∞, we define akµ(Ek) = 0.

We leave, as Exercise 5:2.1, the proof that Definition 5.3 does not depend on the representa-
tion of φ as a simple function.

Theorem 5.4: Let φ and ψ be nonnegative simple functions on X, and let c ≥ 0.

1. If φ = ψ a.e., then
∫
X φdµ =

∫
X ψ dµ.

2.
∫
X cφ dµ = c

∫
X φdµ.

3.
∫
X (φ+ ψ) dµ =

∫
X φdµ+

∫
X ψ dµ.

4. If φ ≤ ψ on X, then
∫
X φdµ ≤

∫
X ψ dµ.
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Proof. The verifications of (i) and (ii) are immediate. To verify (iii), let

φ =
n∑

k=1

akχAk
and ψ =

m∑

k=1

bkχBk
,

and we may suppose that X =
⋃n

k=1Ak =
⋃m

k=1Bk. Then φ + ψ is a nonnegative simple func-
tion. Let

Cij = Ai ∩Bj , i = 1, . . . , n, j = 1, . . . ,m.

The sets Cij are pairwise disjoint,
⋃

i,j

Cij = X,

and each of the functions φ and ψ is constant on each set Cij . Thus
∫

X
(φ+ ψ) dµ =

∑

i,j

(ai + bj)µ(Cij)

=
∑

i,j

aiµ(Cij) +
∑

i,j

bjµ(Cij)

=

∫

X
φdµ+

∫

X
ψ dµ.

This proves (iii). To prove (iv), we need only note that on the sets Cij = Ai ∩Bj , φ = ai ≤ bj =
ψ, so ∫

X
φdµ =

∑

i,j

aiµ(Cij) ≤
∑

i,j

biµ(Cij) =

∫

X
ψ dµ,
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as required. �

5.2.2 The integral of a nonnegative, measurable function

Now let f be an arbitrary nonnegative, measurable function. Let Φf be the family of nonneg-
ative simple functions φ such that φ(x) ≤ f(x) for all x ∈ X. The family Φf contains the zero
function, so Φf 6= ∅.

Definition 5.5: Let (X,M, µ) be a measure space, and let f be a nonnegative measurable
function on X. The integral of f with respect to µ, denoted by

∫
X f dµ, is the quantity

∫

X
f dµ = sup

{∫

X
φdµ : φ ∈ Φf

}
.

For E ∈ M, we write
∫
E f dµ for

∫
X fχ

E
dµ.

We close this section by observing that our concept of integral applies to every nonnegative
measurable function. For certain functions, the integral will be infinite. Most of the develop-
ment that follows will deal with functions that have finite integrals.

Definition 5.6: A nonnegative measurable function f defined on a measure space is called
integrable on a set E if

∫
E f dµ <∞.

A few remarks are in order.

Remark 1. It is clear that properties (i), (ii), and (iv) of Theorem 5.4 hold for integrals of
nonnegative measurable functions. Property (iii) does too, but is not so easy to prove at this
stage.
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Remark 2. It is clear that Definitions 5.3 and 5.5 agree when f is a simple function, and so
our terminology is consistent.

Remark 3. Our definition of
∫
X f dµ does not involve approximation of f from above by sim-

ple functions. This would have been possible if µ(X) was assumed finite, but requires modifica-
tion if µ(X) = ∞. (See Exercise 5:2.6.)

Remark 4. Theorem 4.19 suggests another definition for
∫
X f dµ when f is measurable and

nonnegative. One could define ∫

X
f dµ = lim

n→∞

∫

X
φn dµ,

where {φn} is any nondecreasing sequence of simple functions converging pointwise to f . One
would then need to show that the integral does not depend on which sequence of simple func-
tions is chosen. That such a definition is equivalent to ours will be apparent after we prove
Theorem 5.8 in the next section.

Exercises

5:2.1 Prove that Definition 5.3 does not depend on the representation of φ as a simple function. [Hint:
Show that

m∑

k=1

bkµ(Bk) =

n∑

k=1

akµ(Ak)

where φ =
∑m

k=1 bkχBk
and also φ =

∑n
k=1 akχAk

.]

5:2.2 Using part (iii) of Theorem 5.4 show, for any f , g nonnegative measurable functions on X, that∫

X

(f + g) dµ ≥
∫

X

f dµ+

∫

X

g dµ.
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In fact, equality holds, but it is more convenient to prove this later. (See Theorem 5.9 in the next
section).

5:2.3♦ Prove the Tchebychev inequality: Let f be a nonnegative measurable function, E a measurable
set, and α > 0. Then

µ({x ∈ E : f(x) > α}) ≤ 1

α

∫

E

f dµ.

5:2.4 Let f be a nonnegative measurable function. Prove that
∫

X
f dµ = 0 if and only if f = 0 a.e.

5:2.5 Check that the theory developed here and in the next section would be unchanged if, in Defini-
tion 5.5, the integral were defined for all measurable functions bounded below (rather than non-
negative).

5:2.6 On a finite measure space, we can define upper and lower integrals for arbitrary bounded func-
tions. Write ∫

—

f dµ = sup

{∫

X

Ldµ : L ≤ f, L simple

}
,

—∫
f dµ = inf

{∫

X

U dµ : f ≤ U,U simple

}
,

and, if these are equal,
∫

X

f dµ =

∫

—

f dµ =

—∫
f dµ.

(a) Show that this would be well defined and develop the elementary properties of such integrals.
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(b) Prove that, for a measurable function f ,

∫

—

f dµ =

—∫
f dµ.

[Hint: Theorem 5.16 does a special case of this.]

(c) Prove that, when the measure space is complete,

∫

—

f dµ =

—∫
f dµ

if and only if f is measurable.

(d) Give an example of a situation for which

∫

—

f dµ =

—∫
f dµ

and yet f is not measurable. [Hint: If B is a set of measure zero containing a nonmeasurable
set E then take f = χE .]

(e) Explain why such a definition is inadequate when µ(X) = ∞. [Hint: Let f be positive on X
with µ(X) = ∞, and let φ be a simple function with φ ≥ f on X. Show that

∫
X
φdµ = ∞.]

5.3 Fatou’s Lemma

We state and prove a lemma, due to Pierre Fatou (1878–1929), that is basic to all the limit
properties of integrals. This allows us to develop the properties of the integral for nonnegative
functions.
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Lemma 5.7 (Fatou) Suppose that {fn} is a sequence of nonnegative, measurable functions
such that f = lim infn→∞ fn [a.e.]. Then∫

X
f dµ ≤ lim inf

n→∞

∫

X
fn dµ. (3)

Proof. We may assume without loss of generality that, at each point x ∈ X,

f(x) = lim inf
n→∞

fn(x).

We show that, if φ is a nonnegative simple function such that φ(x) ≤ f(x) for all x ∈ X, then
∫

X
φdµ ≤ lim inf

n→∞

∫

X
fn dµ.

The inequality (3) will then follow immediately from the definition of
∫
X f dµ.

We may suppose that

φ =
m∑

k=1

akχAk
,

where the {Ak} are measurable and disjoint and where each ak is positive. Let 0 < t < 1. Since
φ(x) ≤ f(x), we see that

ak ≤ lim inf
n→∞

fn(x)

for each k and each x ∈ Ak. It follows that, for fixed k, the sequence of sets

Bkn = {x ∈ Ak : fp(x) > tak for all p ≥ n}
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increases to Ak. Consequently, µ(Bkn) → µ(Ak) as n→ ∞. The simple function
m∑

k=1

takχBkn

is everywhere less than fn, and so
∫

X
fn dµ ≥

m∑

k=1

takµ(Bkn).

Taking liminf in this inequality then gives

lim inf
n→∞

∫

X
fn dµ ≥

m∑

k=1

takµ(Ak) = t

∫

X
φdµ.

Finally, then, since t can be chosen arbitrarily close to 1, we have∫

X
φdµ ≤ lim inf

n→∞

∫

X
fn dµ,

as required. �

5.3.1 A convergence theorem for integrals of nonnegative functions

From Fatou’s lemma we can derive an important convergence theorem. In general, one cannot
take limits inside the integral, but if there is some kind of domination, this is possible. The-
orem 5.8 can be considered a simple version for nonnegative functions of the Lebesgue dom-
inated convergence theorem (given later as Theorem 5.14), which will become our standard
tool in the theory. Applied to the special case where fn increases to f a.e., Theorem 5.8 is of-
ten called the monotone convergence theorem.
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Theorem 5.8: Let {fn} be a sequence of nonnegative measurable functions such that fn → f
[a.e.] on X. Suppose that fn(x) ≤ f(x) for all n ∈ IN and x ∈ X. Then∫

X
f dµ = lim

n→∞

∫

X
fn dµ.

Proof. Since fn ≤ f , ∫

X
fn dµ ≤

∫

X
f dµ

for all n ∈ IN; thus

lim sup n→∞

∫

X
fn dµ ≤

∫

X
f dµ.

On the other hand, it follows from Fatou’s lemma that
∫

X
f dµ ≤ lim inf n→∞

∫

X
fn dµ

and the theorem is proved. �

5.3.2 Properties of integrals of nonnegative functions

We have already mentioned that three of the four properties of integrals of simple functions in
Theorem 5.4 carry over easily to integrals of nonnegative measurable functions. We now verify
the missing property, along with two others, with the help of Fatou’s lemma.
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Theorem 5.9: Let (X,M, µ) be a measure space.

1. Let f and g be nonnegative measurable functions on X. Then∫

X
(f + g) dµ =

∫

X
f dµ+

∫

X
g dµ.

2. Let {fn} be a sequence of nonnegative measurable functions on X. Then
∫

X

(
∞∑

n=1

fn

)
dµ =

∞∑

n=1

∫

X
fn dµ.

3. Let f be a nonnegative measurable function on X. Define ν by

ν(E) =

∫

E
f dµ (E ∈ M).

Then ν is a measure on M.

Proof. Using Theorem 4.19, we can construct nondecreasing sequences {φn} and {ψn} of sim-
ple functions converging pointwise to f and g, respectively. Then the sequence {φn + ψn} con-
verges to f + g. By Theorem 5.8 and Theorem 5.4,∫

X
(f + g) dµ = lim

n→∞

∫

X
(φn + ψn) dµ

= lim
n→∞

∫

X
φn dµ+ lim

n→∞

∫

X
ψn dµ

=

∫

X
f dµ+

∫

X
g dµ,
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and we have obtained part (i).
For part (ii), let

f =
∞∑

n=1

fn.

For each k ∈ IN, let

Sk = f1 + · · · + fk.

The functions Sk form a nondecreasing sequence of nonnegative measurable functions. Clearly,

lim
k→∞

Sk(x) = f(x)

for all x ∈ X, and Sk ≤ f for all k ∈ IN. By Theorem 5.8, we have∫

X
f dµ = lim

k→∞

∫

X
Sk dµ. (4)

Now, for all k ∈ IN, ∫

X
Sk dµ =

∫

X
f1 dµ+ · · · +

∫

X
fk dµ

by part (i) and induction; thus, by (4),

∫

X
f dµ = lim

k→∞

∫

X
Sk dµ = lim

k→∞

k∑

n=1

∫

X
fn dµ =

∞∑

n=1

∫

X
fn dµ,

as we wished to prove.
Finally, let us prove part (iii). It is clear that ν is nonnegative and that ν(∅) = 0. To show

that ν is σ-additive, let {Ek} be a sequence of pairwise disjoint measurable sets. Let fk =
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fχ
Ek

. By part (ii),

∞∑

k=1

ν(Ek) =

∞∑

k=1

∫

X
fk dµ =

∫

X

(
∞∑

k=1

fk

)
dµ =

∫

X

(
∞∑

k=1

fχ
Ek

)
dµ

=

∫

X

(
f

∞∑

k=1

χ
Ek

)
dµ =

∫

X
fχ⋃

Ek
dµ

=

∫
⋃

Ek

f dµ = ν

(
∞⋃

k=1

Ek

)
.

It is clear now that ν is a measure on M. �

Part (iii) of Theorem 5.9 provides a method for obtaining measures on a σ-algebra M. If
(X,M, µ) is a measure space, then each nonnegative measurable function f provides a measure
ν(E) =

∫
E f dµ. One often uses the terminology “(X,M) is a measurable space” to suggest the

possibility that there are many measures ν that make (X,M, ν) into a measure space.
Conversely, one would naturally wish to know when such a representation is possible. That

is, if ν and µ are given as measures on a measurable space (X,M), does there exist a nonneg-
ative measurable function f such that ν(E) =

∫
E f dµ for all E ∈ M? An obvious necessary

condition is that ν(E) = 0 for any set E for which µ(E) = 0 (cf. Exercise 3:13.10). We shall
see in Section 5.8 that under mild hypotheses on (X,M, µ) this important condition (called ab-
solute continuity) is also sufficient for ν to be represented as an integral. In general, there are
many measures on (X,M) that do not admit such integral representations (Exercises 3:13.10
and 3:13.11).
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Exercises

5:3.1 Show by example that the inequality in Fatou’s lemma is not in general an equality even if the
sequence of functions {fn} converges everywhere.

5:3.2 Show that the hypothesis fn ≤ f in the statement of Theorem 5.8 cannot be dropped.

5:3.3 Show that Fatou’s lemma can be derived directly from the monotone convergence theorem (Theo-
rem 5.8) thus the latter could have been our starting point in the development of this section.

5:3.4 Let f be the Cantor function (Exercise 1:22.13), and let µf be the associated Lebesgue–Stieltjes
measure. Show that there is no function g satisfying µf (E) =

∫
E
g dλ for each Borel set E.

5.4 Integrable Functions

To this point the integral has been defined and studied only for nonnegative functions. In this
section we complete the definition of the integral and give a full description of its properties.

Let (X,M, µ) be a measure space, and let E ∈ M. Let f+ and f− be the positive and neg-
ative parts of the function f defined, as before, by

f+(x) =

{
f(x) if f(x) ≥ 0;
0 if f(x) < 0,

and

f−(x) =

{
−f(x) if f(x) < 0;
0 if f(x) ≥ 0.

Then f = f+ − f−, and if f is measurable, each of f+ and f− is measurable and nonnegative.
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Definition 5.10: A measurable function f is said to be integrable on E if both f+ and f− are
integrable. In that case we define∫

E
f dµ =

∫

E
f+ dµ−

∫

E
f− dµ.

We denote the class of integrable functions on X by L1(X,M, µ). This may be shortened to
L1(X) or L1. Observe that |f | = f+ + f−. Thus, |f | ∈ L1 whenever f ∈ L1. Note that the
form of Definition 5.10 forces an absolute integral. We have seen in Chapter 1 that some of the
classical integrals of the nineteenth century were nonabsolute. This will play a role in our later
comparison of integrals.

Although our definitions require an integrable function to have a finite integral, we can as-
sign a meaning to the expression∫

E
f dµ =

∫

E
f+ dµ−

∫

E
f− dµ,

even if one (but not both) of the expressions on the right is infinite. Some authors use the term
“summable” instead of “integrable” and then employ the term “integrable” to indicate that at
least one of the functions f+ and f− has a finite integral. Thus, in their terminology, an inte-
grable function may not have a finite integral, but its integral has a well-defined meaning.

Example 5.11: Let X = IN, M = 2IN, and let µ be the counting measure on X. Let f : IN→
IR. Thus f is a sequence of real numbers. By Definition 5.10, f ∈ L1(µ) if and only if the series∑

n∈IN f(n) converges absolutely. In that case,
∫

IN
f dµ =

∞∑

n=1

f(n).
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Example 5.12: Let f(0) = 0, and for n ∈ IN and x ∈
(
2−n, 2−n+1

]
, let

f(x) =

{
2n+1/n x ∈ (2−n, 3 · 2−n−1];
−2n+1/n x ∈ (3 · 2−n−1, 2−n+1].

Then f+ and f− both have infinite integrals, so f is not integrable on [0, 1]. The improper Rie-
mann integral

∫ 1

0
f (x) dx = lim

ε→0

∫ 1

ε
f (x) dx

exists and equals 0, because of “cancelations.” Such cancelations are not possible within the
framework of what we call the integral. This has both advantages and disadvantages. We dis-
cuss these in Sections 5.6 and 5.10.

5.4.1 Properties of integrals

Theorem 5.13 lists some elementary properties of arbitrary integrable functions. We leave the
proofs as Exercise 5:4.2.
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Theorem 5.13: Let (X,M, µ) be a measure space, let α ∈ IR, and let f, g ∈ L1. Then

1.

∣∣∣∣
∫

X
f dµ

∣∣∣∣ ≤
∫

X
|f | dµ.

2.

∫

X
αf dµ = α

∫

X
f dµ.

3.

∫

X
(f + g) dµ =

∫

X
f dµ+

∫

X
g dµ.

4. If f(x) ≤ g(x) for all x ∈ X, then

∫

X
f dµ ≤

∫

X
g dµ.

5.4.2 The Lebesgue dominated convergence theorem

In the introduction to this chapter we constructed a sequence {fn} of functions on [0, 1] such
that

lim
n→∞

∫ 1

0
fn (x) dx = 1 > 0 =

∫ 1

0
lim

n→∞
fn (x) dx.

The integrals were Riemann integrals, but we would obtain the same result for any reasonable
version of the integral. The reason this sequence behaves this way is that the functions grow
large in a way that we cannot control.

Various forms of control on the functions {fn} will lead to the desired conclusion that

lim
n→∞

∫

E
fn dµ =

∫

E
lim

n→∞
fn dµ.
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One such form of control is provided by our next theorem, called the Lebesgue dominated con-
vergence theorem (LDCT).

Theorem 5.14 (LDCT) Let (X,M, µ) be a measure space, and let {fn} be a sequence of
measurable functions such that fn → f [a.e.]. If there exists a function g ∈ L1 such that
|fn(x)| ≤ g(x) for all n ∈ IN and x ∈ X, then f ∈ L1, and∫

X
f dµ = lim

n→∞

∫

X
fn dµ. (5)

Proof. Note first that f ∈ L1, since |f(x)| ≤ g(x) for almost every x ∈ X. Applying Fatou’s
lemma to the nonnegative functions g − fn, we obtain∫

X
g dµ−

∫

X
f dµ =

∫

X
(g − f) dµ

≤ lim
n→∞

inf

∫

X
(g − fn) dµ

=

∫

X
g dµ− lim

n→∞
sup

∫

X
fn dµ.

It now follows that ∫

X
f dµ ≥ lim

n→∞
sup

∫

X
fn dµ. (6)

Applying a similar argument to the functions g + fn, we infer that∫

X
f dµ ≤ lim

n→∞
inf

∫

X
fn dµ. (7)

The desired equality (5) follows from (6) and (7). �
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Corollary 5.15: The conclusion of the LDCT holds if convergence [a.e.] is replaced by conver-
gence [meas].

Proof. Apply Theorem 4.14. �

Exercises

5:4.1 Let ν be a signed measure and ν+, ν− its positive and negative variations (see Section 2.2.2). De-
fine ∫

X

f dν =

∫

X

f dν+ +

∫

X

f dν−

when the two integrals exist. Explain how this can be used to obtain a notion of a Lebesgue–
Stieltjes integral

∫
fdµg when g is of bounded variation on all bounded intervals of IR.

5:4.2 Prove Theorem 5.13. [Hint: For part (iii), subdivide X into sets where (i) f ≥ 0 and g ≥ 0,
(ii) f ≥ 0, g < 0, and f + g ≥ 0, (iii) f ≥ 0, g < 0, and f + g < 0, (iv) f < 0, g ≥ 0, and
f + g ≥ 0, (v) f < 0, g ≥ 0, and f + g < 0, and (vi) f < 0 and g < 0.]

5:4.3 (a) Show that if µ(E) = 0 then
∫

E
f dµ = 0 for every measurable f .

(b) Show that if
∫

E
f dµ = 0 for every E ∈ M then f = 0 a.e.

5:4.4 Prove that Fatou’s lemma holds for general measurable functions (not necessarily nonnegative)
provided that the sequence of functions {fn} is bounded below by some integrable function.

5:4.5 Suppose that µ(X) = 1, E1, E2, . . . , En are measurable subsets of X, and each point of X belongs
to at least m of these sets. Show that there exists k such that µ(Ek) ≥ m/n.

5:4.6♦ Suppose that µ(X) <∞. Prove that fn → 0 [meas] if and only if
∫

X

|fn|
1 + |fn|

dµ→ 0.
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Show that the result fails if the assumption µ(X) <∞ is dropped.

5:4.7♦ Suppose that f ∈ L1(X), that f(x) > 0 for all x ∈ X, and that 0 < α < µ(X) <∞. Prove that

inf

{∫

E

f dµ : µ(E) ≥ α

}
> 0.

Give an example to show that the result fails if one drops the hypothesis µ(X) <∞.

5:4.8 Let f : X × [a, b] → IR. Find conditions under which you may assert each of the following:

lim
t→t0

∫

X

f(x, t) dµ(x) =

∫

X

lim
t→t0

f(x, t) dµ(x)

d

dt

∫

X

f(x, t) dµ(x) =

∫

X

∂

∂t
f(x, t) dµ(x).

[Hint: Use sequential limits and the LDCT.]

5.5 Riemann and Lebesgue

Some authors have called for the abolition of the Riemann integral, claiming that it offers an
integration theory that is technically inadequate and that it serves no useful pedagogic pur-
pose. This point of view has, to date, not been successful, and the reader will have, no doubt,
a strong background in the usual integral of the calculus defined by Riemann’s methods. It is
a natural question then to ask for the relationship between these two integration theories. This
section will establish exactly the relation that the Lebesgue integral has to the Riemann inte-
gral. You have developed all your intuition about integration, no doubt, from Riemann’s meth-
ods. We ask now how that fits in with the measure theoretic approach.
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We restrict our attention to bounded functions defined on an interval [a, b]. We consider the
Lebesgue measure space ([a, b],L, λ). The integral we defined in Sections 5.2 and 5.4 is then the
Lebesgue integral. By modifying the definition of the integral slightly, we obtain an equivalent
form of the Lebesgue integral, which allows us to see at once how this integral generalizes Rie-
mann’s integral. We observed in the introduction to this chapter that the Riemann approach to
integration has certain flaws, even when we are dealing only with bounded functions on [a, b].
We also indicated that these flaws disappear in the setting of Lebesgue’s integral. We justify
these statements in this section.

To distinguish the two integrals under consideration, we shall use notation such as
∫ b
a f dλ

for the Lebesgue integral and
∫ b
a f (t) dt for the Riemann integral.

Theorem 5.16: Let f be a bounded measurable function on [a,b]. Let
∫

—

f dλ = sup

{∫ b

a
Ldλ : L ≤ f , L simple

}

and
—∫
f dλ = inf

{∫ b

a
U dλ : f ≤ U , U simple

}
.

Then
∫
—
f dλ =

—∫
f dλ.

Proof. Let M be an upper bound for |f |. Fix n ∈ IN. For every integer k satisfying −n ≤ k ≤ n,
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let

Ek =

{
x :

kM

n
≥ f(x) >

(k − 1)M

n

}
.

The sets Ek are measurable and pairwise disjoint, and

[a, b] =
n⋃

k=−n

Ek.

Let

Un =
M

n

n∑

k=−n

kχ
Ek

and Ln =
M

n

n∑

k=−n

(k − 1)χ
Ek
.

The simple functions Un and Ln satisfy Ln ≤ f ≤ Un on [a, b]. Thus
—∫
f dλ ≤

∫ b

a
Un dλ =

M

n

n∑

k=−n

kλ(Ek)

and ∫

—

f dλ ≥
∫ b

a
Ln dλ =

M

n

n∑

k=−n

(k − 1)λ(Ek).

It follows that

0 ≤
—∫
f dλ−

∫

—

f dλ ≤ M

n

n∑

k=−n

λ(Ek) =
M

n
(b− a).

Since n is an arbitrary positive integer, we conclude that the upper and lower integrals are
identical, as required. �
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Observe that the lower Lebesgue integral in the statement of the theorem is precisely the
definition we gave for the integral of a nonnegative measurable function in Section 5.2. We as-
sumed nonnegativity of f for convenience: the definition would have worked equally well for
functions bounded below. Exercise 5:2.6 shows that the present assumption that f be defined
on a finite measure space is essential, however, for Theorem 5.16.

Theorem 5.16 now allows us to give another definition of the Lebesgue integral for bounded
functions. A bounded function f (not assumed to be measurable) is Lebesgue integrable on
[a, b] if

∫

—

f dλ =

—∫
f dλ.

Theorem 5.16 establishes that every bounded measurable function on [a, b] is Lebesgue inte-
grable. Let us now formulate a similar definition of the Riemann integral in order to obtain an
immediate comparison with Lebesgue’s integral. The role of the simple functions is taken by
the step functions.

5.5.1 Approximation by step functions

Definition 5.17: Let I1, I2, . . . , In be pairwise disjoint intervals with [a, b] =
⋃n

k=1 Ik, and let
c1, . . . , cn be real numbers. Let

f =
n∑

k=1

ckχIk
.

Then f is called a step function.
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Thus a step function is just a special type of simple function.

Definition 5.18: Let f be a function defined on [a, b]. Let
∫

—

f(t) dt = sup

{∫ b

a
R (t) dt : R ≤ f , R a step function

}

and
—∫
f(t) dt = inf

{∫ b

a
S (t) dt : f ≤ S, S a step function

}
.

Then f is Riemann integrable if
∫

—

f(t) dt =

—∫
f(t) dt.

We denote this common value by
∫ b
a f (t) dt.

Definition 5.18 is a standard one for the Riemann integral, but usually stated using the lan-
guage of lower and upper Darboux sums.

Note that the Lebesgue integral differs from Riemann’s in that all simple functions figure
in the definition of the former integral, while only certain simple functions (the step functions)
figure in the definition of the latter. It follows from Theorem 5.16 and the inequalities

∫

—

f(t) dt ≤
∫

—

f dλ ≤
—∫
f dλ ≤

—∫
f(t) dt
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that every bounded measurable function is Lebesgue integrable and that a function f is Rie-
mann integrable if and only if f is measurable and

∫

—

f(t) dt =

∫

—

f dλ and

—∫
f(t) dt =

—∫
f dλ.

The rigidity of dealing only with step functions can be contrasted with the flexibility of al-
lowing use of all simple functions. Let f = 0 on Q ∩ [a, b], f ≥ 1 elsewhere on [a, b]. If R is a
step function satisfying R ≤ f , then R ≤ 0 on [a, b]. In short, one cannot approximate f well
from below with step functions: the best lower approximation is R ≡ 0. No step function under
f can slip through the barrier created by Q and be a good approximation for f off Q. There
are no such barriers for simple functions.

5.5.2 Upper and lower boundaries of a function

Our next objective is to show that the barrier to good approximations by step functions is re-
lated to the set of points of discontinuity of the function. We need some terminology. Let f be
a bounded function defined on [a, b], let x0 ∈ [a, b], and let δ > 0. Write

mδ(x0) = inf {f(x) : x ∈ (x0 − δ, x0 + δ) ∩ [a, b]}
and

Mδ(x0) = sup {f(x) : x ∈ (x0 − δ, x0 + δ) ∩ [a, b]} ,
and define

m(x0) = lim
δ→0

mδ(x0) and M(x0) = lim
δ→0

Mδ(x0).
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The functions m and M are called the lower and upper boundaries of f . The quantity

ω(x0) = M(x0) −m(x0)

is called the oscillation of f at x0.
Note that m(x0), M(x0), and ω(x0) differ from

lim inf
x→x0

f(x), lim sup
x→x0

f(x),

and

lim sup
x→x0

f(x) − lim inf
x→x0

f(x)

only in that the latter three expressions do not take into consideration the value that f takes
at x0. It is clear that f is continuous at x0 if and only if ω(x0) = 0. We now show that the
functions m and M are “barriers” for lower and upper approximations by step functions.

Lemma 5.19: Let f be bounded on [a, b] and let m be its lower boundary. Then

1. m is Lebesgue measurable.

2. If R is a step function with R ≤ f , then R(x) ≤ m(x) at each point of continuity of R.

3.
∫
—
f(t) dt =

∫ b
a mdλ.

Proof. If m(x0) > α, then there exists β > α such that f > β in a neighborhood I of x0, and
hence m > α on I. Thus {x : m(x) > α} is open. This proves (i). To verify (ii), note that if x0

is an interior point of an interval of constancy of R then R(x0) ≤ m(x0).
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We turn now to the verification of (iii). It follows immediately from (ii) and Definition 5.18
that ∫

—

f(t) dt ≤
∫ b

a
mdλ. (8)

The reverse inequality requires a bit more work. Let n ∈ IN. Partition [a, b] into 2n intervals
I1, . . . , I2n of equal length, the interval containing a being closed, the others half-open. Let Rn

be a function defined on [a, b] that assumes the value inf{f(x) : x ∈ Ik} on the interval Ik.
The function Rn is a step function satisfying Rn ≤ f . Let Dn denote the set of partition points
for the nth partition. Then, for each n ∈ IN, Dn is finite, so D =

⋃∞
n=1Dn is countable. Let

x0 ∈ [a, b] \D and let α < m(x0).
Choose δ > 0 such that mδ(x0) > α. For each n ∈ IN, let In(x0) be the interval in the nth

partition that contains x0. It is clear that

In(x0) ⊂ (x0 − δ, x0 + δ)

when n is sufficiently large, say n ≥ N . Thus

m(x0) ≥ Rn(x0) ≥ mδ(x0) > α

when n ≥ N . It follows that

lim
n→∞

Rn(x0) = m(x0). (9)

Condition (9) is valid for all but countably many values of x0. In particular, Rn → m [a.e.].
Since m is a bounded measurable function, m is Lebesgue integrable. By the LDCT,

lim
n→∞

∫ b

a
Rn dλ =

∫ b

a
mdλ.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



358 Integration Chapter 5

But, for step functions, the Riemann and Lebesgue integrals agree; thus

lim
n→∞

∫ b

a
Rn (t) dt =

∫ b

a
mdλ.

It now follows from Definition 5.18 that
∫

—

f(t) dt ≥ lim
n→∞

∫ b

a
Rn dλ =

∫ b

a
mdλ.

This, together with (8), completes the verification of (iii). �

We mention that the analog of Lemma 5.19 for the upper boundary M of f is valid, with a
similar proof.

5.5.3 Lebesgue’s characterization of Riemann integrability

Theorem 5.20 (Lebesgue) Let f be a function on [a, b]. Then f is Riemann integrable if and
only if f is bounded and continuous a.e. In that case

∫ b

a
f (t) dt =

∫ b

a
f dλ.

Proof. Suppose that f is a bounded function on [a, b]. From Lemma 5.19 and its analog for
the upper boundary M , we infer that

∫

—

f(t) dt =

∫ b

a
mdλ ≤

∫ b

a
f dλ ≤

∫ b

a
M dλ =

—∫
f(t) dt. (10)
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For f to be Riemann integrable, it is therefore necessary and sufficient that
∫ b

a
(M −m) dλ = 0.

Since M(x) ≥ m(x) for each x ∈ [a, b],
∫ b

a
(M −m) dλ = 0

if and only if M = m a.e., that is, if and only if f is continuous a.e. When f is Riemann inte-
grable,

∫ b

a
f (t) dt =

∫ b

a
f dλ

since the five expressions in (10) all represent the same number. �

5.5.4 Fundamental theorem of the calculus for Lebesgue integrals

In the introduction to this chapter we observed that the fundamental theorem of calculus for
Riemann integrals requires the hypothesis that f ′ be Riemann integrable. Because of Theo-
rem 5.20, this is equivalent to hypothesizing that f ′ is bounded and continuous a.e. Thus, for
example, the derivative h′ in Example 5.2 must be discontinuous on a set of positive measure
since h′ failed to be Riemann integrable. We now show that for functions with bounded deriva-
tives a version of the fundamental theorem of calculus holds for the Lebesgue integral, without
further hypotheses. Later, in Chapter 7, we consider the case of unbounded derivatives. Ob-
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serve first that if f is differentiable on IR then

f ′(x) = lim
n→∞

f(x+ 1/n) − f(x)

1/n
.

This expresses f ′ as a pointwise limit of a sequence of continuous functions and hence f ′ is
measurable. In fact, f ′ ∈ B1. [See Exercise 4:6.2 (j).]

Theorem 5.21 (Fundamental Theorem of Calculus) Suppose that f has a bounded
derivative on [a, b]. Then

f(b) − f(a) =

∫ b

a
f ′ dλ.

Proof. Extend f to [a, b + 1] by setting f(x) = f(b) + (x − b)f ′(b) for b < x ≤ b+ 1. This
removes any need to treat the end point b separately. Now f has a bounded derivative on [a, b+
1]. For n ∈ IN, let fn(x) = n(f(x + 1/n) − f(x)). Then limn→∞ fn(x) = f ′(x) for all x ∈ [a, b].
For each x ∈ [a, b] and n ∈ IN there exists θ ∈ (0, 1) such that

fn(x) = f ′
(
x+

θ

n

)
.

Thus the functions fn are uniformly bounded on [a, b] by the finite number

S = sup{|f ′(t)| : a ≤ t ≤ b}.
Since the constant function S is integrable, we infer from the LDCT that

∫ b

a
f ′ dλ = lim

n→∞

∫ b

a
fn dλ.
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We have
∫ b

a
fn dλ = n

∫ b

a
f

(
x+

1

n

)
dλ− n

∫ b

a
f dλ

= n

∫ b+ 1
n

a+ 1
n

f dλ− n

∫ b

a
f dλ

= n

∫ b+ 1
n

b
f dλ− n

∫ a+ 1
n

a
f dλ.

By applying the law of the mean to the last two integrals, we obtain constants θ′n, θ
′′
n ∈ (0, 1)

such that
∫ b

a
fn dλ = f

(
b+

θ′n
n

)
− f

(
a+

θ′′n
n

)
.

Hence
∫ b

a
f ′ dλ = lim

n→∞

∫ b

a
fn dλ = f(b) − f(a),

as required. �

Theorem 5.20 allows us to tighten our discussion of conditions that lead to the conclusion
that “a convergent series can be integrated term-by-term,” a concern of late nineteenth century
mathematics. We formulate our discussion in terms of sequences of functions.

Suppose that {fn} is a uniformly bounded sequence of Riemann integrable functions, and
fn(x) → f(x) for every x ∈ [a, b]. By Theorem 5.20, each of the functions fn is Lebesgue inte-
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grable. It follows from the LDCT that f is also integrable and that
∫ b

a
f dλ = lim

n→∞

∫ b

a
fn dλ.

If f is Riemann integrable, then
∫ b

a
f (t) dt =

∫ b

a
f dλ = lim

n→∞

∫ b

a
fn dλ = lim

n→∞

∫ b

a
fn (t) dt.

A similar argument shows that any condition that allows the conclusion
∫ b

a
lim

n→∞
fn dλ = lim

n→∞

∫ b

a
fn dλ

also allows the conclusion ∫ b

a
lim

n→∞
fn (t) dt = lim

n→∞

∫ b

a
fn (t) dt,

provided that limn→∞ fn is Riemann integrable. Thus the limitation of the Riemann integral
related to integrating a sequence of functions term by term can be attributed entirely to the
fact that the class of Riemann integrable functions is “too small.”

But even when the discussion is contained within the class of Riemann integrable functions,
the methods that existed before the introduction of measure theory were inadequate to handle
many problems. Toward the end of the nineteenth century, a number of mathematicians pon-
dered whether uniform boundedness of the sequence {fn} sufficed for the desired conclusion
when limn→∞ fn is assumed to be Riemann integrable. It was a perplexing problem. Some of
the history of the problem can be found in Hawkins.4 Here we mention only that, with great

4T. Hawkins, Lebesgue’s Theory of Integration, Chelsea Publishing Co., (1979).
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effort, it was shown that uniform boundedness of the sequence does suffice when the limit func-
tion is Riemann integrable.

Exercises

5:5.1 State and prove the analog of Lemma 5.19 for the upper boundary M of f .

5:5.2♦ A function f is called lower semicontinuous on [a, b] if for every α ∈ IR the set {x : f(x) > α} is
open.

(a) Verify that the lower boundary of a function f is lower semicontinuous.

(b) Prove that a function f is lower semicontinuous if and only if it is its own lower boundary.

(c) Show that the supremum of a sequence of continuous functions is lower semicontinuous.

5:5.3 Prove or disprove that, if f is a bounded function and Lebesgue integrable on an interval [a, b],

then there exists a Riemann integrable function g so that f = g a.e. and
∫
[a,b]

f dλ =
∫ b

a
g(x) dx.

5:5.4 Suppose that we define for the Riemann integral
∫

A

f (t) dt =

∫ b

a

f(t)χ
A

(t) dt.

Over which sets A generally is a Riemann integrable function f now integrable?

5:5.5♦ (Construction of discontinuous derivatives)

(a) Let g(x) = x2 sinx−1, for 0 < x ≤ 1, g(0) = 0. Prove that g is differentiable, with g′ bounded
and discontinuous only at x = 0.
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(b) Let P be a Cantor set, P ⊂ [0, 1], 0, 1 ∈ P . Let {(an, bn)} be the sequence of intervals com-
plementary to P . On each interval [an, bn], construct a differentiable function fn that satis-
fies fn(an) = fn(bn) = f ′n(an) = f ′n(bn) = 0, and so that

fn(x) = (x− an)2 sin(x− an)−1

for an < x < an + δn < (an + bn)/2 and

fn(x) = (bn − x)2 sin(bn − x)−1

for bn > x > bn − δn, with f ′(x) = 0 on [an + δn, bn − δn].

(c) Let f = fn on [an, bn], f = 0 elsewhere. Prove that f has a bounded derivative on [0, 1] with
f ′ = 0 on P and f ′ discontinuous at all points of P .

(d) Show that for every ε > 0 there exists a function h such that h has a bounded derivative on
[0, 1] and h′ is discontinuous on a Cantor set of Lebesgue measure exceeding 1 − ε.

(e) Let {Pn} be an expanding sequence of Cantor sets in [0, 1] with λ(Pn) → 1. Use part (d)
to construct a differentiable function f on [0, 1], with f ′ bounded, such that f ′ is discontinu-
ous a.e.

[The derivatives f ′ that appear in elementary calculus are usually continuous. Part (e) illustrates
that derivatives can actually be discontinuous a.e. This goes well beyond the Volterra example
in Section 1.18, where a derivative was given whose set of discontinuities had positive measure.
In Exercise 10:8.7 we shall see that, in a certain sense, “most” derivatives are discontinuous a.e.
Can a derivative be discontinuous everywhere? The answer is no. Theorem 1.19 shows that every
derivative is continuous except on a set of the first category.]
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5.6 Countable Additivity of the Integral

Let (X,M, µ) be a measure space, and let f ∈ L1(µ). For E ∈ M, let

ν(E) =

∫

E
f dµ.

We have already seen in Section 5.3 that if f ≥ 0 then ν is a measure on M. We now show
that, without the requirement that f be positive, ν is a signed measure.

Theorem 5.22: Let (X,M, µ) be a measure space and let f ∈ L1(µ). The set function ν(E) =∫
E f dµ is a finite signed measure on M.

Proof. For each E ∈ M, let

ν+(E) =

∫

E
f+ dµ and ν−(E) =

∫

E
f− dµ.

Then ν+ and ν− are measures by Theorem 5.9 (iii). Since ν = ν+ − ν−, ν is a signed measure.
�

Observe that ν+ and −ν− are the positive and negative variations of ν. (See Section 2.2.2
and Exercise 5:4.1.) If f is measurable but not integrable, there are two possibilities. If either
f+ or f− is integrable, ν is still a signed measure, but not finite. If both f+ and f− have infi-
nite integrals, ν+ − ν− is no longer a signed measure. The integral of f does not exist in that
case.

Let us explore this matter a bit further. For the function appearing in Example 5.12,
∫ 1

0
f+ dλ = ∞ and

∫ 1

0
f− dλ = ∞.
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The set functions ν+(E) =
∫
E f

+ dλ and ν−(E) =
∫
E f

− dλ are measures on L, with

ν+([0, 1]) = ν−([0, 1]) = ∞.

Let 0 < ε < 1. For E ⊂ [ε, 1], E ∈ L, ν(E) =
∫
E f dλ is finite, and ν(E) = ν+(E) − ν−(E). It

is clear that limε→0 ν([ε, 1]) = 0. It is tempting to extend the definition of the integral in such a
way that ν([0, 1]) = 0. One can do this, and such an approach has certain advantages. But we
would no longer have countable additivity of the integral: ν would not be a signed measure. In
order for

ν([0, 1]) =
∑

n∈IN

(ν(Ln) + ν(Rn)),

where Ln is the left open half of the interval
(
2−n, 2−n+1

)
and Rn is the right closed half, we

would need every rearrangement of the series

1 − 1 + 1
2 − 1

2 + 1
3 − 1

3 + · · · (11)

to converge to 0, which is false.
The integral as we defined it in Section 5.4 is an absolutely convergent integral: if f is inte-

grable, so is |f |. The Riemann integral, when extended to include (improper) integrals of un-
bounded functions, is an example of a nonabsolutely convergent integral. Theorem 5.22 cannot
hold for such integrals, and spaces for which such integrals can be defined need certain parti-
tioning properties. But they provide solutions to various problems for functions defined on IR or
on other spaces with appropriate structure. See the discussion in Section 5.10 for more on this
topic.

Suppose now that (X,M, µ) is a measure space. Each nonnegative f ∈ L1(µ) gives rise to
a new measure ν(E) =

∫
E f dµ. It is clear that, if g ∈ L1(µ) and ψ(E) =

∫
E g dµ, then ν = ψ

if and only if f = g a.e. There might therefore be many measures on the measurable space
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(X,M). Each such measure ν gives rise to yet further measures of the form φ(E) =
∫
E g dν.

One might ask how the families of measures that arise by integrating with respect to ν are re-
lated to those one obtains by integrating with respect to µ, where ν(E) =

∫
E f dµ. The answer

is that no additional measures are obtained.

Theorem 5.23: Let (X,M, µ) be a measure space, let f be a nonnegative measurable function,
and, for each E ∈ M, let ν(E) =

∫
E f dµ. Let g be a nonnegative measurable function. Then

∫

E
g dν =

∫

E
g fdµ (E ∈ M). (12)

Proof. Let E ∈ M. Suppose first that g = χ
A

for some A ∈ M. Then
∫

E
g dν = ν(A ∩ E) =

∫

A∩E
f dµ =

∫

E
g fdµ.

Thus (12) is valid for characteristic functions. Since simple functions are linear combinations of
characteristic functions, (12) is valid for all simple functions. Finally, any nonnegative measur-
able function g is the pointwise limit of a nondecreasing sequence of nonnegative simple func-
tions {Sn}. The sequence {Snf} increases to gf . By Theorem 5.8,∫

E
g dν = lim

n→∞

∫

E
Sn dν = lim

n→∞

∫

E
Sn fdµ =

∫

E
gf dµ.

�

The equality (12) suggests the notation dν = fdµ, which in turn suggests dν
dµ = f . This

looks a bit like part of the fundamental theorem of calculus. In our present setting we have no
notion of dν

dµ as a derivative. In Section 5.8, we shall see that f = dν
dµ does in fact have some
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formal resemblance to a derivative. Then, in Chapter 8, we shall see that f = dν
dµ can actually

be viewed in the more familiar manner as a limit of a difference quotient.

Exercises

5:6.1 Show that Theorem 5.23 is valid if the nonnegativity of f is replaced by the integrability of f .
(Use the definition of integral with respect to a signed measure from Exercise 5:4.1.)

5:6.2 In the statement of Theorem 5.23, suppose that f and g are both µ–integrable (but not necessar-
ily nonnegative). Can you conclude that fg is µ–integrable? What simple condition on g would
allow this? (In Section 13.1 we will find some better ideas that can be used to show that certain
products are integrable.)

5:6.3 Let (X,M, µ) be a measure space, and let f be a nonnegative, measurable function. Define the
measure ν(E) =

∫
E
f dµ.

(a) Show that if f is everywhere finite and µ is σ-finite then ν is σ-finite.

(b) Show that if f is everywhere positive and ν is σ-finite then µ is σ-finite.

5.7 Absolute Continuity

Let (X,M, µ) be a measure space, and let ν be a signed measure on M. For each E ∈ M, if
ν(E) = 0 whenever µ(E) = 0, we say that ν is absolutely continuous with respect to µ, and we
write ν ≪ µ.

For example, if f ∈ L1(µ), then by Theorem 5.22 we know that ν(E) =
∫
E f dµ is a finite

signed measure. It is clear that ν is absolutely continuous with respect to µ, since if µ(E) = 0
then

∫
E f dµ = 0.
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It is often useful, particularly when dealing with integrals, to use the following ε, δ version
of absolute continuity. Expressed this way, it is clearer that we are dealing with a form of conti-
nuity, at least for finite signed measures.

Theorem 5.24: Let ν be a finite signed measure on M. Then ν ≪ µ if and only if for every
ε > 0 there exists δ > 0 such that |ν(E)| < ε for each E ∈ M with µ(E) < δ.

Proof. In view of Exercise 5:7.2, we may assume that ν is a measure. It is clear that the con-
dition of the theorem implies that ν ≪ µ. To prove the converse, suppose that this condition
fails. Then there exists ε > 0 and a sequence {En} of measurable sets such that, for each n,
µ(En) < 2−n and ν(En) ≥ ε. Let E = lim supn→∞En, and let k ∈ IN. Then

µ(E) ≤
∞∑

n=k

µ(En) ≤
∞∑

n=k

1

2n
=

1

2k−1
. (13)

Since (13) is valid for each k ∈ IN, µ(E) = 0. But ν (
⋃∞

n=1En) < ∞ by hypothesis, so it follows
from Theorem 2.22 (ii) that

ν(E) = ν(lim sup
n→∞

En) ≥ lim sup
n→∞

ν(En) ≥ ε > 0.

Thus µ(E) = 0, and yet ν(E) > 0. This shows that ν is not absolutely continuous with respect
to µ which completes the proof. �

5.7.1 Absolutely continuous functions

To this point we have focused on absolute continuity as it relates to integrals or, more gener-
ally, signed measures. The notion of absolute continuity originated in the setting of functions
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defined on an interval I ⊂ IR and remains important in this setting for many reasons. We give
now the classical definition and show how it relates to the measure-theoretic concept of absolute
continuity.

Definition 5.25: Let f : [a, b] → IR. We say that f is absolutely continuous if for each ε >
0 there exists δ > 0 such that if {[an, bn]} is any finite or countable collection of nonoverlapping
closed intervals in [a, b], with

∑∞
k=1(bk − ak) < δ, then

∞∑

k=1

|f(bk) − f(ak)| < ε.

Let us discuss this notion a bit and then relate it to the notion of absolute continuity for
integrals or measures. First, let us compare absolute continuity with continuity. If f is contin-
uous on [a, b], then f is uniformly continuous on [a, b]. Thus, given ε > 0, we can find a δ > 0
such that, no matter which interval [a1, b1] of length less than δ we choose, the total “growth”
|f(b1) − f(a1)| of f on that interval is less than ε. We can place such an interval anywhere we
wish in [a, b] without losing the conclusion. But we cannot split the interval into pieces to be
moved around at will. For that we need absolute continuity.

Example 5.26: Let f be the Cantor function and C the Cantor ternary set, (see Exercise 1:22.13).
Let ε = 1

2 and δ > 0. Since C has zero Lebesgue measure, we can cover C with a finite number
of pairwise disjoint intervals [a1, b1], . . . , [an, bn] such that

∑n
k=1(bk − ak) < δ, but

n∑

k=1

|f(bk) − f(ak)| = 1 > ε.
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The Cantor function is uniformly continuous on [0,1], but it is clear from this that it is not ab-
solutely continuous.

5.7.2 A characterization of absolutely continuous functions

We now show that every absolutely continuous function is continuous, has bounded variation
and maps zero measure sets to zero measure sets. We shall see in Section 7.3 that Theorem 5.27
actually characterizes the absolutely continuous functions: a function is absolutely continuous
on [a, b] if and only if it satisfies the three stated conditions. We prove, here, this in only one
direction.

Note that the Cantor function satisfies only the first two of the conditions in the theorem
since it maps at least one measure zero set to a set of positive measure.

Theorem 5.27: Let f be absolutely continuous on [a, b]. Then

1. f is continuous on [a, b].

2. f is of bounded variation on [a, b].

3. For every set E of Lebesgue measure zero in [a, b], λ(f(E)) = 0.

Proof. Condition (i) is immediate. To prove (ii), choose δ > 0 such that if [a1, b1], [a2, b2],
. . . , [an, bn] is any finite collection of nonoverlapping closed intervals with

n∑

k=1

(bk − ak) < δ
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then
n∑

k=1

|f(bk) − f(ak)| < 1.

If [c, d] is any interval in [a, b] with d − c < δ, then V (f ; [c, d]) ≤ 1. Let N ∈ IN with N >
(b−a)/δ. Partition [a, b] into N intervals I1, . . . , IN of equal length (b−a)/N < δ. The variation
of f on each of these intervals is less than 1, so

V (f ; [a, b]) ≤ N <∞
as required.

To prove (iii), let ε > 0. Choose δ > 0 such that, if {[ck, dk]} is any finite or countable col-
lection of nonoverlapping closed intervals in [a, b] with

∑∞
k=1(dk − ck) < δ, then

∞∑

k=1

|f(dk) − f(ck)| < ε.

Let G =
⋃∞

k=1(ak, bk) be an open set containing E with

λ(G) =

∞∑

k=1

(bk − ak) < δ.

Now

f(E) ⊂ f(G) ⊂ f

(
∞⋃

k=1

[ak, bk]

)
⊂

∞⋃

k=1

[f(ck), f(dk)],

where ck is a point in [ak, bk] at which f assumes its minimum and dk is a point where f as-
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sumes its maximum. Thus

λ∗(f(E)) ≤
∞∑

k=1

(f(dk) − f(ck)) < ε

because
∑∞

k=1 |dk − ck| ≤ δ. Since ε is arbitrary, λ(f(E)) = 0. �

5.7.3 Absolute continuity and Lebesgue-Stieljtes measures

We can use Theorem 3.23 to make a connection between the notions of absolute continuity for
functions and for Lebesgue–Stieltjes measures.

Theorem 5.28: A continuous nondecreasing function f is absolutely continuous on [a, b] if
and only if its associated Lebesgue–Stieltjes measure µf is absolutely continuous with respect to
Lebesgue measure λ.

Proof. Let f be continuous and nondecreasing on [a, b], and let µf be the associated Lebesgue–
Stieltjes measure. By Theorem 3.23, µ∗f (E) = λ∗(f(E)) for every set E ⊂ [a, b]. If f is ab-
solutely continuous, then f satisfies condition (iii) of Theorem 5.27, so µf ≪ λ. On the other
hand, suppose that µf ≪ λ. Since µf is finite on [a, b], Theorem 5.24 applies. Thus, for every
ε > 0, there exists δ > 0 such that µf (E) < ε if λ(E) < δ. If E is a union of nonoverlapping
intervals, say E =

⋃∞
k=1[ak, bk], then

∞∑

k=1

(f(bk) − f(ak)) = µf (E) < ε

whenever
∑∞

k=1(bk − ak) = λ(E) < δ. �
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The origin of the notion of absolute continuity was in the problem of characterizing those
functions that can be represented as integrals. Suppose that f is Lebesgue integrable on [a, b].
Let ν(E) =

∫
E f dλ. Then ν ≪ λ. Let

F (x) =

∫ x

a
f dλ , a ≤ x ≤ b.

It follows easily from Theorem 5.24 that F is absolutely continuous. Thus, starting with an in-
tegrable function f , we integrate f to obtain an absolutely continuous function F . As a pre-
liminary step toward a result in the reverse direction, consider a function F with a bounded
derivative on [a, b]. If |F ′(x)| ≤M for all x ∈ [a, b], then F satisfies the Lipschitz condition

|F (y) − F (x)| ≤M |y − x| for all x, y ∈ [a, b].

This follows from the law of the mean. Thus, for nonoverlapping intervals [a1, b1], . . . , [an, bn],
we have

n∑

k=1

|F (bk) − F (ak)| ≤M
n∑

k=1

(bk − ak),

so F is absolutely continuous (let δ = ε/M). By Theorem 5.21,

F (x) = F (a) +

∫ x

a
F ′ dλ

for all x ∈ [a, b].
This argument shows that certain absolutely continuous functions, namely those with bounded

derivatives, can be represented as integrals. We shall see in Section 5.8 that the same is true for
every absolutely continuous function. We shall also see that a comparable result is available
for measures and, in fact, that the integrand is quite reminiscent of a derivative. We can view
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much of the preceding as a preliminary discussion of the fundamental ways in which integra-
tion and differentiation are inverse operations. We will have much more to say on the subject in
Section 5.8 and in Chapters 7 and 8.

Exercises

5:7.1 Suppose that f : [a, b] → IR has bounded variation and let F (x) = V (f ; [a, x]) be the total varia-
tion function. Show that f is absolutely continuous on [a, b] if and only if F is absolutely continu-
ous on [a, b].

5:7.2 Let (X,M, µ) be a measure space, let ν be a signed measure and write |ν|, ν+, and ν− for the
total variation, positive variation, and negative variation of ν. (See Section 2.2.2 and 2.6.) Show
that these statements are equivalent: (i) ν ≪ µ, (ii) |ν| ≪ µ, and (iii) ν+ ≪ µ and ν− ≪ µ.

5:7.3 Let (X,M, µ) be a finite measure space, and suppose that ν is a finitely additive set function for
which, for all ε > 0, there is a δ > 0 with |ν(E)| < ε whenever µ(E) < δ. Show that ν is a signed
measure and ν ≪ µ.

5:7.4 Give an example to show that Theorem 5.24 fails if one drops the requirement that ν(X) <∞.

5:7.5♦ Prove that in the definition of absolute continuity of functions one cannot drop the terminology
“nonoverlapping.” [Hint: Consider f(x) =

√
x.]

5:7.6 In the definition of absolute continuity it is sometimes convenient to replace the increments |f(d)−
f(c)| with the oscillation

ω(f, [c, d]) = sup
x∈[c,d]

f(x) − inf
x∈[c,d]

f(x).

Show that a function f is absolutely continuous on [a, b] if and only if, for every ε > 0, there exists
δ > 0 such that if {[ak, bk]} is any finite or countable collection of nonoverlapping closed intervals
in [a, b], with

∑
k(bk − ak) < δ, then

∑
k ω(f, [ak, bk]) < ε.
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5:7.7 Does Theorem 5.28 remain true5 if “nondecreasing” is replaced with “bounded variation” and
“measure” with “signed measure”? What happens if the requirement of continuity of f is dropped?

5:7.8 Show that the class of absolutely continuous functions on [a, b] is closed under addition and multi-
plication. What can be said about division?

5:7.9 Consider compositions of the form g ◦ f . Prove each of the following:

(a) If f is absolutely continuous and g satisfies a Lipschitz condition, then g ◦ f is absolutely
continuous.

(b) If f is absolutely continuous and strictly increasing and g is absolutely continuous, then g ◦ f
is absolutely continuous.

(c) There exist absolutely continuous functions f and g defined on [0,1] such that g ◦ f is not
absolutely continuous. [Hint: Choose f appropriately with f(1/n) = 1/n2 and g(x) =

√
x.

See Figure 5.2.]

5:7.10♦ Refer to Exercise 5:7.5. Prove that a function f satisfies a Lipschitz condition on [a, b] if and
only if, for every ε > 0, there exists δ > 0 for which the following is true: for every finite collection
{[ak, bk]}n

k=1 of closed intervals in [a, b] with
∑n

k=1(bk − ak) < δ,

n∑

k=1

|f(bk) − f(ak)| < ε.

Compare with the definition of absolute continuity of a function.

5This will require a review of Exercise 3:5.7 since the discussion involves a signed measure arising from a
function f . You may need Exercise 5:7.1 too.
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0 1

1

Figure 5.2. Construction of the function f in Exercise 5:7.9.

5:7.11 Obtain a partial converse to Theorem 5.27. Let f be continuous and nondecreasing on an inter-
val and suppose that f maps measure zero sets to measure zero sets. Show that f is absolutely
continuous. [Hint: Consider the measure µf , and use Theorems 3.23 and 5.28.]

5.8 Radon–Nikodym Theorem

We turn now to a development of the material we discussed at the end of Section 5.7. Giuseppe
Vitali (1875–1932) and Lebesgue proved that a function F is absolutely continuous on [a, b] if
and only if there exists a function f such that

F (x) − F (a) =

∫ x

a
f dλ

for all x ∈ [a, b]. It was Vitali who actually coined the term “absolute continuity.”
In 1913, Johann Radon (1887–1956) obtained a version for absolutely continuous Lebesgue–
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Stieltjes measures on IRn. Radon’s theorem was then extended to absolutely continuous mea-
sures on σ-finite measure spaces by O. Nikodym in 1930.

Theorem 5.29 (Radon–Nikodym) Let (X,M, µ) be a σ-finite measure space, and let ν
be a σ-finite signed measure on M that is absolutely continuous with respect to µ. Then there
exists a function f on X such that

ν(M) =

∫

M
f dµ (M ∈ M). (14)

5.8.1 Motivating the proof of the Radon–Nikodym theorem

This is an important theorem with an interesting proof, but one that can be a bit elusive. We
can obtain some insight into this theorem (why it is true and how to prove it) by considering
the case ([a, b],L, λ) with ν a Lebesgue–Stieltjes measure, ν = µF where F is an absolutely
continuous function on [a, b]. In this setting the theorem is more transparent. It follows from
material that we now anticipate (from Section 7.5) that such a function F is a.e. differentiable
on [a, b] and that, if we define f(x) = F ′(x) at points where the derivative exists and arbitrarily
on the measure zero set Z where F ′ does not exist, then

µF (E) =

∫

E
F ′ dλ

for all measurable subsets E of [a, b].
This suggests that the integrand in (14) might be a derivative. But how does this offer any

insight when we are dealing with abstract measure spaces for which we (as yet) have no notion
of a derivative of a measure? We need to express the function f in a way that ultimately avoids
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taking derivatives. For each x ∈ [a, b] \ Z, the derivative F ′ exists, and hence for fixed n the sets

Ak
n = {x : F ′(x) < k/n}, k = 0, 1, 2, 3, . . .

expand to cover all of [a, b] \ Z. Thus, for each n ∈ IN, the sets

Ek
n = Ak

n \Ak−1
n =

{
x 6∈ Z :

k − 1

n
≤ F ′(x) <

k

n

}
, k = 0,±1,±2, . . .

partition the set [a, b] \ Z. Define functions fn as arbitrary on the measure zero set Z and else-
where as

fn(x) =
k − 1

n
for all x ∈ Ek

n.

For each x ∈ [a, b] \ Z we have fn(x) ≤ F ′(x) and

lim
n→∞

fn(x) = F ′(x).

It follows from Theorem 5.8 that, for each E ∈ L,∫

E
F ′ dλ = lim

n→∞

∫

E
fn dλ.

We can therefore take f = limn→∞ fn as the integrand in (14).
We need to imitate the argument above without having a candidate (F ′) for f and hence

not knowing in advance what sets should play the role of the sets Ak
n. The key tool is the Hahn

decomposition theorem (Theorem 2.25). The sets Ak
n can be realized as the negative sets for the

signed measure ν − k
nµ.

Recall that for any signed measure ν on a σ-algebra M there exists a set P ∈ M (called the
positive set for ν) such that ν(A) ≥ 0 whenever A ⊂ P , A ∈ M, and for the set N = P̃ = X \ P
(called the negative set for ν), ν(A) ≤ 0 whenever A ⊂ N , A ∈ M. The pair (P,N) is called a
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Hahn decomposition for ν. Observe that if ν(E) =
∫
E f dµ we can take P = {x : f(x) ≥ 0}.

The Hahn decomposition theorem provides a connection for carrying out our suggested
plan. The connection is this: if γ > 0 and F is nondecreasing, then the set E = {x : F ′(x) < γ}
is a negative set for ν − γλ, where ν = µF . To verify this, let A ⊂ E, A ∈ L. Then

(ν − γλ)(A) = ν(A) − γλ(A) =

∫

A
F ′ dλ− γλ(A) ≤ γλ(A) − γλ(A) = 0.

Thus we can describe sets associated with F ′ (which we do not know) by Hahn decompositions
of signed measures of the form ν − γλ (which we do know).

The set of points Z in this heuristic discussion will appear in the proof as a set of µ-measure
zero that must be disposed of somehow. The absolute continuity assumption of the theorem is
employed only to ensure that ν(Z) = 0, too.

5.8.2 The proof of the Radon–Nikodym theorem

We return now to the proof of Theorem 5.29. The proof will not depend on any of the heuristic
discussion above, but without such discussion it might have appeared “magical.”

Proof. Because of the Jordan decomposition theorem, we may assume that ν is a measure.
We may also assume that µ(X) < ∞ and ν(X) < ∞. For suppose that we have proved the the-
orem for finite measures. Since µ and ν are assumed to be σ-finite, we write X =

⋃
Xi =

⋃
Yi

for sequences of disjoint measurable sets, with each µ(Xi) < ∞ and ν(Yi) < ∞. Order the sets
{Xi ∩ Yj} into a single sequence {Zk}. Since the theorem can be applied for the finite measures
µk and νk, where µk(E) = µ(E ∩ Zk) and νk(E) = ν(E ∩ Zk), we can use Theorem 5.9 (ii) to
obtain the theorem for µ and ν.

[As we suggested in our heuristic discussion, the only use we make of our hypothesis that
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ν ≪ µ is to assure that a certain troublesome set Z with µ(Z) = 0 also has ν(Z) = 0. Our first
task is to identify this set Z that corresponds to the set on which F is not differentiable.]

For the remainder of the proof, µ and ν are finite measures. For each k, n ∈ IN, let Ak
n be a

negative set for the signed measure ν − k
nµ. Let

E =

∞⋂

n=1

∞⋃

k=1

Ak
n

so that

Z = Ẽ =
∞⋃

n=1

∞⋂

k=1

Ãk
n.

We show that µ(Z) = 0.

For each j ∈ IN, the set Ãj
n is a positive set for ν − j

nµ, and
⋂∞

k=1 Ã
k
n ⊂ Ãj

n. Thus

ν

(
∞⋂

k=1

Ãk
n

)
≥ j

n
µ

(
∞⋂

k=1

Ãk
n

)
. (15)

Since (15) holds for every j and ν is finite, we infer that

µ

(
∞⋂

k=1

Ãk
n

)
= 0

for every n. Now

µ(Z) = µ

(
∞⋃

n=1

∞⋂

k=1

Ãk
n

)
≤

∞∑

n=1

µ

(
∞⋂

k=1

Ãk
n

)
,

from which it follows that µ(Z) = 0. Since ν ≪ µ, ν(Z) = 0.
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Use Theorem 2.17 to replace each system of sets {Ak
n}∞k=1 by a pairwise disjoint system of

sets {Ek
n}∞k=1 from M, with

∞⋃

k=1

Ek
n =

∞⋃

k=1

Ak
n and Ek

n ⊂ Ak
n \Ak−1

n , for n, k ∈ IN.

(This corresponds to the sets {
x :

k − 1

n
≤ F ′(x) <

k

n

}

in the heuristic argument.)
For each n, k ∈ IN, let gn = (k − 1)/n on Ek

n. Since

E =

∞⋂

n=1

∞⋃

k=1

Ak
n =

∞⋂

n=1

∞⋃

k=1

Ek
n,

each function gn is defined on E. We now replace the functions gn with functions fn that form
a monotone sequence (which therefore converges pointwise on E).

Fix n ∈ IN. Let

fn(x) = max
i≤n

gi(x).

For M ∈ M, M ⊂ E, let B0 = ∅ and, for i ≤ n, inductively define

Bi = ({x : fn(x) = gi(x)} ∩M) \Bi−1.

Then M =
⋃n

i=1Bi. This is a disjoint union. Thus
∫

M
fn dµ =

n∑

i=1

∫

Bi

gi dµ =
n∑

i=1

∞∑

k=1

∫

Bi∩Ek
i

gi dµ (16)
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=
n∑

i=1

∞∑

k=1

k − 1

i
µ(Bi ∩ Ek

i ) ≤
n∑

i=1

∞∑

k=1

ν(Bi ∩ Ek
i ) = ν(M).

The inequality follows from the fact that Ek
i is a subset of the set X \ Ak−1

i , which is a positive
set for ν − k−1

i µ. A similar argument using the fact that Ek
i ⊂ Ak

i leads to the inequalities

∫

M
fn dµ ≥

∫

M
gn dµ =

∞∑

k=1

(
k − 1

n

)
µ(M ∩ Ek

n) (17)

≥
∞∑

k=1

(
ν(M ∩ Ek

n) − µ(M ∩ Ek
n)

n

)
= ν(M) − µ(M)

n
.

Comparing (16) with (17), we see that, for every n ∈ IN,

ν(M) − µ(M)

n
≤
∫

M
fn dµ ≤ ν(M). (18)

Since {fn} is a nondecreasing sequence of functions on E, there exists a function f on E such
that f(x) = limn→∞ fn(x) for all x ∈ E. By Theorem 5.8,

∫

M
f dµ = lim

n→∞

∫

M
fn dµ

for all M ⊂ E,M ∈ M. By (18), this limit is ν(M). Extending f to all of X by defining
f(x) = 0 if x ∈ Z, we obtain the desired function. �
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5.8.3 The Vitali-Lebesgue theorem

Theorem 5.29 implies the theorem of Lebesgue and Vitali that began our discussion in this sec-
tion. This is the answer to the fundamentally important question as to what functions can ap-
pear as the indefinite integral for Lebesgue integrable functions on a compact interval [a, b].

Corollary 5.30 (Vitali–Lebesgue) Every function F that is absolutely continuous on [a, b]
can be represented as an integral

F (x) − F (a) =

∫ x

a
f dλ.

Proof. To verify this, we first note that by Theorem 5.28 the signed measure µF is absolutely
continuous with respect to Lebesgue measure. By Theorem 5.29, there exists a function f ∈
L1(λ) such that

µF (E) =

∫

E
f dλ

for every E ∈ L, E ⊂ [a, b]. In particular, for each x ∈ [a, b],

F (x) − F (a) = µF ([a, x]) =

∫ x

a
f dλ.

�

In Chapter 7 we will see that F ′ = f a.e., so the integrand in the corollary is precisely the
derivative of the indefinite integral. By analogy with this fact, the integrand f in (14) is called
the Radon–Nikodym derivative of ν with respect to µ and is denoted by dν

dµ . This terminology
may seem unsatisfying when we are dealing with an abstract measure space, because we are
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accustomed to thinking of derivatives as represented by limits of difference quotients. We prove
in Chapter 8 that such representations are possible in the abstract setting, thereby providing a
more satisfying justification for calling

f =
dν

dµ

a derivative.

5.8.4 Properties of Radon–Nikodym derivatives

For the moment, we provide a theorem that shows that formally dν
dµ does possess some proper-

ties reminiscent of derivatives.
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Theorem 5.31: Let (X,M) be a measurable space, let ν, ζ, and µ be measures on M, and
suppose that µ is σ-finite. Then

1. If ζ ≪ µ and g is a nonnegative µ–measurable function, then∫

E
g dζ =

∫

E
g
dζ

dµ
dµ

for every E ∈ M.

2. If ν ≪ µ and ζ ≪ µ, then
d(ν + ζ)

dµ
=
dν

dµ
+
dζ

dµ
.

3. If ν ≪ ζ ≪ µ, then
dν

dµ
=
dν

dζ

dζ

dµ
.

4. If ν ≪ µ and µ≪ ν, then
dν

dµ
=

(
dµ

dν

)−1

.

Proof. Part (i) is just Theorem 5.23, and part (ii) is Theorem 5.13 (iii). To verify (iii), let
E ∈ M. Then

ν(E) =

∫

E

dν

dζ
dζ =

∫

E

dν

dζ

dζ

dµ
dµ,

the second equality following from (i) with g = dν/dζ. Part (iv) now follows from (iii) since 1 =
dν/dν = (dν/dµ)(dµ/dν). �

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 5.8. Radon–Nikodym Theorem 387

Example 5.32: Let X = IN, and let {an} and {bn} be sequences of positive numbers, with
∞∑

n=1

an <∞ and
∞∑

n=1

bn <∞.

For E ⊂ IN, define

ν(E) =
∑

n∈E

an and µ(E) =
∑

n∈E

bn.

Then ν and µ are measures on 2IN. Clearly, ν ≪ µ. For f any nonnegative function on IN and
E ⊂ IN, we have ∫

E
f dµ =

∑

n∈E

f(n)bn.

Thus f = dν
dµ if, for each E ⊂ IN,

∑

n∈E

an = ν(E) =
∑

n∈E

f(n)bn,

that is, f(n) = an/bn. It is also true that µ≪ ν and the derivative dµ
dν is 1/f .

5.8.5 The Lebesgue decomposition

We illustrate an interesting decomposition of a measure as a sum of two measures. Theorem 5.34,
which follows, shows how to do this in general. Let us, first, recall the discussion on page 136:
two measures α and β on a measure space (X,M, µ) are called mutually singular, written as
α ⊥ β, if there are disjoint measurable sets A and B such that X = A ∪ B and α(B) = β(A) =
0; that is, the measures are concentrated on two different disjoint sets.
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Example 5.33: Let f be the Cantor function, and let g(x) = x2 on [0,1]. Since µf (E) = 0
whenever E is a measurable set disjoint from the zero measure Cantor set, the measures µf and
λ are, by definition, mutually singular, i.e., µf ⊥ λ. The measure µg+f can therefore be decom-
posed into a sum

µg+f = µg + µf

of two measures, one absolutely continuous with respect to λ and the other mutually singular
with λ.

Our theorem shows that a decomposition, such as illustrated in Example 5.33, always occurs
for a σ-finite measure space.

Theorem 5.34 (Lebesgue decomposition) Let (X,M, µ) be a σ-finite measure space, and
let ν be a σ-finite measure on M. Then there exist measures α and β such that α ≪ µ and
β ⊥ µ and for which ν = α+ β. The measures α and β are unique.

Proof. Let ζ = µ + ν. Then ζ is a σ-finite measure on M, and µ ≪ ζ, ν ≪ ζ. By Theo-
rem 5.29, there exist nonnegative measurable functions f and g such that, for each E ∈ M,

µ(E) =

∫

E
f dζ and ν(E) =

∫

E
g dζ.

Let A = {x : f(x) > 0} and B = {x : f(x) = 0} . Then X = A ∪B, A ∩B = ∅, and

µ(B) =

∫

B
f dζ = 0.

Define measures α and β on M by

α(E) = ν(E ∩A) and β(E) = ν(E ∩B). (19)
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We infer from (19) that ν = α+β. Since β(A) = ν(A∩B) = ν(∅) = 0, we have β ⊥ µ. To verify
that α ≪ µ, let E be any member of M for which µ(E) = 0. We show that α(E) = 0. From the
equalities

0 = µ(E) =

∫

E
f dζ,

we infer f(x) = 0 for ζ–almost every x ∈ E. Now f > 0 on A ∩ E, so ζ(A ∩ E) = 0. Thus,
by (19),

α(E) = ν(A ∩ E) =

∫

A∩E
g dζ = 0,

and α≪ µ.
It remains to show the uniqueness of α and β. We leave the verification of this fact as Exer-

cise 5:8.2. �

Exercises

5:8.1 Show that Theorem 5.29 fails if one drops the requirement that the space be σ-finite. [Hint: Let µ
be the counting measure on the subsets of IR and ν = λ.]

5:8.2 (a) Prove that if ν ⊥ µ and ν ≪ µ then ν = 0.

(b) Prove that if each of ν1 and ν2 is absolutely continuous [singular] with respect to µ then so is
any linear combination of ν1 and ν2.

(c) Prove the uniqueness part of Theorem 5.34.
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5.9 Convergence Theorems

In Section 4.3, we discussed several modes of convergence of a sequence of measurable func-
tions, and we indicated implications that exist among them. We now use our knowledge of the
integral to obtain some further convergence theorems. We begin by defining a new notion of
convergence for a sequence of integrable functions.

5.9.1 Convergence in the mean

Definition 5.35: Let (X,M, µ) be a measure space, and let {fn} be a sequence of integrable
functions. If there exists f ∈ L1 such that

lim
n→∞

∫

X
|fn − f | dµ = 0,

we say that {fn} converges to f in the mean and write fn → f [mean].

We can put a metric on the space L1 that expresses mean convergence by writing

ρ(f, g) =

∫

X
|f − g| dµ.

(See also Chapter 13 for a more detailed account of this space.) Since this is the most natural
and useful metric on L1, this convergence is commonly called L1–convergence or convergence in
L1. One of the most useful consequences of mean convergence is that if fn → f [mean] then fn

converges to f weakly in the sense that

lim
n→∞

∫

E
fn dµ =

∫

E
f dµ (20)
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[meas] [a.e.]

[a.u.][mean]

[unif]
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Figure 5.3. Further comparison of modes of convergence in a measure space.

for every measurable set E. This follows immediately from the inequalities
∣∣∣∣
∫

E
fn dµ−

∫

E
f dµ

∣∣∣∣ ≤
∫

E
|fn − f | dµ ≤

∫

X
|fn − f | dµ.

Mean convergence is easily seen to be stronger than convergence in measure. This is our
first theorem. Note immediately, however, that mean convergence is not implied by any other
of our forms of convergence. Figure 5.3 illustrates and is a repeat of Figure 4.1 with mean con-
vergence now added. Without some restrictions, even uniform convergence does not imply mean
convergence. For example, the sequence of functions

fn = n−1χ
[n,2n]

converges uniformly to zero on IR, but
∫

IR
|fn| dλ = 1
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[meas] [a.e.]

[a.u.][mean]

[unif]
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Figure 5.4. Further Comparison of modes of convergence in a finite measure space.

for every n ∈ IN. If we assume that the space has finite measure, then clearly uniformly conver-
gent sequences converge in mean, but there are no other new implications. Figure 5.4 illustrates
this.

Theorem 5.36: Let (X,M, µ) be a measure space, and let {fn} be a sequence of integrable
functions such that fn → f [mean]. Then fn → f [meas].

Proof. The conclusion follows from the inequality

µ ({x : |fn(x) − f(x)| ≥ η}) ≤ η−1

∫

X
|fn − f | dµ

(cf. Exercise 5:2.3). �

The Lebesgue dominated convergence theorem (Theorem 5.14) provides a condition under
which mean convergence follows from convergence in measure.
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Theorem 5.37: Let (X,M, µ) be a measure space, and let {fn} be a sequence of measurable
functions such that fn → f [meas]. If there exists g ∈ L1 such that |fn| ≤ g a.e. for every
n ∈ IN, then fn → f [mean].

Proof. By Theorem 4.14 there exists a subsequence {fnk
} of {fn} such that fnk

→ f [a.e.].
Thus |f | ≤ g a.e., so |f | ∈ L1. In particular, then, |fn − f | ≤ 2g [a.e.] and so, by Corollary 5.15,∫

X
|fn − f | dµ→ 0,

as required. �

5.9.2 A more illuminating proof using the rectangle principle

The preceding proof is quick, but not revealing. A direct proof that does not invoke the Lebes-
gue dominated convergence theorem is more illuminating and illustrates a principle that is of-
ten the basis for estimates involving integrals. We refer to this technique as the rectangle prin-
ciple. In its crudest form it states that the area of a rectangle, whose dimensions a × b may
vary, can be made arbitrarily small if one of the dimensions is controlled in size and the other
can be made sufficiently small. Analogously, in the setting of integrals it states that an inte-
gral

∫
E F dµ, where F and E may vary, can be made arbitrarily small if the size of either F

or E can be controlled and the other can be made sufficiently small. In the following proof of
Theorem 5.37, observe the roles played by convergence in measure and by absolute continuity
to allow use of the rectangle principle. (See also Exercise 5:9.5 for a similar application of this
principle.)

Proof. (Alternative proof of Theorem 5.37) Let ε > 0. Since g ∈ L1, we can choose α > 0 so
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that ∫

{x:2g(x)≤α}
2g dµ < ε/3.

Letting

A = {x : 2g(x) > α},
we note that µ(A) < ∞ so there is a η > 0 with ηµ(A) < ε/3. From the absolute continuity of
the integral, there is a δ > 0 so that ∫

E
2g dµ < ε/3

whenever µ(E) < δ. Finally, choose N so that µ(Bn) < δ for all n ≥ N , where

Bn = {x ∈ A : |fn(x) − f(x)| ≥ η}.
Now, using the inequalities |fn − f | ≤ 2g a.e. and |fn − f | < η on A \Bn, we have∫

X
|fn − f | dµ ≤

∫

X\A
2g dµ+

∫

Bn

2g dµ+

∫

A\Bn

η dµ < ε

for all n ≥ N , as required to prove the theorem. �

Note how the second and third integrals illustrate the rectangle principle. In the first case
Bn is small and 2g controlled, while in the other case η is small, µ(A \Bn) is controlled.

5.9.3 Comparison of convergence conditions

The condition of the theorem, that there is an integrable function g dominating the sequence
{fn}, gives a number of implications among the types of convergence (uniform, a.e., a.u., mea-
sure, and mean). To display these, we now add a further convergence chart (Figure 5.5).
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[meas] [a.e.]
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Figure 5.5. Comparison of modes of convergence when there exists g ∈ L1 such that |fn| ≤ g for all n.

Exercise 5:9.2 calls for the verification of several of these implications that exist among our
five notions of convergence. One of these, that convergence [a.e.] implies convergence [a.u.], re-
quires a revision of Egoroff’s theorem (Theorem 4.16) to handle the case where the sequence
is dominated, in place of the original assumption that the space had finite measure. (Exer-
cise 4:3.4 has already suggested that such a result should be possible.) We shall prove this now.
In particular, note that the proof essentially contains the observation that, when the functions
|fn| are dominated by a function g ∈ L1, then convergence [a.e.] implies convergence [meas].
This result is also an immediate consequence of Theorems 5.37 and 5.36.

Theorem 5.38 (Egoroff) Let (X,M, µ) be a measure space, and let {fn} be a sequence of
finite a.e. measurable functions for which fn → f [a.e.]. If there exists g ∈ L1 such that, for
every n ∈ IN, |fn| ≤ g a.e., then fn → f [a.u.].
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Proof. We define sets Ank, n, k ∈ IN, by

Ank =
∞⋂

m=n

{
x : |fm(x) − f(x)| < 1

k

}
,

and we show that

lim
n→∞

µ(X \Ank) = 0. (21)

Let k ∈ IN, x ∈ X. If limn→∞ fn(x) = f(x), then

x ∈
∞⋃

n=1

Ank.

Thus our assumption that fn → f [a.e.] implies that

µ

(
∞⋂

n=1

(X \Ank)

)
= 0.

The sequence A1k, A2k, . . . is an expanding sequence of measurable sets. We verify the state-
ment (21) by showing that there exists n ∈ IN such that µ(X \Ank) <∞ and then applying
Theorem 2.21 (ii). Our hypotheses imply that |f | ≤ g a.e. Thus

|fm − f | ≤ 2g a.e. (22)

for every m ∈ IN. Now

X \Ank =
∞⋃

m=n

{
x : |fm(x) − f(x)| ≥ 1

k

}
⊂ S ∪ T,
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where

S =

{
x : 2g(x) ≥ 1

k

}

and

T =
∞⋃

m=n

{x : |fm(x) − f(x)| > 2g} .

By (22) we see that µ(T ) = 0. From the fact that g ∈ L1 we obtain that µ(S) < ∞. Thus it
follows that µ(X \Ank) <∞.

We have shown that our present hypotheses imply the validity of (21). Observe that (21) is
identical to equation (2) in the proof of Theorem 4.16, and so the proof may be continued by
repeating the remainder of that proof without changes. �

5.9.4 Dominated convergence and uniform absolute continuity

We close with a final remark about the condition |fn| ≤ g that has played such an impor-
tant role in the convergence theory of the integral here and in earlier sections. One should ask
whether there is a weaker hypothesis than this under which Theorem 5.37 can be proved and,
indeed whether there is a condition that is both necessary and sufficient. The clue is that the
condition |fn| ≤ g ensures that the measures νn =

∫
|fn| dµ are uniformly absolutely continu-

ous with respect to µ in a certain sense. This analysis was initiated by Vitali and completed by
Lebesgue. Exercise 5:9.5 gives the version for a finite measure space, and Exercise 5:9.8 gives a
version valid in general.
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Exercises

5:9.1 If fn → f [mean] show that
∫

E
fn dµ →

∫
E
f dµ for every measurable set E. Show that the con-

verse is false. [Hint: a counterexample for the converse will require than fn not converge to f in
measure.]

5:9.2 We have established most of the implications and provided counterexamples for the most of the
nonimplications in Figure 5.5 in the text. Verify that the remaining implications are valid and that
no implications were omitted.

5:9.3 Show that if fn → f [mean] and g is a bounded measurable function then fng → fg [mean].

5:9.4 For every n ∈ IN, let {ank} be a sequence of numbers with |ank| ≤ 2−k for each k. Suppose for
each k that the sequence {ank} converges to some number ak. Prove that the series

∑∞
k=1 ak is

convergent and that
∞∑

k=1

ak = lim
n→∞

∞∑

k=1

ank.

5:9.5♦ Let V be a family of measures defined on M. If for every ε > 0 there exists δ > 0 such that, if
µ(E) < δ, then ν(E) < ε for every ν ∈ V, we say that the family is uniformly absolutely continuous
with respect to µ. Prove the theorem and show that this theorem does not necessarily hold on a
space of infinite measure.

Theorem (Vitali–Lebesgue) Let (X,M, µ) be a finite measure space, let f be mea-
surable, and let {fn} be a sequence of integrable functions. Then fn → f [mean] if and
only if fn → f [meas] and νn =

∫
|fn| dµ are uniformly absolutely continuous.

[Hint: The hypothesis of uniform absolutely continuity can be used to show that f ∈ L1. Its use
in the remainder of the proof involves an application of the “rectangle principle” used in proving
Theorem 5.37. Try to prove the result for X = [a, b] first. In the general case of a space of finite
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measure, you might wish to use Exercise 2:14.8 (a) when µ is nonatomic and observe that, for any
γ > 0, there can be only finitely many atoms whose measures exceed γ.]

5:9.6 Prove the theorem:

Theorem (de la Vallée Poussin) Let F be a family of measurable functions defined
on a measure space (X,M, µ) with µ(X) < ∞. If there exists a positive increasing
function φ : (0,∞) → IR with limt→∞ φ(t) = ∞ and a constant A such that∫

X

|f |φ(|f |) dµ < A

for all f ∈ F , then the members of F are in L1 and the family of measures νf =∫
|f | dµ is uniformly absolutely continuous.

[Hint: For ε > 0 choose K such that A/φ(K) < ε/2. For f ∈ F and E ∈ M, consider the set
{x ∈ E : |f(x)| ≤ K}. Use that set to show

∫
E
|f | dµ ≤ A/φ(K) +Kµ(E).]

5:9.7 Let (X,M, µ) be a measure space with µ(X) < ∞. Let F be a family of measurable functions de-
fined on this measure space and suppose that

∫
X
f2 dµ < A for all f ∈ F . Prove that the integrals∫

|f | dµ are uniformly absolutely continuous. Deduce from this that, if fn → f [meas] and fn ∈ F ,
then fn → f [mean]. [Hint: Apply the de la Vallée Poussin theorem of Exercise 5:9.6.]

5:9.8 Let V be a family of measures defined on M. We say the family is equicontinuous at ∅ if for every
ε > 0 and every decreasing sequence of measurable sets En shrinking to ∅ there exists N such that
ν(En) < ε for every n ≥ N and every ν ∈ V.

(a) Let V be equicontinuous at ∅ and suppose each member of V is absolutely continuous with
respect to µ. Show that V is uniformly absolutely continuous with respect to µ.

(b) Show that on a finite measure space a uniformly absolutely continuous family of measures
must be also equicontinuous at ∅.
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(c) Prove the theorem:

Theorem (Vitali–Lebesgue) Let (X,M, µ) be a measure space, let f be measur-
able, and let {fn} be a sequence of integrable functions. Then fn → f [mean] if and
only if fn → f [meas] and νn =

∫
|fn| dµ are equicontinuous.

5:9.9 Show that Lebesgue’s dominated convergence theorem follows from the Vitali–Lebesgue theorems
of the preceding exercises.

5.10 Relations to Other Integrals

The beginning student of integration theory is often left somewhat bewildered by the relation
that the Lebesgue integral has to various other integrals previously learned. To be sure, as we
have seen in Section 5.5, the Lebesgue integral includes the Riemann integral and is (it should
now appear) an entirely natural extension of Riemann’s integral. One is easily led to assume
incorrectly that the Lebesgue integral, since it is clearly the dominant integral in modern analy-
sis, must be an extension of every other integration method.

We have seen in the introductory chapter a number of other methods for integrating func-
tions in addition to the Riemann integral. We have also studied the improper Cauchy integral,
the Newton integral, and the generalized Riemann integral. How does the Lebesgue integral
compare to these?

One key feature of Lebesgue integration allows us to see immediately some differences; the
Lebesgue integral is an absolute integral. In order for

∫ b
a f(x) dx to exist in the Lebesgue sense,

the absolute integral
∫ b
a |f(x)| dx must also exist. This reveals, at once, some distinctions. The

improper Cauchy integrals, the Newton integral, and the generalized Riemann integral are all
nonabsolute integrals.
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One well-known example illustrates the situation: the derivative of the function f(x) =
x2 sinx−2 is integrable in each of these senses on [0, 1], but the integral

∫ 1

0
|f ′(x)| dx

taken in any sense (including Lebesgue’s) must be infinite. Thus the Lebesgue integral does not
include any of these integrals.

In the other direction, it is easy to give examples of functions that are Lebesgue integrable
on the interval [0, 1] and yet not integrable as Cauchy or Newton integrals. If an integral exists
as both a Newton integral and a Lebesgue integral, then the values must be the same; this fol-
lows from the fundamental theorem of calculus for the Lebesgue integral. (Theorem 5.21 does
this for bounded derivatives; Section 7.5 will do this for integrable derivatives.) Thus, while dis-
tinct, the Newton integral and the Lebesgue integral on an interval are compatible.

In fact, there remain only two questions requiring answers.

1. Is the Cauchy procedure for integrating unbounded functions or integrating over unbounded
intervals compatible with that of Lebesgue? Do they produce the same value?

2. How does the Lebesgue integral compare to the generalized Riemann integral?

We shall now address both of these questions.

5.10.1 The Cauchy process and Lebesgue integration

The first question is easy. The reader should quickly find proofs for the following three asser-
tions. They are enough to see that the Cauchy procedure may be used to compute the value of
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a Lebesgue integral, provided only that one knows in advance that the Lebesgue integral exists.
We use the conventional calculus notation for our Lebesgue integrals here.

Theorem 5.39: Let f be Lebesgue integrable over an interval [a, b]. Then
∫ b

a
f(x) dx = lim

tցa

∫ b

t
f(x) dx.

Theorem 5.40: Let f be a function bounded below on an interval [a, b], and suppose that f is
Lebesgue integrable over each interval [t, b] for a < t < b. Then f is Lebesgue integrable over
[a, b] if and only if the limit

lim
tցa

∫ b

t
f(x) dx

exists and is finite.

Theorem 5.41: Suppose that f is Lebesgue integrable over the interval (−∞,+∞). Then
∫ +∞

−∞
f(x) dx = lim

s,t→+∞

∫ t

−s
f(x) dx.

5.10.2 The generalized Riemann integral and Lebesgue integration

The second problem mentioned, establishing the relation of the Lebesgue integral to the gener-
alized Riemann integral, is far less trivial. On an interval [a, b] it turns out that the generalized
Riemann integral strictly contains Lebesgue’s integral. This shows that the Lebesgue integral
may be expressed as a limit of “Riemann sums,” much in the spirit of the origins of integration
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theory with Cauchy and Riemann. While nowadays this might seem a curiosity, it was consid-
ered important enough in Lebesgue’s time that he proved (in 1909) that his integral could be so
expressed, but his expression of this fact was not so simple as in this theorem.

Theorem 5.42: Let f be Lebesgue integrable on an interval [a, b]. Then, for any ε > 0, there is
a positive function δ on [a, b] so that whenever

a = x0 < x1 < x2 < · · · < xn = b

is a partition of [a, b] with associated points ξi ∈ [xi−1, xi] such that

xi − xi−1 < δ(ξi) (i = 1, 2, . . . , n),

we have ∣∣∣
∑

i

f(ξi) (xi − xi−1) −
∫

[a,b]
f(x) dx

∣∣∣ < ε.

We shall prove this theorem in a metric space for greater generality; this also gives us an op-
portunity to use some of the techniques we have acquired in our study of the integration theory.
The proof we give is due to Davies and Schuss.6

6R. O. Davies and Z. Schuss, J. London Math. Soc. (2) 2 (1970), 561–562.
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Theorem 5.43: Let X be a metric space and µ a Borel regular measure on X. Let f be a real
function integrable on a measurable set E ⊂ X for which µ(E) < ∞. Then for any ε > 0 we
can associate with each x ∈ E an open set G(x) containing x in such a way that the following
statement holds:

Whenever B1, B2, . . . is a finite or infinite sequence of disjoint measurable subsets of
E for which

µ

(
E \

⋃

i

Bi

)
= 0

and ξi ∈ Bi with Bi ⊂ G(ξi), then
∣∣∣
∑

i

f(ξi)µ(Bi) −
∫

E
f(x) dµ(x)

∣∣∣ < ε.

Proof. Using the absolute continuity of the integral, we can determine η > 0 so that, when-
ever A is a measurable subset of E with µ(A) < η, then

∫

A
|f | dµ < ε

3
.

Write κ = 1
3ε(η + µ(E))−1 and partition E into the sequence of measurable sets

Em = {x ∈ E : (m− 1)κ < f(x) ≤ mκ} (m = 0,±1,±2,±3, . . . ).

Using the definition of Lebesgue measure, we may choose an open set Gm ⊃ Em so that

µ(Gm) < µ(Em) +
η

2|m|3(|m| + 1)
.
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Since both Gm and Em are measurable this means that

µ(Gm \ Em) <
η

2|m|3(|m| + 1)
.

We determine our sets G(x) now by writing G(x) = Gm, for x ∈ Em.
Suppose that B1, B2, . . . is a sequence of disjoint measurable subsets of E for which

µ

(
E \

⋃

i

Bi

)
= 0

and that each ξi ∈ Bi with Bi ⊂ G(ξi). Choose m(i) so that ξi ∈ Em(i); this means that Bi ⊂
Gm(i) and

Bi \ Em(i) ⊂ Gm(i) \ Em(i).

Then we compute

∣∣∣
∑

i

f(ξi)µ(Bi) −
∫

E
f(x) dµ(x)

∣∣∣ =
∣∣∣
∑

i

∫

Bi

(f(ξi) − f(x)) dµ(x)
∣∣∣

≤
∑

i

∫

Bi

|f(ξi) − f(x)| dµ(x).

We split this last sum into three parts and show that each is less than ε/3. The theorem evi-
dently follows.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



406 Integration Chapter 5

Write

P =
∑

i

∫

Bi∩Em(i)

|f(ξi) − f(x)| dµ(x),

Q =
∑

i

∫

Bi\Em(i)

|f(ξi)| dµ(x),

and

R =
∑

i

∫

Bi\Em(i)

|f(x)| dµ(x).

Since, whenever x ∈ Bi ∩ Em(i), the numbers f(x) and f(ξi) can differ by no more than κ we
have

P ≤
∑

i

∫

Bi∩Em(i)

κ dµ(x) ≤ κ
∑

i

µ(Bi) = κµ(E) <
ε

3
.

We can write Q as

Q =
∞∑

m=−∞


 ∑

m(i)=m

∫

Bi\Em(i)

|f(ξi)| dµ(x)




≤
∞∑

m=−∞


 ∑

m(i)=m

(|m| + 1)κµ
(
Bi \ Em(i)

)



≤
∞∑

m=−∞

(|m| + 1)κµ (Gm \ Em) <
ε

3
.
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If we define

A =
⋃

i

(
Bi \ Em(i)

)
,

then we see, since this is a disjoint union, that

µ(A) =

∞∑

m=−∞


 ∑

m(i)=m

µ
(
Bi \ Em(i)

)



≤
∞∑

m=−∞

µ (Gm \ Em) < η.

Consequently,

R =

∫

A
|f(x)| dµ(x) <

ε

3

by the definition of η. Putting these together, we have
∣∣∣
∑

i

f(ξi)µ(Bi) −
∫

E
f(x) dµ(x)

∣∣∣

≤
∑

i

∫

Bi

|f(ξi) − f(x)| dµ(x) ≤ P +Q+R < ε

and the theorem is proved. �

Exercises

5:10.1 Prove Theorem 5.39. Show also that the limit can exist for functions f that are not Lebesgue
integrable over [a, b] (but are integrable on [t, b] for all a < t < b).
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5:10.2 Prove Theorem 5.40.

5:10.3 Prove Theorem 5.41. Show also that the limit can exist for functions f that are not Lebesgue
integrable over (−∞,+∞) (but are integrable on all bounded intervals).

5:10.4 Compute the Lebesgue integral of
∫ 1

0
xp dx for p < 0, making sure to justify the computations.

5:10.5 Show that Theorem 5.42 does follow from Theorem 5.43.

5.11 Integration of Complex Functions

So far the integral has been defined first for measurable functions assuming finitely many real
values, then for nonnegative measurable functions, and finally for arbitrary real-valued mea-
surable functions. There is also a need in many applications of integration theory to be able to
handle complex-valued functions. Indeed, in parts of Chapters 13, 14, and 15 we will require
such a theory. In this section we shall discuss how the integral may be extended in this way.

At the outset, let us avoid a possible misconception. We are not embarking on a study of
complex analysis itself. That subject concerns itself with complex-valued analytic functions de-
fined on a subset of C (or Cn), and the integrals encountered there are usually line integrals of
continuous functions. The Lebesgue theory is not commonly required in such a study. Our set-
ting is a measure space (X,M, µ), and we wish to investigate integrals of functions defined on
X, but with complex values. Even as dedicated “real” analysts, we cannot avoid dealing with
such functions because they arise in a wide variety of problems.

Our first task is to interpret what we shall mean by a measurable complex-valued function.
There are two possible approaches here. A function f : X → C can be written as f(x) =
f1(x) + if2(x) by splitting into real and imaginary parts so that f1 and f2 are real-valued func-
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tions; measurability of f could be interpreted as measurability of the real and imaginary parts
f1 and f2. Alternatively, we could directly generalize the definition of measurability (Defini-
tion 4.1) for real-valued functions to the situation of functions f : X → Y , where Y is any met-
ric space. Complex-valued functions are then handled as well, since C is a metric space under
its usual modulus metric. We choose the latter definition and then show that this is equivalent
to requiring measurability of the real and imaginary parts.

Definition 5.44: Let (X,M, µ) be a measure space, let Y be a metric space, and let f : X →
Y . The function f is measurable if for every open set G ⊂ Y the set f−1(G) is a measurable set.

Note that for real-valued functions Definitions 4.1 and 5.44 are equivalent; the latter, how-
ever, better shows the true nature of measurable functions as mappings from one structure (a
measure space) to another (a metric space) that preserves elements of the structures (inverse
images of open sets in the metric space are measurable sets in the measure space). Since we are
concerned in this section only with complex-valued functions, let us immediately relate this def-
inition to the real case.

Theorem 5.45: Let (X,M, µ) be a measure space and let f : X → C with f = f1 + if2, where
f1 and f2 are the real and imaginary parts of f . The following hold.

1. If f is measurable, then f1, f2, and |f | are real-valued measurable functions.

2. If f1, f2 are real-valued measurable functions, then f is measurable.

3. If f is measurable, then there is a measurable function h : X → C with |h| = 1 and f =
h|f |.
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Proof. Let us first prove (i) from an interesting general observation. If Y1, Y2 are metric spaces
and g : Y1 → Y2 is continuous, and if f : X → Y1 is measurable, then the composed map
h = g ◦ f taking X to Y2 must be measurable. This is easy to see since if G ⊂ Y2 is open then
g−1(G) is open (since g is continuous) and h−1(G) = f−1(g−1(G)) is measurable (since f is a
measurable function).

Item (i) now follows from our observation above. By taking Y1 = C, Y2 = IR, and g(x+iy) =
x, we get that f1 = g ◦ f is a measurable function from X to IR. Similarly, if g(x + iy) = y, we
get that f2 = g ◦ f is measurable. Finally, if g(x + iy) =

√
x2 + y2, we get that |f | = g ◦ f is

measurable.
Item (iii) can be proved from the same observation. If f never assumes the value zero in the

complex plane, then take Y1 = C \ {0}, Y2 = C, and g(z) = z/|z|. Note that g is a continuous
map of Y1 to Y2. We get then that g = h ◦ f is a measurable function from X to C, |g(x)| =
|f(x)|/|f(x)| = 1, and g(x)|f(x)| = f(x), as required. However, f might assume zero values and
so some modification in our argument is needed. Since this is easy enough and entertaining,
too, it is left as an exercise.

Finally, let us turn to proving (ii), again from an interesting general observation. Let u1 and
u2 be real-valued measurable functions on X and let h be any continuous mapping of IR2 into a
metric space Y . Then the function

F (x) = h(u1(x), u2(x))

is a mapping from X to Y . We shall show that F must be measurable. Let f(x) = (u1(x), u2(x))
so that f is a mapping from X to IR2. Since F = h ◦ f we see that the measurability of F fol-
lows (by our first observation) from the measurability of f .
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To see the measurability of f , consider any open rectangle

R = (a, b) × (c, d)

in IR2. The set

f−1(R) = u−1
1 (a, b) ∩ u−1

2 (c, d)

must be measurable since both functions u1 and u2 are measurable. This is just for open rect-
angles; but any open set in IR2 can be expressed as a countable union of such open rectangles.
Suppose that G is an open subset of IR2 and that G =

⋃
iRi where Ri are open rectangles.

Then

f−1(G) = f−1

(
⋃

i

Ri

)
=
⋃

i

f−1(Ri)

must be measurable, since it is a countable union of measurable sets. Because G is an arbitrary
open set in IR2, we see that f is measurable by definition. Item (ii) now follows from this obser-
vation by taking u1 = f1, u2 = f2, Y = C, and h(x, y) = x+ iy. �

Definition 5.46: Let (X,M, µ) be a measure space, and let f be a complex-valued measurable
function on X with f(x) = f1(x) + if2(x) and f1, f2 real. Suppose that

∫
X |f | dµ < ∞. Then f

is said to be integrable, and the integral of f with respect to µ is defined to be the quantity∫

X
f dµ =

∫

X
f1 dµ+ i

∫

X
f2 dµ.

In this definition we have required that
∫
X |f | dµ < ∞, which implies that the integrals∫

X f1 dµ and
∫
X f2 dµ both exist and are finite. For complex-valued functions we do not wish
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to allow infinite values for the integral.
Does the integration theory change at all now that we have allowed complex values for the

functions? The answer is no, but occasionally it takes some care and attention to detail to check
this. We state the following theorems and leave it to the reader to manufacture the details of
the proofs. There is nothing difficult about this process; the hardest part is to realize what it is
that needs to be proved. Remember to use the real versions to get the complex versions.

Theorem 5.47: Let (X,M, µ) be a measure space and let f , g : X → C, with both f , g inte-
grable. Then ∫

X
(αf + βg) dµ = α

∫

X
f dµ+ β

∫

X
g dµ

for any complex numbers α, β.

The next theorem is particularly easy to prove for real functions as it follows from the mono-
tonicity of the integral. For complex-valued functions, it requires some different thinking. Here
the symbol | · | means a complex modulus, not merely an absolute value.

Theorem 5.48: Let (X,M, µ) be a measure space, and let f : X → C with f integrable. Then∣∣∣∣
∫

X
f dµ

∣∣∣∣ ≤
∫

X
|f | dµ.

Exercises

5:11.1 Let (X,M, µ) be a measure space, and let f : X → IR. Show that f is measurable (according to
Definition 4.1) if and only if for every open set G ⊂ IR the set f−1(G) is a measurable set.
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5:11.2 Let (X,M, µ) be a measure space and f a function on X to a metric space Y . Show that f is
measurable if and only if f−1(B) ∈ M for every Borel set B ⊂ Y (cf. Theorem 4.6 and Exer-
cise 4:1.2).

5:11.3 If f is a measurable complex-valued function, show that there exists a measurable complex-
valued function h : X → C with |h| = 1 and f = h|f |. [Hint: This is started in Theorem 5.45.
It is only the possibility that the set E = {x ∈ X : f(x) = 0} is nonempty that remains to be
handled. Is E measurable? How should h(x) be defined for x ∈ E and for x 6∈ E?]

5:11.4 Show that ∫

X

(αf + βg) dµ = α

∫

X

f dµ+ β

∫

X

g dµ

for any complex numbers α, β and integrable complex-valued functions f and g. [Hint: Split each
of α, β, f , and g into real and imaginary parts and handle the pieces.]

5:11.5 Show that ∣∣∣∣
∫

X

f dµ

∣∣∣∣ ≤
∫

X

|f | dµ

for complex-valued functions. [Hint: Let c =
∫

X
f dµ and choose b so that bc = |c| and |b| = 1.

Consider the integral of the function bf .]

5:11.6 Let (X,M, µ) be a measure space, and let {fn} be a sequence of complex-valued measurable
functions such that fn → f [a.e.]. Suppose that there exists a function g ∈ L1 such that |fn(x)| ≤
g(x) for all n ∈ IN and x ∈ X. Show that f is integrable and

∫

X

f dµ = lim
n→∞

∫

X

fn dµ.

[Hint: This is a complex version of the Lebesgue dominated convergence theorem (Theorem 5.14).]
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5.12 Additional Problems for Chapter 5

5:12.1 This problem presents a collection of different ways in which the integral has been defined7. In
each case show that the method is equivalent to the one given in the text in an appropriate set-
ting.

(a) (de la Vallée Poussin’s method) For an unbounded, nonnegative measurable function f , intro-
duce the “truncates” fn defined as fn(x) = f(x) if f(x) < n and fn(x) = n if f(x) ≥ n. The
integral is extended from bounded to unbounded functions by defining

∫

E

f = lim
n→∞

∫

E

fn.

(b) (Hobson’s method) For an unbounded, measurable function f , introduce the “double trun-
cates” fmn defined as fmn(x) = f(x) if −m < f(x) < n, fmn(x) = n if f(x) ≥ n, and
fmn(x) = −m if f(x) ≤ −m. The integral is extended from bounded to unbounded functions
by defining ∫

E

f = lim
m,n→∞

∫

E

fmn.

(c) (Saks’s method) For a nonnegative measurable function f , define the integral as
∫

E

f = sup

n∑

k=1

µ(Ek)

(
inf

x∈Ek

f(x)

)
,

where the supremum is taken over all finite partitions of E into disjoint measurable subsets.

7The collection is from Munroe, Introduction to Measure and Integration, Addison-Wesley, 2nd ed., 1971,
pp. 126–127, Exercises d–g.
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(d) (Carathéodory’s method) For a nonnegative measurable function f on E ⊂ IRn, define the
Lebesgue integral to be the (n+ 1)-dimensional Lebesgue measure of the ordinate set:∫

E

f = λn+1 ({(x, y) : x ∈ E, 0 ≤ y ≤ f(x)}) .

5:12.2 Let E be a Lebesgue measurable set of positive measure, and let {xn} be some sequence of points
from the interval [0, 1]. Show that there must exist a point y and a subsequence {xnk

} so that
y + xnk

∈ E for all k. [Hint: Consider the functions fn(t) = χ
E

(t+ xn) and their integrals.]

5:12.3 Let f be nonnegative and Lebesgue integrable in the interval [0, 1], and suppose that, for every
integer n = 1, 2, 3, 4, . . . , ∫ 1

0

[f(x)]n dx =

∫ 1

0

f(x) dx.

Show that f must be a.e. equal to the characteristic function χ
E

of some measurable set E ⊂
[0, 1]. [Hint: Apply Fatou’s lemma.]

5:12.4 Let f be Lebesgue integrable on the interval (−∞,∞) and let ε > 0. Show that there is a contin-
uous function g that vanishes outside some interval and such that

∫∞
−∞ |f(x) − g(x)| dx < ε. [Hint:

Apply Lusin’s theorem.]

5:12.5 Let f be Lebesgue integrable on the interval (−∞,∞). Show that

lim
h→0

∫ ∞

−∞
|f(x+ h) − f(x)| dx = 0.

[Hint: Use the approximation result in Exercise 5:12.4.]

5:12.6 Let {ak} be a sequence of real numbers with
∑∞

k=1 |ak| < +∞, and let {rk} be an enumeration
of the rationals in [0, 1]. Show that

∞∑

k=1

ak√
|x− rk|
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converges absolutely almost everywhere in [0, 1]. [Hint: What can you say about the sum
∑∞

k=1 |fk(x)|
if the sum

∑∞
k=1

∫
E
|fk(x)| dx converges?]

5:12.7 Let f be Lebesgue integrable on [0, 1]. Suppose that 0 < c < 1 and that
∫

E

f(t) dt = 0

for every measurable set E ⊂ [0, 1] with λ(E) = c. Prove that f must vanish almost everywhere.

5:12.8 Prove that if µ(X) < ∞ and f2 ∈ L1 then f ∈ L1. Is this statement true without the hypothesis
µ(X) <∞?

5:12.9♦ The discussion following Theorem 5.23, as well as much of the material in Sections 5.7 and 5.8,
suggests that, when ν(E) =

∫
E
f dµ, the Radon–Nikodym derivative f = dν

dµ behaves very much
like a derivative. In preparation for material in Chapter 8, do the following:

(a) Summarize the ways in which dν
dµ behaves formally like an ordinary derivative.

(b) Criticize the following statement. “Since f = dν
dµ , the Radon–Nikodym Theorem generalizes

both halves of the fundamental theorem of calculus: if we integrate f and differentiate the
resulting measure ν, we get dν

dµ = f ; if we integrate dν
dµ , we get ν.”

(c) Let F have a bounded derivative on [a, b], F ′ = f , and let ν(E) =
∫

E
f dλ for all E ∈ L. Let

x ∈ [a, b] and let Iy = [x, y]. Show that

lim
y→x

ν(Iy)

λ(Iy)
= f(x).

This suggests the notation dν
dλ = f and also suggests that

ν(E) =

∫

E

dν

dλ
dλ.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 5.12. Additional Problems for Chapter 5 417

Does this remark indicate a way of developing a theory that will allow the Radon–Nikodym
derivative to “look” like a derivative when dealing with more general measure spaces?

5:12.10 (In this exercise and the next six we develop material on the Banach indicatrix.) Let f be a
continuous function on an interval [a, b], and let ω(f, I) denote the oscillation of f on a subinterval
I of [a, b]; that is,

ω(f, I) = max
x∈I

f(x) − min
x∈I

f(x).

Show that the variation of f on [a, b] is given as

V (f ; [a, b]) = lim
‖P‖→0

n∑

i=1

ω(f, Ii)

where P = {Ii} is a partition of [a, b] and ‖P‖ → 0 indicates that the length of the largest interval
in the partition shrinks to zero.

5:12.11 Let f be a continuous function on an interval [a, b] and define the function

Nf (y) = card {x ∈ [a, b] : f(x) = y}
(called the Banach indicatrix for the function f). Prove that, if f has only a finite number of max-
ima and minima, then

V (f ; [a, b]) =

∫ ∞

−∞
Nf (y) dy.

[Hint: Consider intervals on which f is monotone and use Exercise 1:14.9.]

5:12.12 Let f be an arbitrary continuous function on an interval [a, b]. Prove that

V (f ; [a, b]) =

∫ ∞

−∞
Nf (y) dy.
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[Hint: Here is a sketch, whose details should be expanded upon. Subdivide [a, b] into 2n disjoint
subintervals

I1 = [a, a+ c] , I2 = (a+ c, a+ 2c] , . . . , Ik = (a+ (k − 1)c, a+ kc] ,

. . . , I2n = (a+ (2n − 1)c, b] .

where c = (b − a)2−n. For 1 ≤ k ≤ 2n, write Lk(y) = 1 if f assumes the value y in the interval Ik
and Lk(y) = 0 if not. Compute

∫
Lk(y) dy. Define

Nn =
∑

1≤k≤2n

Lk.

Show that {Nn} is a nondecreasing sequence of measurable functions. Verify that Nn → Nf every-
where. Complete the proof by obtaining

lim
n→∞

∫
Nn(y) dy = V (f ; [a, b])

using Exercise 5:12.10.]

5:12.13 Show that the result in Exercise 5:12.12 can fail if f is not continuous. Modify the definition of
Nf to an appropriate function N∗

f so that the identity

V (f ; [a, b]) =

∫ ∞

−∞
N∗

f (y) dy

holds for all functions f of bounded variation, continuous or not. [Hint: Remember that such func-
tions have one-sided limits at all points.]

5:12.14 Let f be a continuous function on an interval [a, b]. Show that f has bounded variation if and
only if the Banach indicatrix for f is integrable.

5:12.15 Let f be a continuous function of bounded variation on an interval [a, b]. Show that the set of
values that f takes on infinitely many times has Lebesgue measure zero.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 5.12. Additional Problems for Chapter 5 419

5:12.16 Is it true or false that a continuous function f on an interval [a, b] for which Nf (y) < ∞ for all
y ∈ IR must have bounded variation there?

5:12.17♦ Develop (in this and the next five exercises) a theory for complex-valued measures defined on
a σ-algebra of sets of some set X.

What should be meant by a complex measure ν (i.e., the complex-valued analog of a signed mea-
sure) and by the total variation measure |ν|?

5:12.18 Show that, for a complex measure ν on a measure space, |ν| must be finite.

5:12.19 Let ν be a complex measure and µ a positive, real measure. Give a definition for absolute conti-
nuity of ν with respect to µ.

5:12.20 Formulate and prove a complex version of the Radon–Nikodym theorem (Theorem 5.29).

5:12.21 Let µ be a complex measure with total variation |µ|. Show that there is a complex-valued mea-
surable function h such that |h(x)| = 1 everywhere and∫

E

f dµ =

∫

E

fhd|µ|.

5:12.22 Let µ be a positive real measure and g a complex-valued integrable function. Define the com-
plex measure ν(E) =

∫
E
g dµ. Show that |ν|(E) =

∫
E
|g| dµ.
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Chapter 6

FUBINI’S THEOREM

If f is a continuous function in a rectangle [a, b] × [c, d], then the integral can be computed by
two one-dimensional integrals:

∫ ∫

[a,b]×[c,d]
f(x, y) dx dy =

∫ b

a

{∫ d

c
f(x, y) dy

}
dx.

This has been known since the time of Cauchy. Here one says that the integral in the plane has
been computed by “iterated integrals” or “repeated integration,” meaning merely a succession
of the two ordinary integrals. Certainly, this is the most familiar method of computing integrals
in higher dimensions. Indeed, apart from numerical methods, we have almost no other way to
obtain the value of such integrals.

To go beyond continuous functions requires some caution. For example, the function

f(x, y) =
x2 − y2

(x2 + y2)2

420
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in the unit square [0, 1] × [0, 1] has just the one discontinuity at the origin. We find that
∫ 1

0

{∫ 1

0
f(x, y) dx

}
dy = −π

4

but that ∫ 1

0

{∫ 1

0
f(x, y) dy

}
dx =

π

4
.

(The geometry of such examples can be seen more clearly in Exercise 6:1.2.) Clearly, there are
technicalities that need to be addressed in any such study.

Naturally, this technique from the integral calculus has been extended to modern theories
of integration. The development of these ideas was carried out first by Lebesgue and then by
two Italian mathematicians, Guido Fubini (1879–1943) and Leonida Tonelli (1885-1946). Most
of the work was done by Lebesgue. Fubini’s proof was incomplete, and Tonelli’s work just ex-
tended Lebesgue’s ideas for bounded functions to the general case. Even so, the name of Fubini
is now most firmly attached to the theory in most accounts.

The measure-theoretic ideas underlying the formula above for the iterated integral are sim-
ple. The measure (area) in the plane of the rectangle [a, b] × [c, d] is

λ2([a, b] × [c, d]) = (b− a)(d− c),

where λ2 is two-dimensional Lebesgue measure. Indeed, it is this trivial fact that allows the
two-dimensional Riemann integral for continuous functions to be reduced to one-dimensional
Riemann integrals. This fact extends to general rectangles by the formula

λ2(A×B) = λ(A)λ(B),

again using λ2 as two-dimensional Lebesgue measure and (as usual) λ as one-dimensional Leb-
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esgue measure. Once the measure-theoretic apparatus is established, this product formula for
the measures allows one to prove the formula for the integrals in an entirely expected way.

We can place these ideas in their most general measure setting. Many accounts start with a
pair of measure spaces and construct a product measure; normally, the product measure is not
complete, and so further construction is needed. Here, rather than using a measure space, we
have chosen to use outer measures. In Chapter 2 we saw that any complete measure space can
be studied by means of outer measures. Let µ∗ be an outer measure on a set X and ν∗ an outer
measure on a set Y . We expect that there should be an outer measure π∗ that is somehow the
product of these two outer measures in the same way that two-dimensional Lebesgue measure
can be considered the product of two copies of one-dimensional Lebesgue measure. Thus we try
for an outer measure π∗ on X × Y with the property, if possible, that

π∗(A×B) = µ∗(A)ν∗(B) (A ⊂ X, B ⊂ Y ) .

This leads us to the study of product measures and then finally to the integration formulas of
Fubini and Tonelli.

The material of this chapter offers one of the most important and useful tools in measure
theory. We have included no specific applications in this chapter but the reader will find the
Fubini and Tonelli theorems of use in a wide variety of situations in which integration is used.
Later in the text we will call on these theorems to prove the Lebesgue density theorem (Sec-
tion 8.4) and to establish facts about the convolution of a pair of integrable functions (Sec-
tion 13.9).
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6.1 Product Measures

Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a set Y . As usual, we de-
note by µ and ν the associated measures. There is an entirely natural way of defining a product
measure on the product set X × Y in such a way that “rectangles” inherit the correct measure:

(µ∗ × ν∗)(A×B) = µ∗(A)ν∗(B).

One must not expect this identity to hold for all rectangles, but we can obtain this for rectan-
gles of the form A × B, where A is µ∗–measurable and B is ν∗–measurable. The method is the
very familiar Method I that has served us so well for many constructions of measures. We apply
the method to the covering class consisting of all these rectangles A × B and with the premea-
sure

τ(A×B) = µ∗(A)ν∗(B).

Definition 6.1: Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a set Y .
We define the product outer measure µ∗ × ν∗ on each subset S ⊂ X × Y as

(µ∗ × ν∗)(S) = inf

{
∞∑

i=1

µ(Ai)ν(Bi)

}
.

The infimum is taken over all coverings of S by sequences {Ai × Bi} of rectangles, where Ai is
µ∗–measurable and Bi is ν∗–measurable. The outer measure µ∗ × ν∗ is said to be the product of
the outer measures µ∗ and ν∗.

Since this is a familiar Method I construction, we see immediately that µ∗ × ν∗ is indeed an
outer measure; this measure is regular even if the two original outer measures are not. We shall
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write µ × ν for the associated measure, without meaning to imply that this is a product of the
two measures. In fact, one can develop this subject directly from measure spaces without ap-
pealing to outer measures; many texts carry out such a development and the interested reader
can consult them.

One should not jump to conclusions when interpreting product measures. It is true that for
Lebesgue measure λm × λn = λm+n, as expected (see Exercise 6:4.1 for n = m = 1), but for
Hausdorff measures, the formula µ(s) × µ(t) = µ(s+t) is not valid1 in general.

6.1.1 The measure of rectangles

Our product measure seems designed to handle rectangles in the required manner, but it is by
no means immediate that it does so. This is our first theorem.

Theorem 6.2: Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a set Y .
Then the product outer measure µ∗ × ν∗ is a regular outer measure on X × Y , and for any
µ∗–measurable set A ⊂ X and any ν∗–measurable set B ⊂ Y , the rectangle A × B is µ∗ × ν∗–
measurable and

(µ∗ × ν∗)(A×B) = µ∗(A)ν∗(B).

Proof. Let F denote the collection of all subsets S ⊂ X × Y for which the integral
∫

X
χ

S
(x, y) dµ(x)

1 See, for example, Falconer, Fractal Geometry, Wiley (1990), p. 97.
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exists for all y ∈ Y (except possibly for y in a set of ν∗-measure zero) and also such that the
expression

ρ(S) =

∫

Y

{∫

X
χ

S
(x, y) dµ(x)

}
dν(y)

exists, either as a nonnegative real number or as +∞. (Recall that sets of ν∗-measure zero are
ν∗-measurable.)

If S1, S2, S3, . . . are disjoint members of the family F , and S =
⋃∞

i=1 Si, then S ∈ F . One
sees this by noting that

χ
S

=
∞∑

i=1

χ
Si
.

By the usual convergence theorems for integrals we obtain then that

ρ(S) =
∞∑

i=1

ρ(Si). (1)

Thus we see that F is closed under disjoint unions.
There is a similar assertion for intersections with some conditions. Let S1 ⊃ S2 ⊃ S3 ⊃ · · ·

be members of the family F , and let S =
⋂∞

i=1 Si; then, provided that ρ(S1) < +∞, S ∈ F .
This follows because

χ
S

= lim
n→∞

χ
Sn
.

By the dominated convergence theorem for integrals, then

ρ(S) = lim
n→∞

ρ(Sn). (2)
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It follows that F is closed under decreasing intersections with some finiteness condition im-
posed.

Define

P0 = {A×B : A is µ∗–measurable, B is ν∗–measurable},

P1 =

{
∞⋃

i=1

Si : Si ∈ P0

}
,

and

P2 =

{
∞⋂

i=1

Ei : Ei ∈ P1

}
.

The members of P0 are often called measurable rectangles and play a key role in the theory.
The class P1 consists of countable unions of measurable rectangles and P2 of countable intersec-
tions of these, in turn. The latter sets constitute a class relative to which our product measure
will be seen to be regular.

Here are some elementary observations on these classes that are needed in the proof. First,
P0 is evidently a subset of F , and whenever A×B is a member of P0, we have the identity

ρ(A×B) = µ∗(A)ν∗(B). (3)

Note, too, that if Ai ×Bi ∈ P0 for i = 1, 2 then

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩B2)

is also a member of P0. Thus P0 is closed under finite intersections.
Second, any member of P1 can be expressed as disjoint union of a countable family from P0.

But we know that F contains P0 and is closed under such unions (see above). Consequently,

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 6.1. Product Measures 427

F contains P1 too. Here is how to check that each member of P1 can be expressed as disjoint
union of a countable family from P0. Write

(A1 ×B1) \ (A2 ×B2) = ((A1 \A2) ×B1) ∪ ((A1 ∩A2) × (B1 \B2))

and we have expressed this difference as a disjoint union of elements of P0. From this it fol-
lows that a countable union of members of P0 can be rewritten as a countable disjoint union of
members of P0 and hence that P1 is contained in F , as claimed.

Finally, every member of P2 is, by definition, the intersection of a sequence of members of
P1. But this can be made decreasing since, as we have just seen, the intersection of any two
members of P1 also belongs to P1.

We are now ready to obtain our main estimate on the value (µ∗ × ν∗)(S) for any set S ⊂
X × Y using our set function ρ.

6.3: For any S ⊂ X × Y ,

(µ∗ × ν∗)(S) = inf{ρ(V ) : S ⊂ V ∈ P1}.

Let us prove assertion 6.3 now. Suppose that Ai ×Bi ∈ P0 for i = 1, 2, . . . and that

S ⊂ V =

∞⋃

i=1

Ai ×Bi.

Then

χ
V

≤
∞∑

i=1

χ
Ai×Bi

.
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It follows, with the help of (1) and (3), that

ρ(V ) ≤
∞∑

i=1

ρ(Ai ×Bi) =

∞∑

i=1

µ∗(Ai)ν
∗(Bi).

Consequently,

(µ∗ × ν∗)(S) ≥ inf{ρ(R) : S ⊂ R ∈ P1}.
Moreover, if V =

⋃∞
i=1Ai × Bi is any such set then, as noted above, there is a disjoint sequence

{A′
i ×B′

i} from P0 so that

V =

∞⋃

i=1

Ai ×Bi =

∞⋃

i=1

A′
i ×B′

i,

and for this set V we have

ρ(V ) =
∞∑

i=1

µ∗(A′
i)ν

∗(B′
i) ≥ (µ∗ × ν∗)(S).

This proves 6.3.
We can now use this fact to obtain the identity that we must prove. If A ⊂ X is µ∗–measurable

and B ⊂ Y is ν∗–measurable, then, for any V ∈ P1 with A×B ⊂ V , we know that

(µ∗ × ν∗)(A×B) ≤ µ∗(A)ν∗(B) = ρ(A×B) ≤ ρ(V ).

From this and 6.3, we obtain

(µ∗ × ν∗)(A×B) = µ∗(A)ν∗(B),
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as required. We show that A × B is (µ∗ × ν∗)–measurable. Let T be any subset of X × Y . Let
R ∈ P1 with T ⊂ R. Then R \ (A×B) and R ∩ (A×B) are disjoint members of P1. Thus

(µ∗ × ν∗) (T \ (A×B)) + (µ∗ × ν∗) (T ∩ (A×B))

≤ ρ (R \ (A×B)) + ρ (R ∩ (A×B)) = ρ(R).

From this and 6.3, again we must have

(µ∗ × ν∗) (T \ (A×B)) + (µ∗ × ν∗) (T ∩ (A×B)) ≤ (µ∗ × ν∗)(T ).

Since this holds for all T ⊂ X × Y , we have proved that A × B is (µ∗ × ν∗)–measurable. It
follows, too, that each of the classes P0, P1, and P2 consists of (µ∗ × ν∗)–measurable sets.

The proof is now complete except for checking the regularity of the outer measure (µ∗ × ν∗).
We obtain this from the following:

6.4: For any S ⊂ X × Y there is a set W ∈ P2 ∩ F such that S ⊂W and

(µ∗ × ν∗)(S) = (µ∗ × ν∗)(W ) = ρ(W ).

Let us prove assertion 6.4 now. If (µ∗ × ν∗)(S) = +∞, there is nothing to prove, since we
may take W = X × Y and everything holds trivially. Suppose that (µ∗ × ν∗)(S) < +∞. Then,
using 6.3, we can find for each natural number j a set Vj ∈ P1 such that S ⊂ Vj and

ρ(Vj) < (µ∗ × ν∗)(S) + 1/j.

Let

W =

∞⋂

j=1

Vj .
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Since each Vj ∈ F , we know that W ∈ F , and by the limit properties of ρ over decreasing
sequences of sets from F (stated earlier) and by 6.3, we see that

(µ∗ × ν∗)(S) ≤ (µ∗ × ν∗)(W ) ≤ ρ(W ) = lim
n→∞

ρ




n⋂

j=1

Vj


 ≤ (µ∗ × ν∗)(S).

This proves 6.4.
We may now complete the proof of Theorem 6.2. The assertion 6.4 shows that the outer

measure (µ∗ × ν∗) is P2–regular. Since every member of P2 is (µ∗ × ν∗)–measurable, we have
obtained the required regularity of the product measure. �

6.1.2 Preliminary version of the Fubini theorem

Theorem 6.2 shows how to compute the measure (µ∗ × ν∗)(S) for rectangles by using the two
measures µ∗ and ν∗. For a general set S, is it still possible to estimate the measure using the
separate lower-dimensional measures? In a natural intuitive way, we can do this by integrating
along slices of the set S parallel to the coordinate axes. This is a simple version of the Fubini
theorem, given in its full generality in the next section.
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Theorem 6.5: Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a set Y ,
and suppose that the set S ⊂ X × Y is µ∗ × ν∗–measurable and σ-finite with respect to this
measure. Then the set

Sy = {x : (x, y) ∈ S}
is µ∗–measurable for ν∗–almost every y ∈ Y , the set

Sx = {y : (x, y) ∈ S}
is ν∗–measurable for µ∗–almost every x ∈ X, and

(µ× ν)(S) =

∫

Y
µ(Sy) dν(y) =

∫

X
ν(Sx) dµ(x).

Proof. The proof continues the notation of the preceding proof. If S ⊂ X × Y and (µ∗ ×
ν∗)(S) = 0, then, by 6.4, there must be a set R ∈ P2 so that S ⊂ R and ρ(R) = 0. It follows
that S ∈ F and ρ(S) = 0.

If S ⊂ X × Y , if S is µ∗ × ν∗–measurable, and if (µ∗ × ν∗)(S) is finite, then, again by 6.4,
there must be a set R ∈ P2 so that S ⊂ R and

(µ∗ × ν∗)(R \ S) = 0

and, consequently, ρ(R \ S) = 0. It follows that

µ∗ ({x : (x, y) ∈ S}) = µ∗ ({x : (x, y) ∈ R})

for ν∗–almost every y ∈ Y and that

(µ∗ × ν∗)(S) = ρ(R) =

∫

Y
µ ({x : (x, y) ∈ S}) dν(y).
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This proves the theorem for sets of finite (µ∗ × ν∗)–measure, since the other formula is sym-
metric with X replaced by Y and µ∗ by ν∗. The extension to σ-finite (µ∗ × ν∗)–measure is then
obvious. �

Exercises

6:1.1 Check the details for the example given in the introduction. Let

f(x, y) = (x2 − y2)(x2 + y2)−2

and verify that ∫ 1

0

{∫ 1

0

f(x, y) dx

}
dy = −π

4
,

but ∫ 1

0

{∫ 1

0

f(x, y) dy

}
dx =

π

4
.

Show that ∫ 1

0

{∫ 1

0

|f(x, y)| dy
}
dx = +∞,

a fact that will help later to explain the difference between the two iterated integrals.

6:1.2 Consider the function f defined on [0, 1] × [0, 1] (as in Figure 6.1) by

f(x, y) =





22n if 2−n ≤ x < 2−n+1, 2−n ≤ y < 2−n+1;
−22n if 2−n−1 ≤ x < 2−n, 2−n ≤ y < 2−n+1;
0 otherwise.

Show that the integral of f along any horizontal line is zero, that the integral along a vertical line
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6

y

1

1/2
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1/8

- x
11/21/41/8
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−32 16 0

64−128 -
................

Figure 6.1. Construction of the function f in Exercise 6:1.2.

in the left half of the square is also zero, but that the integral along a vertical line in the right half
of the square is 2. Verify that

∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy = 0 but

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx = 1

and that ∫ 1

0

(∫ 1

0

|f(x, y)| dy
)
dx = +∞.

6:1.3 Is it true that a rectangle A × B can be (µ∗ × ν∗)–measurable if and only if A is µ∗–measurable
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and B is ν∗–measurable?

6:1.4 Show that the class of measurable rectangles is a semi-algebra (i.e., it is closed under finite inter-
sections and the complement of any member is expressible as a finite, disjoint union of such sets).

6:1.5 Let X and Y be metric spaces, and let µ∗, ν∗ be metric outer measures on X and Y . Determine
whether it is necessarily true2 that (µ∗×ν∗) is a metric outer measure on the product space X×Y
(given its usual metric).

6:1.6 Let E be a (µ∗ × ν∗)–measurable subset of X × Y , σ-finite with respect to this measure. A neces-
sary and sufficient condition that (µ∗ × ν∗)(E) = 0 is that the “section”

Ey = {x : (x, y) ∈ E}
have µ∗–measure zero for ν∗–almost every y ∈ Y .

6:1.7 Let A, B be (µ∗ × ν∗)–measurable subsets of X × Y , both σ-finite with respect to this measure. If
the “sections” Ay and By have the same µ∗–measure for ν∗–almost every y ∈ Y , then

(µ∗ × ν∗)(A) = (µ∗ × ν∗)(B).

6:1.8♦ Let X = Y = IR, let µ∗ be Lebesgue outer measure on X, and let ν∗ be the counting outer
measure on Y . Show that (µ∗ × ν∗) is Borel regular and that the diagonal of the unit square S =
{(x, x) : 0 ≤ x ≤ 1} is (µ∗ × ν∗)–measurable, but is not σ-finite with respect to this measure. Show
that the value (µ× ν)(S) cannot be computed in both of the ways of Theorem 6.5.

6:1.9♦ In Theorem 6.5 it is essential to assume that the set S ⊂ X × Y is µ∗ × ν∗–measurable. It is not
enough merely to have the sections

Sy = {x : (x, y) ∈ S}
2An exercise in M. E. Munroe, Measure and Integration (Addison-Wesley Publishing Co., Inc., Cambridge,

Mass., 1953) claims that this is the case. One of our correspondents is skeptical about that claim.
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µ∗–measurable for every y ∈ Y , and

Sx = {y : (x, y) ∈ S}

ν∗–measurable for every x ∈ X.

[Here is a construction, using CH: well-order the interval [0, 1] in such a way that every element
has only countably many predecessors. Let S be the set of all pairs (x, y) with x,y ∈ [0, 1] such
that x precedes y in the order. Then each section Sy, Sx is either countable or the complement of
a countable subset of [0, 1] and so, in particular, measurable. Check that

∫ 1

0

λ(Sy) dy 6=
∫ 1

0

λ(Sx) dx,

where, as usual, λ is Lebesgue measure.]

6.2 Fubini’s Theorem

We are ready now to give the full, general version of Fubini’s theorem. The simplest setting is
that for an integrable function with respect to the measure µ∗ × ν∗, so that the finite value∫
X×Y f(x, y) d(µ × ν) is obtained from two iterated integrations. We can allow infinite values

in this statement with some care and attention to the details. Here the phrase “f is a countably
(µ∗ × ν∗)–measurable function on X × Y ” signifies that f is measurable with respect to this
measure and, moreover, that the set {(x, y) ∈ X × Y : f(x, y) 6= 0} of points where f does not
vanish is σ-finite with respect to the measure. For an integrable function, this is necessarily the
case.
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Theorem 6.6 (Fubini) Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a
set Y , and suppose that f is a countably (µ∗ × ν∗)–measurable function on X × Y for which the
integral ∫

X×Y
f(x, y) d(µ∗ × ν∗)

exists (finite or infinite). Then the mapping

x→
∫

Y
f(x, y) dν(y)

is a µ∗–measurable function on X, the mapping

y →
∫

X
f(x, y) dµ(x)

is a ν∗–measurable function on Y , and∫

X×Y
f(x, y) d(µ× ν)

=

∫

Y

{∫

X
f(x, y) dµ(x)

}
dν(y) =

∫

X

{∫

Y
f(x, y) dν(y)

}
dµ(x).

Proof. This follows almost immediately from Theorem 6.5 by using the standard tools of in-
tegration theory. Certainly, for f = χ

S
the present theorem reduces to Theorem 6.5. This then

extends to simple functions by additivity of the integral. For f nonnegative, use approximation
by simple functions and an appropriate convergence theorem (Theorem 5.8). Finally, for general
functions f , write, as usual, as f = f+ − f−. �
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Exercises

6:2.1 Suppose that f is a (µ∗ × ν∗)–integrable function on X × Y . (Recall that this means that the
integral exists and has a finite value.) Show that f is a countably (µ∗ × ν∗)–measurable function.

6:2.2♦ In Theorem 6.6 it is essential to assume that the function f in the statement of the theorem is
µ∗ × ν∗–measurable even if the spaces have finite measure. It is not enough merely that each sec-
tion

fy : x→ f(x, y) and fx : y → f(x, y)

be measurable in the separate spaces. (See Exercise 6:1.9.)

6:2.3 (Cf. Exercise 6:1.8.) Let X = Y = IR, let µ∗ be Lebesgue outer measure on X, and let ν∗ be the
counting outer measure on Y . Let f be the characteristic function of S, the diagonal of the unit
square (S = {(x, x) : 0 ≤ x ≤ 1}). Show that f is (µ∗ × ν∗)–measurable, but is not countably
(µ∗ × ν∗)–measurable, and that the Fubini theorem fails to compute

∫

X×Y

f(x, y) d(µ∗ × ν∗)

in this case.

6:2.4 Let X = Y = IR and let µ∗ and ν∗ be Lebesgue outer measure on X and Y . Let f(x, y) be(
4xy − x2 − y2

)
(x+ y)

−4
for x, y both positive, and let f(x, y) = 0 elsewhere. Show that

∫

Y

{∫

X

f(x, y)dµ∗(x)

}
dν∗(y) =

∫

X

{∫

Y

f(x, y)dν∗(y)

}
dµ∗(x) = 0,

but that ∫

X×Y

f(x, y) d(µ∗ × ν∗)

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



438 Fubini’s Theorem Chapter 6

does not exist. Which hypotheses of the Fubini theorem have been violated? [Hint: Start by check-
ing that

∫ a

0

f(x, y) dx = (a2 − ay)(a+ y)−3

for each a > 0.]

6:2.5 Each of the integrals

∫ 1

0

{∫ ∞

1

(
e−xy − 2e−2xy

)
dx

}
dy and

∫ ∞

1

{∫ 1

0

(
e−xy − 2e−2xy

)
dy

}
dx

exists (as absolutely convergent Cauchy integrals and as Lebesgue integrals), but they are unequal.
What can you conclude? Compare this with Exercise 6:3.5 and explain the (rather subtle) differ-
ence.

6.3 Tonelli’s Theorem

Tonelli’s theorem is merely a corollary of the Fubini theorem (Theorem 6.6), but it is useful to
restate it in this form. Here information about the finiteness of the iterated integral implies in-
tegrability of the integral in the product space. Note that the hypothesis that f is nonnegative
has been added to the statement of the theorem in this case. Exercise 6:3.3 is a frequently help-
ful version of this theorem.
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Theorem 6.7 (Tonelli) Let µ∗ be an outer measure on a set X and ν∗ an outer measure on
a set Y , and suppose that both spaces are σ-finite. Let f be a nonnegative (µ∗ × ν∗)–measurable
function on X × Y . Then the mapping

x→
∫

Y
f(x, y) dν(y)

is a µ∗–measurable function on X, the mapping

y →
∫

X
f(x, y) dµ(x)

is a ν∗–measurable function on Y , and∫

X×Y
f(x, y) d(µ× ν)

=

∫

Y

{∫

X
f(x, y) dµ(x)

}
dν(y) =

∫

X

{∫

Y
f(x, y) dν(y)

}
dµ(x).

Exercises

6:3.1 Check all the necessary details to be sure that Theorem 6.7 follows from Theorem 6.6.

6:3.2 In Theorem 6.7 it is essential to assume that the function f in the statement of the theorem is
µ∗ × ν∗–measurable even if the spaces have finite measure. It is not enough merely that each sec-
tion

fy : x→ f(x, y) and fx : y → f(x, y)

be measurable in the separate spaces. (See Exercises 6:1.9 and 6:2.2.)

6:3.3 Let µ∗ be an outer measure on a set X and ν∗ an outer measure on a set Y , and suppose that
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both spaces are σ-finite. Let f be a (µ∗ × ν∗)–measurable function on X × Y . If any one of the
three integrals ∫

X×Y

|f(x, y)| d(µ× ν),

∫

Y

{∫

X

|f(x, y)| dµ(x)

}
dν(y),

∫

X

{∫

Y

|f(x, y)| dν(y)

}
dµ(x)

is finite, then so are all three, and the usual conclusion of the Fubini theorem holds.

6:3.4 Use Exercise 6:1.8 to show that the σ-finiteness of the measure spaces (or some such assumption)
would be needed for the Tonelli theorem and for Exercise 6:3.3.

6:3.5 Let f be a continuous real function defined on IR2. If the integrals
∫ +∞

−∞

∫ +∞

−∞
f(x, y) dx dy and

∫ +∞

−∞

∫ +∞

−∞
f(x, y) dy dx

exist as Cauchy integrals and if one of them is absolutely convergent, then the two integrals are
equal. Can equality occur in a situation where both integrals are nonabsolutely convergent?

6.4 Additional Problems for Chapter 6

6:4.1♦ We now have two ways of obtaining Lebesgue measure in IR2: first as a Lebesgue–Stieltjes mea-
sure and now as a product measure. Show that the two procedures give the same result. [Hint:
Use Exercise 2:14.15.]

6:4.2 The main work of this chapter involves the proof of Theorem 6.2. A development similar to that
suggested in Exercise 2:13.4 (see also Section 3.7) is possible, though lengthy. Carry out such a de-
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velopment. That is, take T to be the class of measurable rectangles, and define τ by τ(A×B) = µ(A)ν(
Extend T and τ appropriately so that Theorems 2.41 and 2.43 apply, obtaining Theorem 6.2. (Ob-
serve that the proof in the text actually does much of this in hidden form.)

6:4.3 Let f be a nonnegative function defined on a measurable subset E of IRn. Then f is measurable if
the region {(x, y) : x ∈ E, f(x) ≥ y} is a measurable subset of IRn+1.

6:4.4 Let E be a µ∗ × ν∗–measurable subset of X × Y such that for µ∗–almost every x ∈ X the set
{y : (x, y) ∈ E} has ν∗–measure zero. Show that (µ × ν)(E) = 0 and that for ν∗–almost every
y ∈ Y the set {x : (x, y) ∈ E} has µ∗–measure zero.

6:4.5 Let f be a nonnegative µ∗ × ν∗–measurable function on X × Y such that for µ∗–almost every
x ∈ X the value f(x, y) is finite for ν∗–almost every y ∈ Y . Show that for ν∗–almost every y ∈ Y
the value f(x, y) is finite for µ∗–almost every x ∈ X.

6:4.6 What form does the Fubini–Tonelli theorem take if

f(x, y) = h(x)g(y)?

6:4.7 If g is a measurable real function on the interval [0, 1] such that the function f(x, y) = g(x) − g(y)
is Lebesgue integrable over the square [0, 1] × [0, 1], show that g is integrable over [0, 1].

6:4.8 Let f be a measurable function with period 1 on the real line such that
∫ 1

0

|f(a+ t) − f(b+ t)| dt

is bounded uniformly for all a, b ∈ IR. Show that f is integrable on [0, 1]. [Hint: Use a = x, b =
−x, integrate with respect to x, and change variables to ξ = x+ t, η = −x+ t.]

6:4.9 Two integrable functions x and y on a measure space (T, T , µ) are comonotone if

(x(t) − x(s))(y(t) − y(s)) ≥ 0
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for all s, t in T . Similarly, x and y are contramonotone if

(x(t) − x(s))(y(t) − y(s)) ≤ 0

for all s, t in T . Suppose that µ is a probability measure. Show that
∫

T

x(t) dµ(t)

∫

T

y(t) dµ(t) ≤
∫

T

x(t)y(t) dµ(t)

or ∫

T

x(t) dµ(t)

∫

T

y(t) dµ(t) ≥
∫

T

x(t)y(t) dµ(t),

depending on whether the functions are co- or contramonotone.

6:4.10 We have seen that the equality of the two iterated integrals is not enough for Fubini’s theorem to
hold. In fact3, there exists a function

f : [a, b] × [c, d] → IR

such that
∫

A

{∫

B

f(x, y) dx

}
dy =

∫

B

{∫

A

f(x, y) dy

}
dx

holds for all measurable sets A ⊂ [a, b] and B ⊂ [c, d], and still Fubini’s theorem fails.

6:4.11 There is a set E ⊂ IR2 such that E meets every closed subset of IR2 having positive Lebesgue
measure, and no three points of E are collinear. (The construction is sketched in Exercise 6:4.12.)
Show that such a set cannot be Lebesgue measurable.

6:4.12 (cf. Exercise 6:4.11.) There is a set E ⊂ IR2 such that E meets every closed subset of IR2 having
positive Lebesgue measure and no three points of E are collinear.

3See G. M. Fichtenholz, Fund. Math. 6 (1924), 30–36.
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[This is due to Sierpiński. Here is a sketch4 that uses CH: well-order the class of closed subset of
IR2 having positive Lebesgue measure in such a way that each member has only countably many
predecessors. Choose points from each member in the sequence in turn in such a way to obtain E.
At any stage, remember that there will be only countably many lines to “avoid” and that consti-
tutes only a set of measure zero to stay away from.]

6:4.13 [Category analog of the Fubini theorem] Let A be a subset of IR2 of the first Baire cate-
gory. Show that

Ay = {x : (x, y) ∈ A}
is a first-category set in IR for all y, except possibly in a first-category set.

6:4.14 Show that the graph of a continuous function f : [0, 1] → IR has measure zero with respect to
two-dimensional Lebesgue measure. If f is not continuous, this is not necessarily the case. [Hint:
Use CH to construct a function with nonmeasurable graph.]

4For a treatment of such questions without appealing to CH, see Erik van Douwen, Fubini’s theorem for null

sets, Amer. Math. Monthly 96 (1989), no. 8, 718–721.
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Chapter 7

DIFFERENTIATION

The great contribution that Lebesgue made was not merely in defining an integration process
that would open up new methods for analysts. Indeed, the English mathematician W. H. Young
only a few years later defined an integral equivalent to that of Lebesgue; thus a new definition
of an integral was inevitable. The greatest contribution of Lebesgue rests in the many stud-
ies that he made using this tool. Certainly, his development of differentiation theory using the
methods of measure and integration is among his most impressive achievements.

In this chapter we study the differentiation theory of real functions at a depth that would
not have been available at an advanced calculus level. The most successful tools in general
differentiation theory are supplied by covering arguments. In Section 7.1 we prove the Vitali
covering theorem. This will allow us to obtain (in Section 7.2) the differentiation properties of
functions of bounded variation that Lebesgue found by different methods. We have already il-
lustrated, in a simple way, the use of covering arguments to prove this theorem (see Section 3.11).
We return now to this problem and go rather deeper into the arguments.

444
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The Banach–Zarecki theorem of Section 7.3 reveals the exact structure of absolutely contin-
uous functions; In Sections 7.4 to 7.7 we study the intimate connections among differentiation,
variation, measure, and integration. Finally, the fundamental concepts of approximate continu-
ity, density points, and Lebesgue points, also closely related to differentiation theory, are dis-
cussed in Section 7.7.

7.1 The Vitali Covering Theorem

One of the most important theorems related to the “growth” of real functions is the Vitali cov-
ering theorem. We have previously, in Section 3.10, discussed a limited version of Vitali’s theo-
rem and then used it to prove the Lebesgue differentiation theorem. We return to these topics
now in greater generality. We view Vitali’s theorem now as allowing a more detailed investiga-
tion of growth conditions.

We first generalize an elementary growth theorem. We will show how this growth theorem
can be captured by covering arguments and this will lead us to the statement and proof of the
Vitali covering theorem.

7.1.1 Growth properties of real functions

Suppose that f is strictly increasing and differentiable on an interval I = [a, b]. Then f ′ ≥ 0 on
I. If, also, f ′ < p on I, then

f(b) − f(a) ≤ p(b− a)

by the mean-value theorem. In other notation, λ(f(I)) ≤ pλ(I).
The hypothesis “0 ≤ f ′ < p” on I can be interpreted as a local growth condition: all suf-
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ficiently small intervals containing a point x0 ∈ I are magnified by a factor less than p. The
conclusion can be interpreted as a global growth condition: the entire interval I maps onto an
interval whose length is no more than p times the length of I.

We would like to generalize our elementary growth theorem. Suppose that f is any strictly
increasing function on I and E ⊂ I. We do not assume f differentiable, and we do not assume
E measurable. We shall replace the local growth condition f ′ < p by a much weaker one involv-
ing derived numbers. Recall that an extended real number α is said to be a derived number for
a function f at x0 if there exists a sequence {hk} → 0 (hk 6= 0) such that

lim
k→∞

f(x0 + hk) − f(x0)

hk
= α.

We shall often write Df(x) to indicate a derived number of f at x.
A function must have at least one derived number, finite or infinite, at each point. It might

have many derived numbers at a point. For example, the function f(x) =
√
|x| sinx−1 (f(0) =

0) has every extended real number as a derived number at x = 0. It is clear that a function
f has a derivative at x0 if and only if all derived numbers at x0 agree and are finite. It is also
clear that, if f is nondecreasing on an interval I, then all derived numbers are nonnegative at
each point x ∈ I. We leave verification of these remarks as Exercises 7:1.3, 7:1.4, and 7:1.5.

Lemma 7.1: Let f be strictly increasing on an interval [a, b], and let E ⊂ [a, b]. If at each
point x ∈ E there exists a derived number Df(x) < p, then λ∗(f(E)) ≤ pλ∗(E).

Thus a very weak local growth condition leads to a strong global growth conclusion. In try-
ing to prove Lemma 7.1, one might begin reasoning roughly as follows:

Our hypothesis about derived numbers guarantees that each x ∈ E has an interval
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I(x) containing the point x and such that the length of the interval f(I(x)) is less
than pλ(I(x)). The intervals {f(I(x))}, for x ∈ E, cover f(E). We can compare the
sum of the lengths of these intervals,

∑
x∈E λ(f(I(x))), to the sum

∑
x∈E λ(I(x)) by

observing that
∑

x∈E

λ(f(I(x))) ≤ p

(
∑

x∈E

λ(I(x))

)
.

That suggests that we might be able to deduce that

λ∗(f(E)) ≤ pλ∗(E).

There are some problems. The set E may be uncountable, but we can probably re-
duce our sums to countable ones. But can we also arrange for those sums to approx-
imate λ∗(f(E)) and λ∗(E)?

The Vitali covering theorem allows us to select disjoint families of intervals with exactly the
approximation properties that we require.

7.1.2 The Vitali covering theorem

Definition 7.2: Let J be the family of nondegenerate closed intervals in IR. Let E ⊂ IR and
let V ⊂ J . If for each x ∈ E and ε > 0 there exists V ∈ V such that x ∈ V and λ(V ) < ε,
then V is called a Vitali cover for E (or a Vitali covering of E).

Example 7.3: Using this language let us return to our example in the previous discussion. If f
is strictly increasing and

E = {x : there is a derived number Df(x) < p of f at x}
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then V = {V ∈ J : λ(f(V )) < pλ(V )} forms a Vitali cover for E. To verify this, simply observe
that for x ∈ E there exists a sequence {hk} → 0 (hk 6= 0) such that, for every n ∈ IN,

f(x+ hn) − f(x)

hn
< p.

Thus, for V = [x, x+ hn] (or [x+ hn, x] if hn < 0), we have λ(V ) = |hn| and

λ(f(V )) = |f(x+ hn) − f(x)| < p|hn| = pλ(V ).

Theorem 7.4 (Vitali covering theorem) Let V be a Vitali covering of a set E ⊂ IR. Then
there exists a countable family {Vk} of sets chosen from V such that

Vi ∩ Vj = ∅ (i 6= j)

and

λ(E \
∞⋃

k=1

Vk) = 0.

Theorem 7.4 was first obtained by Vitali in 1907. The standard proof nowadays is due to
the Polish mathematician Stefan Banach (1892-1945). Banach’s proof has the virtue of extend-
ing naturally to more general settings. We shall discuss this point in Chapter 8. (See also Exer-
cise 7:1.8.)

7.1.3 Proof of the growth lema

Before proving the Vitali covering theorem (Theorem 7.4), let us see how it enables us to pro-
vide a proof of Lemma 7.1 along the lines we indicated. This lemma is the first step and the
crucial step in proving the Lebesgue differentiation theorem using growth considerations.
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Proof. (Proof of Lemma 7.1) Let ε > 0, and let G be a bounded open set such that

E ⊂ G and λ(G) < λ∗(E) + ε. (1)

For x0 ∈ E there exists a sequence {hk} → 0 (hk 6= 0) such that, for each n ∈ IN, [x0, x0 + hn] ⊂
G and

f(x0 + hn) − f(x0)

hn
< p. (2)

(For simplicity of notation, we are writing [x0, x0 + hn] in place of [x0 + hn, x0] in the event that
hn < 0.) For each n ∈ IN, let

In(x0) = [x0, x0 + hn] and Jn(x0) = [f(x0), f(x0 + hn)].

Since f is strictly increasing,

f(In(x0)) ⊂ Jn(x0)

and Jn(x0) is a nondegenerate closed interval. It follows from (2) and the equalities

λ(In(x0)) = |hn| and λ(Jn(x0)) = |f(x0 + hn) − f(x0)|
that

λ(Jn(x0)) < pλ(In(x0)). (3)

Now limn→∞ hn = 0, so limn→∞ λ(In(x0)) = 0. From (3) we infer that

lim
n→∞

λ(Jn(x0)) = 0.

Thus the family of intervals
V = {Jn(x0) : x0 ∈ E, n ∈ IN}

forms a Vitali cover of the set f(E). By Theorem 7.4, there exists a countable disjoint family
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{Jni(xi)}, i ∈ IN, such that

λ

(
f(E) \

∞⋃

i=1

Jni(xi)

)
= 0. (4)

Using (4), we find that

λ∗(f(E)) ≤
∞∑

i=1

λ(Jni(xi)) < p
∞∑

i=1

λ(Ini(xi)). (5)

Since the function f is strictly increasing, the intervals Ini(xi) form a pairwise disjoint family.
From (1) we infer that

∞∑

i=1

λ(Ini(xi)) = λ

(
∞⋃

i=1

Ini(xi)

)
≤ λ(G) < λ∗(E) + ε. (6)

Combining (5) and (6), we obtain

λ∗(f(E)) < p(λ∗(E) + ε)

for every ε > 0. Thus

λ∗(f(E)) ≤ pλ∗(E),

as was to be shown. �

Observe the role of Theorem 7.4. First, it allowed us to obtain the family {Jni(xi)} that
almost covers the set f(E) in the equation (4). The fact that this family is a disjoint family al-
lowed us to conclude the same for the family {Ini(xi)}, which we needed for the inequality (6).
Observe also the role of the set G. It guarantees that the family {Ini(xi)} does not cover much
more than the set E.
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We shall use Lemma 7.1 in Section 7.2. We shall also need a companion lemma with a simi-
lar proof (left as Exercise 7:1.6).

Lemma 7.5: Let f be strictly increasing on [a, b], and let E ⊂ [a, b]. If at each x ∈ E there ex-
ists a derived number Df(x) > q ≥ 0, then

λ∗(f(E)) ≥ qλ∗(E).

7.1.4 Elementary proof of the Vitali theorem

We shall present our first and most elementary proof using the language of fine covers from Sec-
tion 3.9. Let H0 (as before) denote the covering relation

H0 = {([u, v], w) : u < v, u ≤ w ≤ v}.
Recall that a family β ⊂ H0 is a fine cover of a set E ⊂ IR (relative to H0) if, for every x ∈ E
and every ε > 0,

there exists at least one pair ([u, v], x) ∈ β for which [u, v] ⊂ (x− ε, x+ ε).

The relation with Vitali covers is transparent. If V is a Vitali cover in the sense of Definition 7.2,
then

β = {([u, v], w) : [u, v] ∈ V, w ∈ [u, v] ∩ E}
is a fine cover in the present sense. Conversely if β is a fine cover of E then

V = {[u, v] : ([u, v], w) ∈ β}
is a Vitali cover of E.

The first lemma is a rewrite of Lemma 3.42 addressed to our purposes here.
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Lemma 7.6: Let β be a fine cover (relative to H0) of a bounded set E. Then there must exist a
packing π ⊂ β for which

λ∗ (E) ≤ 6λ


 ⋃

([u,v],w)∈π

[u, v]


 . (7)

Proof. Since β is a fine cover of E, the open set

G =
⋃

([u,v],w)∈β

(u, v)

contains all but a countable subset of E (cf. Lemma 3.41). Thus λ∗(E) ≤ λ(G). The conclusion
then follows directly from Lemma 3.42. �

Lemma 7.7 (Vitali covering theorem) Let β be a fine cover (relative to H0) of a bounded
set E and suppose that ε > 0. Then there must exist a packing π ⊂ β for which

λ∗


E \

⋃

([u,v],w)∈π

[u, v]


 < ε. (8)

Proof. We use the notation, for any packing π,

V (λ, π) =
∑

(I,x)∈π

λ(I)

and

σ(π) =
⋃

(I,x)∈π

I
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to simplify the writing. Note that σ(π) is a finite union of compact intervals, and so also a com-
pact set.

Start with an open set G0 ⊃ E with λ(G0) < ∞ and prune β by considering the smaller
cover

β0 = β(G0) = {(I, x) ∈ β : I ⊂ G0}.
This β0 is also a fine cover of E and so, by Lemma 7.6, we can choose a packing π1 ⊂ β0 for
which

λ∗(E) ≤ 6V (λ, π1).

Let

G1 = G0 \ σ(π1)

which is evidently an open set that contains E1 = E \ σ(π1). If E1 is empty or has zero measure
we are done.

In general we continue inductively. For any n = 1, 2, . . . , unless En−1 is empty or has zero
measure we select, again by Lemma 7.6, a packing πn ⊂ βn−1 for which

λ∗(En−1) ≤ 6V (λ, πn).

Let

Gn = Gn−1 \ σ(πn)

which is evidently an open set that contains En = En−1 \ σ(πn). Set

βn = β(Gn) = {(I, x) ∈ β : I ⊂ Gn}.
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None of the packings πn overlap and so, in particular,

π′N =

N⋃

n=1

πn

is itself a packing contained in β. If the process stops then it is easy to verify that

λ∗
(
E \ σ(π′N )

)
= 0.

If the process does not stop then for some large N we must have

λ
(
E \ σ(π′N )

)
< ε. (9)

To see this, note that all the packings have been pruned to lie in the open set G0. From this it
follows that

∞∑

i=1

V (λ, πn) ≤ λ(G0) <∞.

Choose N so large that V (λ, πN ) < ε/6 and it will follow that

λ∗(EN−1) ≤ 6V (λ, πN ) < ε.

But this is exactly (9). �

7.1.5 Banach’s proof of the Vitali theorem

We now present a traditional and well-known proof of Theorem 7.4. The idea of the proof, due
to Banach, is very simple: choose intervals from the Vitali cover V one by one. Make sure that,
at each stage, we choose a “relatively large interval” from those that are disjoint from the ones
already chosen.
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Proof. (Proof of Theorem 7.4) We assume E bounded. The extension to unbounded sets is
left as Exercise 7:1.7.

Let J be any open interval containing E, and let V0 consist of those intervals in V that are
contained in J . It is clear that V0 is also a Vitali cover for E. Let V1 ∈ V0. If λ(E \ V1) = 0,
there is nothing further to prove. If not, we proceed inductively.

Suppose that we have chosen pairwise disjoint intervals

V1, V2, . . . , Vn

from V0. If

λ(E \
n⋃

k=1

Vk) = 0,

we are done. If not, we choose Vn+1 according to the following procedure. Let

Fn = V1 ∪ V2 ∪ · · · ∪ Vn , Gn = J \ Fn.

Note that Gn is open. Let

Vn = {V ∈ V0 : V ⊂ Gn} .
Since E \ Fn 6= ∅ and V0 is a Vitali cover for E, the family Vn is not empty. Let

Sn = sup {λ(V ) : V ∈ Vn} .
Then 0 < Sn, since members of a Vitali cover are nondegenerate, and Sn < ∞, since each
V ∈ V0 is contained in J . Choose Vn+1 ∈ Vn such that

λ(Vn+1) > 1
2Sn. (10)

Since Vn+1 ⊂ Gn, we see that {V1, . . . , Vn+1} forms a pairwise disjoint system of intervals from
V0.
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If this process does not stop after a finite number of steps, we obtain a pairwise disjoint se-
quence {Vk} of intervals from V. We show that

λ(E \
∞⋃

k=1

Vk) = 0. (11)

Let S =
⋃∞

k=1 Vk. For every k ∈ IN, let Wk be a closed interval with the same midpoint as
Vk and such that λ(Wk) = 5λ(Vk). Now

∞∑

k=1

λ(Wk) = 5
∞∑

k=1

λ(Vk) ≤ 5λ(J) <∞. (12)

It therefore suffices to show that

E \ S ⊂
∞⋃

k=i

Wk (13)

for every i ∈ IN. This, together with (12), implies (11).
To verify (13), let x ∈ E \ S. Then x ∈ ⋂∞

i=1Gi. Fix i ∈ IN. Since Gi is open, there exists
V ∈ V0 such that x ∈ V ⊂ Gi. Consider now this interval V . Since x ∈ V , V is not one of the
intervals of our chosen sequence {Vk}. The intervals Vk are pairwise disjoint and are contained
in J , so limk→∞ λ(Vk) = 0. Thus, by (10), limk→∞ Sk = 0. Choose N ∈ IN such that SN <
λ(V ). Then V /∈ VN , so V is not contained in GN , and V ∩ FN 6= ∅.

Let n = min {j : V ∩ Fj 6= ∅}. Since V ∩Fi = ∅ and the sequence {Fk} is expanding, we infer
that n > i. Thus V ∩ Fn 6= ∅, but V ∩ Fn−1 = ∅. This implies that V ∩ Vn 6= ∅, and V ⊂ Gn−1.
From the latter inclusion, we infer that λ(V ) ≤ Sn−1 < 2λ(Vn). Recalling the definition of Wn,
we conclude that V ⊂ Wn. See Figure 7.1. Since n > i, V ⊂ ⋃∞

k=iWk, so x ∈ ⋃∞
k=iWk. This

inclusion establishes (13), completing the proof of the theorem. �
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Wn

V

Vn

Figure 7.1. An illustration of the fact that V ⊂ Wn.

Exercises

7:1.1 Show that if 0 ≤ f ′ < p on I = [a, b] then λ(f(I)) < pλ(I).

[Hint: You may use the fact (Theorem 1.18) that f ′ has a point of continuity in I.]

7:1.2 Show that a function must have at least one derived number, finite or infinite, at each point.

7:1.3 Show that the function f(x) =
√
|x| sinx−1, f(0) = 0, has every extended real number as a de-

rived number at x = 0.

7:1.4 Show that f ′(x0) exists if and only if all derived numbers are finite and agree at x0.

7:1.5 Show that all derived numbers are nonnegative at every point if and only if f is nondecreasing.

7:1.6 Prove Lemma 7.5. [Hint: Begin with an appropriate open set G containing f(E). Note that the
set of discontinuities of f is countable.]

7:1.7 Prove Vitali’s theorem for unbounded sets.

7:1.8♦ Replace the family of intervals J with the family S of closed squares with sides parallel to the
coordinate axes in IR2. State and prove the analog to Vitali’s theorem in this setting.

7:1.9 Use the Vitali covering theorem to prove that an arbitrary union of nondegenerate closed intervals
in IR is measurable. (Note that this also follows from Exercise 1:3.18.)
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7:1.10 Use Exercise 7:1.8 to prove that an arbitrary union of nondegenerate closed squares with sides
parallel to the coordinate axes in IR2 is Lebesgue measurable, but not necessarily Borel measur-
able.

7:1.11 In the language of Section 3.10, show that the Vitali covering theorem implies that λ∗ = ℓ◦ = ℓ•.

7:1.12 Show the converse of the preceding exercise, i.e., prove that the Vitali covering theorem can be
deduced from the identity λ = ℓ◦ = ℓ•.

7:1.13 Let E be a set of finite Lebesgue outer measure and V a Vitali cover of E. Show that there ex-
ists a finite or infinite sequence

(Ii, xi) i = 1, 2, 3, . . .

from V so that Ii and Ij are disjoint for i 6= j and

λ∗
(
E \

⋃

i

Ii

)
= 0. (14)

7.2 Lebesgue’s Differentiation Theorem

The two growth lemmas, Lemmas 7.1 and 7.5, allow a quick proof that a function of bounded
variation has a finite derivative almost everywhere. This result was originally proved by Lebes-
gue, but by an entirely different method. We have already given a somewhat more elementary
proof in Section 3.11.

Theorem 7.8: Let f be of bounded variation on [a, b]. Then f has a finite derivative almost
everywhere.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 7.2. Lebesgue’s Differentiation Theorem 459

Proof. Since each function of bounded variation is a difference of two nondecreasing func-
tions, it suffices to prove the theorem for f nondecreasing. Assume then that f is nondecreasing
on [a, b]. By considering f(x) + x, if necessary, we may assume that f is strictly increasing.

Let E∞ consist of those points in [a, b] at which f has an infinite derived number. Using
Lemma 7.5 and the fact that

f(E∞) ⊂ [f(a), f(b)],

we have

qλ∗(E∞) ≤ λ∗(f(E∞)) ≤ f(b) − f(a) <∞
for all q ∈ IN. It follows that

λ∗(E∞) = 0. (15)

Now let 0 ≤ p < q <∞, and let

Epq = {x : there exist derived numbers D1f(x) and D2f(x)

such that D1f(x) < p < q < D2f(x)}.
From Lemmas 7.1 and 7.5, we infer that

qλ∗(Epq) ≤ λ∗(f(Epq)) ≤ pλ∗(Epq). (16)

Since p < q, the inequalities in (16) imply that

λ∗(Epq) = 0. (17)

If f is not differentiable at a point x, then either f has ∞ as a derived number at x or f has
derived numbers D1f(x) < D2f(x). In the latter case, there exist rational numbers p and q
such that

D1f(x) < p < q < D2f(x),
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so x ∈ Epq. Thus

N = {x : f is not differentiable at x} ⊂ E∞ ∪
⋃

{Epq : p, q ∈ Q}.
Because of (15) and (17), λ(N) = 0. �

7.2.1 Constructing a monotonic function with an infinite derivative

Theorem 7.8 cannot be improved: given any set E of measure zero, there exists a strictly in-
creasing function f such that f is not differentiable at any point of E, indeed such that f ′(x) =
∞ at every x ∈ E. [It is also possible to choose an f so that, at each x ∈ E, f has distinct
derived numbers D1f(x) 6= D2f(x): see Exercise 7:8.4.]

Theorem 7.9: Let E ⊂ [a, b] with λ(E) = 0. There exists a continuous, strictly increasing
function f such that f ′(x) = ∞ for all x ∈ E.

Proof. For each n ∈ IN, let Gn be an open set containing E such that λ(Gn) < 2−n. Let
fn(x) = λ(Gn ∩ [a, x]). Then fn is nondecreasing and continuous, and 0 ≤ fn(x) ≤ 2−n for every
x ∈ [a, b]. Let f =

∑∞
n=1 fn. The function f is nondecreasing and continuous, and 0 ≤ f(x) ≤ 1

for all x ∈ [a, b]. Let x ∈ E. Fix n ∈ IN. If h > 0 is sufficiently small, [x, x+ h] ⊂ Gn, so

fn(x+ h) = λ(Gn ∩ [a, x+ h])

= λ((Gn ∩ [a, x]) ∪ (Gn ∩ [x, x+ h]))

= λ(Gn ∩ [a, x]) + λ(Gn ∩ [x, x+ h]) = fn(x) + h.
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A similar argument shows that fn(x+ h) = fn(x) + h when h < 0 is sufficiently small. Thus, for
|h| sufficiently small,

fn(x+ h) − fn(x)

h
= 1.

It follows that if N ∈ IN then, for |h| sufficiently small,

f(x+ h) − f(x)

h
≥

N∑

n=1

fn(x+ h) − fn(x)

h
= N.

Since N is arbitrary,

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
= ∞.

This function is as required, but may not be strictly increasing. Take f(x) +x for an example of
a continuous, strictly increasing function with an infinite derivative at every point of E. �

7.2.2 Integrating a derivative

A monotonic function on a compact interval [a, b] has a derivative that is integrable. What is
the relationship between the integral of the derivative and the function?

Here we allow, as we must, that the derivative might be defined only almost everywhere.
We have already observed that the integral is invariant to changes in the values of a function if
these changes occur on a set of measure zero: if f = g a.e. and g ∈ L1, then f ∈ L1 and∫

E
f dµ =

∫

E
g dµ

for every E ∈ M. For convenience of notation, we shall write
∫
X f dµ even if f is defined only
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a.e. on X. Thus the expression
∫ b
a f

′ dλ in Theorem 7.10, which follows, should be taken in the
sense that we are integrating the function f ′, which we know might exist only almost every-
where.

Theorem 7.10: Let f be nondecreasing on [a, b]. Then its derivative f ′ is measurable and
∫ b

a
f ′ dλ ≤ f(b) − f(a). (18)

Proof. Extend f to [a, b+ 1] by setting f(x) = f(b) if b < x ≤ b+ 1. Let

fn(x) =
f(x+ 1/n) − f(x)

1/n
.

Then fn(x) converges to f ′(x) at each point of differentiability. It follows that f ′ is measurable
and fn → f ′ [a.e.] on [a, b]. By Fatou’s lemma (Lemma 5.7)

∫ b

a
f ′ dλ ≤ lim inf

n→∞

∫ b

a
fn dλ ≤ sup

∫ b

a
fn dλ

= sup

{
n

∫ b

a

[
f

(
x+

1

n

)
− f(x)

]
dx

}
.

The last integrals can be taken in the Riemann sense, since their integrands have only count-
ably many discontinuities and are obviously bounded. Since

∫ b

a
f

(
x+

1

n

)
dx =

∫ b+ 1
n

a+ 1
n

f (x) dx for all n ∈ IN,
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we can calculate
∫ b

a

[
f

(
x+

1

n

)
− f(x)

]
dx =

∫ b+ 1
n

b
f (x) dx−

∫ a+ 1
n

a
f (x) dx

=
1

n
f(b) −

∫ a+ 1
n

a
f (x) dx

≤ 1

n
[f(b) − f(a)].

Thus ∫ b

a
f ′ dλ ≤ sup

n

{
n

∫ b

a

[
f

(
x+

1

n

)
− f(x)

]
dx

}
≤ f(b) − f(a),

as required. �

The inequality in (18) cannot, in general, be replaced by an equality. The Cantor function
F illustrates: here F ′ = 0 a.e., so

∫ 1

0
F ′ dλ = 0 < 1 = F (1) − F (0).

We shall see in Section 7.5 that, when f is absolutely continuous, inequality (18) does become
an equality.

Theorem 7.10 gives an upper bound on
∫ b
a f

′ dλ. We can also give an upper bound on
∫
E f

′ dλ
by using Lebesgue–Stieltjes measures.

Theorem 7.11: Let f be increasing on [a, b], let µf be the associated Lebesgue–Stieltjes mea-
sure and let ν =

∫
f ′ dλ. Then ν(E) ≤ µf (E) for every Borel set E ⊂ [a, b].
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Proof. Let [c, d] ⊂ [a, b]. By Theorem 7.10,

ν((c, d]) =

∫

(c,d]
f ′ dλ =

∫

[c,d]
f ′ dλ ≤ f(d) − f(c) = µf ((c, d]).

Let T consist of ∅ and the half-open intervals contained in (a, b], and use the premeasures τ1 =
ν and τ2 = µf on T . Applying Method I, we see that ν(E) ≤ µf (E) for every Borel set in (a, b].
Since ν({a}) = 0, the theorem follows. �

We shall sharpen Theorem 7.11 in Section 7.5.

Exercises

7:2.1 Show that the function f in Theorem 7.9 is absolutely continuous.

7:2.2 Let F be the Cantor function. Show that, for every Borel set E,

µF (E) =

∫

E

F ′ dλ+ µF (E ∩K),

where K is the Cantor ternary set. This is a special case of the form of the Lebesgue decomposi-
tion theorem that we shall consider in Section 7.5.

7:2.3♦ Let f be defined in a neighborhood of x0. Among the derived numbers of f at x0, there are four
extreme ones, called the Dini derivatesof f at x0, denoted by D+f(x0), D+f(x0), D−f(x0), and
D−f(x0). For example,

D+f(x0) = lim sup
h→0+

f(x+ h) − f(x)

h
.

(a) Provide definitions of D+f(x0), D−f(x0), and D−f(x0).
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(b) Let f = χ
Q

, the characteristic function of the rationals. Calculate the four Dini derivates for

a point x0 ∈ Q.

(c) Must the Dini derivates of a function of bounded variation be finite a.e.?

(d) Prove that for a continuous function f on (a, b) that the four Dini derivates are measurable.

7.3 The Banach–Zarecki Theorem

We now prove the converse of Theorem 5.27, using two growth lemmas that are themselves of
interest. Note that the first of these, Lemma 7.12, is similar to but more elementary than the
growth lemmas of Section 7.1, since we need not use the Vitali Covering Theorem.

Lemma 7.12: Let f be a finite function on an interval I, and let E ⊂ I. If there exists p > 0
such that, for every x ∈ E, all derived numbers Df(x) satisfy |Df(x)| < p, then

λ∗(f(E)) ≤ pλ∗(E).

Proof. Let ε > 0. For each n ∈ IN let

En = {x ∈ E : |f(t) − f(x)| < p|t− x| whenever |t− x| < 1/n} .
The sequence {En} is expanding and, by our hypothesis,

E = lim
n→∞

En.

Since λ∗ is regular, we see (from Exercise 2:10.2) that

λ∗(E) = lim
n→∞

λ∗(En) and λ∗(f(E)) = lim
n→∞

λ∗(f(En)). (19)
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For each n ∈ IN, let {In
k } be a sequence of intervals each of length less than 1

n such that En ⊂⋃∞
k=1 I

n
k and so that

∞∑

k=1

λ(In
k ) ≤ λ∗(En) + ε. (20)

Suppose now that x1 and x2 are points in En ∩ In
k . Then

|f(x2) − f(x1)| < p|x2 − x1| ≤ pλ(In
k ).

It follows that λ∗(f(En ∩ In
k )) ≤ pλ(In

k ). From (20) we infer for each n that

λ∗(f(En)) ≤
∞∑

k=1

λ∗(f(En ∩ In
k )) ≤ p

∞∑

k=1

λ(In
k )

≤ p(λ∗(En) + ε).

Using (19), we see that

λ∗(f(E)) = lim
n→∞

λ∗(f(En)) ≤ p(λ∗(E) + ε).

Since ε is arbitrary, λ∗(f(E)) ≤ pλ∗(E). �

Lemma 7.13: Let f be measurable on an interval I, and let E be a measurable subset of I. If
f is differentiable at each point of E, then

λ∗(f(E)) ≤
∫

E
|f ′| dλ. (21)

Proof. We may assume that E is bounded. Let ε > 0, and for each n ∈ IN, let

En =
{
x ∈ E : (n− 1)ε ≤ |f ′(x)| < nε

}
.
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Then En ∈ L (Exercise 7:3.1). By Lemma 7.12,

λ∗(f(E)) ≤
∞∑

n=1

λ∗(f(En)) ≤
∞∑

n=1

nελ(En)

=

∞∑

n=1

(n− 1)ελ(En) +

∞∑

n=1

ελ(En) ≤
∫

E
|f ′| dλ+ ελ(E).

Since ε is arbitrary, λ∗(f(E)) ≤
∫
E |f ′| dλ. �

We can now prove the main result of this section. Theorem 7.14 was proved independently
by S. Banach and M. A. Zarecki.

Theorem 7.14 (Banach–Zarecki) Let f be defined on [a, b]. A necessary and sufficient
condition that f be absolutely continuous is that f satisfy the following three conditions:

1. f is continuous on [a, b].

2. f is of bounded variation on [a, b].

3. f satisfies Lusin’s condition (N); that is, f maps zero measure sets onto zero measure
sets.

Proof. The necessity of the conditions was established in Theorem 5.27. To prove sufficiency,
suppose that f satisfies conditions (i), (ii), and (iii). We first show that

|f(d) − f(c)| ≤
∫ d

c
|f ′| dλ (22)
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for every subinterval [c, d] of [a, b]. Let E denote the set of points of differentiability of f in
[c, d], and let F = [c, d] \ E. Since f is of bounded variation on [a, b], λ(F ) = 0. By condition
(iii), it follows that λ(f(F )) = 0.

Since f is continuous, [f(c), f(d)] ⊂ f([c, d]), so by applying Lemma 7.13 we obtain

|f(d) − f(c)| ≤ λ(f([c, d])) ≤ λ∗(f(E)) + λ∗(f(F ))

= λ∗(f(E)) ≤
∫ d

c
|f ′| dλ.

This establishes (22). It is now easy to complete the proof of the theorem. Since f is of bounded
variation, f ′ is integrable on [a, b]. Let ε > 0. From the absolute continuity of the integral and
Theorem 5.24 there is a δ > 0 so that

∫
A |f ′| dλ < ε if λ(A) < δ. Let {[ak, bk]} be any sequence

of nonoverlapping closed intervals in [a, b], with total length less than δ. Then, by (22), with
A =

⋃∞
k=1[ak, bk], we have

∞∑

k=1

|f(bk) − f(ak)| ≤
∫

A
|f ′| dλ < ε

since λ(A) < δ. This establishes the absolute continuity of f . �

Observe that the hypothesis that f be of bounded variation on [a, b] was used only to estab-
lish that f is differentiable a.e. and that f ′ is integrable. We therefore can state the following
corollary to Theorem 7.14.

Corollary 7.15: Let f be continuous and satisfy Lusin’s condition (N) on [a, b]. Then f is
absolutely continuous if and only if f is differentiable a.e. and f ′ is integrable.
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Theorem 7.14 also indicates that a composition of two absolutely continuous functions can
fail to be absolutely continuous if and only if it is not of bounded variation. To see this, observe
that both continuity and Lusin’s condition (N) are preserved under composition.

Exercises

7:3.1 Verify that, if f is measurable on an interval I containing a measurable set E, then for α < β ∈
IR, {x ∈ E : α ≤ f ′(x) < β} is measurable. (The measure under consideration is λ.)

7:3.2 Let E ⊂ IR, and let W be a family of intervals. If each x ∈ E is in arbitrarily small intervals from
W, then W is a Vitali cover for E. If for every x ∈ E all sufficiently small intervals containing x
are in W, we say that W is a full cover of E. Observe that Vitali covers figure in the lemmas of
Section 7.2, while full covers apply to Lemma 7.12. Verify the following statements.

(a) A full cover is a Vitali cover.

(b) If f : IR→ IR and for each x ∈ E there exists a derived number Df(x) < M , then

W =

{
[a, b] :

f(b) − f(a)

b− a
< M

}

is a Vitali cover for E.

(c) If f : IR→ IR and for each x ∈ E every derived number satisfies Df(x) < M , then W is a full
cover for E.

(d) If W is a full cover of an interval [a, b], then there exists a finite collection of intervals W1,W2, . . . ,
from W that forms a partition of [a, b]: that is, the intervals Wi are pairwise nonoverlapping
and [a, b] = W1 ∪W2 ∪ . . . ∪Wn. [Hint: Consider




For every d ∈ (a, x], there
x ∈ [a, b] : exists a partition of [a, d]

using members of W



 .
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7:3.3 Prove that, if all derived numbers of a nondecreasing function f satisfy the inequality Df(x) < p
for every x ∈ E then the family of intervals V such that λ(f(V )) < pλ(V ) forms a full cover of E.

7:3.4 The result in part (d) of Exercise 7:3.2 can be used to provide simple proofs of a number of theo-
rems. Use it to prove the following.

(a) The Heine–Borel theorem: If U is a covering of a closed and bounded set in IR by open sets,
then U can be reduced to a finite subcover.

(b) Every infinite bounded set E in IR has a limit point in IR.

(c) Let f : IR → IR have the property that to every x0 ∈ IR corresponds a δ > 0 such that
f(x) ≥ f(x0) on (x, x0 + δ) and f(x) ≤ f(x0) on (x0 − δ, x0). Then f is nondecreasing on IR.

(d) The intermediate-value property for continuous functions.

7:3.5 Let f : IR → IR be measurable and let Z = {x : f ′(x) = 0}. Prove that λ(f(Z)) = 0.

7:3.6 Prove that a differentiable function f must satisfy Lusin’s condition (N) and deduce that f is ab-
solutely continuous on an interval [a, b] if and only if f is of bounded variation.

7:3.7 Prove that if f is differentiable on [a, b] and f ′ = 0 a.e. then f is constant. [Hint: Use Exer-
cise 7:3.5 and the fact that f satisfies Lusin’s condition (N). Compare with the Cantor function.]

7.4 Determining a Function by a Derivative

It follows from the mean-value theorem that an everywhere differentiable function is determined
by its derivative up to a constant. To see this, suppose that f and g are differentiable functions
on [a, b] and f ′ = g′. Let h = f − g. Then h is differentiable, and h′ = 0. Thus h is a constant,
so f and g differ by a constant.
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We would like to extend this result from elementary calculus to functions that are differen-
tiable almost everywhere. The Cantor function F is continuous and nondecreasing and F ′ =
0 a.e., but F is not a constant. Since F does its rising on a set of measure zero, one might ex-
pect that ruling out that possibility for a continuous function f would provide the desired re-
sult. This is, in fact, the case.

Theorem 7.16: Let f be continuous and satisfy Lusin’s condition (N) on [a, b]. If f ′ = 0 a.e.
on [a, b], then f is a constant.

Proof. Let E = {x : f ′(x) = 0}, and let Z = [a, b] \ E. Then λ(Z) = 0, so λ(f(Z)) = 0. It
follows directly from Lemma 7.12 that λ(f(E)) = 0. Thus λ(f([a, b])) ≤ λ(f(Z)) + λ(f(E)) = 0.
But f is continuous, so f([a, b]) is an interval J with λ(J) = 0. That is, J is a single point and
so f is constant. �

Corollary 7.17: An absolutely continuous function whose derivative vanishes a.e. is a con-
stant.

Corollary 7.18: If f and g are absolutely continuous on [a, b] and f ′ = g′ a.e., then f − g is a
constant.

Let us return to the theorem from elementary calculus: If f and g are differentiable on [a, b]
with f ′(x) = g′(x) for all x ∈ [a, b], then f − g is a constant. The hypothesis that f be dif-
ferentiable means that f has a finite derivative. It is easy to define two functions f and g with
f ′ = g′ everywhere, but with f − g not constant if we are allowed infinite values for the deriva-
tives. For example, let f(x) = g(x) = 0 for x < 0, f(0) = g(0) = 1, f(x) = 2 for x > 0, and
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g(x) = 3 for x > 0. Note that f ′(0) = g′(0) = ∞ and f and g are discontinuous there. It may
be of interest that a similar situation can occur for continuous functions.

Example 7.19: Let K be the Cantor ternary set, and let F be the Cantor function. We con-
struct a function G that is absolutely continuous and such that G′ is infinite on K and finite on
[0, 1] \K. It is then easy to verify that for H = G+F we have H ′ = G′ on [0,1], but H −G = F
is nonconstant (Exercise 7:4.1).

For each n ∈ IN, let An be the union of those intervals complementary to K that have length
3−n. Thus An is the union of 2n−1 pairwise disjoint intervals, and

λ(An) = 1
2(2

3)n.

Let g be any function defined on [0,1] which meets the following conditions:

(i) g(x) = ∞ if x ∈ K,

(ii) limx→c g(x) = ∞ for all c ∈ K,

(iii) g is continuous on every interval complementary to K,

(iv) for every n ∈ IN and x ∈ An, g(x) ≥ n, and

(v) for every n ∈ IN, ∫

An

g dλ = (2
3)nn.

Then ∫ 1

0
g dλ =

∞∑

n=1

∫

An

g dλ =

∞∑

n=1

(2
3)nn <∞,
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and it follows that g ∈ L1. Let

G(x) =

∫ x

0
g dλ, (0 ≤ x ≤ 1).

Then G is absolutely continuous. Moreover, G′(x) = g(x) for all x ∈ [0, 1]. To verify this, use (i)
and (ii) for x ∈ K and (iii) for x /∈ K. The function F has a zero derivative off K. On K, all
derived numbers are nonnegative, since F is nondecreasing. Thus H = F + G has an infinite
derivative at each point of K. It is now clear that H ′ = G′ on [0, 1], and H −G = F .

Exercises

7:4.1 Show that the functions H and G in Example 7.19 have equal derivatives everywhere on [0,1], but
do not differ by a constant.

7:4.2 Corollary 7.17 is often proved by use of the Vitali covering theorem. Provide such a proof.

7:4.3 Construct a function g that satisfies conditions (i) to (v) of Example 7.19.

7.5 Calculating a Function from a Derivative

In Section 7.4 we saw that, if F ′ = G′ a.e. for two absolutely continuous functions F and G,
then F and G differ by a constant. We now show how to calculate F from F ′. This form of the
fundamental theorem of calculus extends Theorem 5.21. We shall also obtain several more gen-
eral representation theorems for continuous functions of bounded variation and for Lebesgue–
Stieltjes signed measures. We begin with a lemma. The main theorems of this section follow
readily from this lemma.
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Lemma 7.20: Let F be continuous on [a, b], and let A be the set of points of differentiability of
F . Then

1. A is a Borel set.

2. If F is strictly increasing, then F (A) is a Borel set and

λ(F (A)) =

∫

A
F ′ dλ =

∫ b

a
F ′ dλ. (23)

Proof. The set A consists of all points at which all derived numbers are equal and finite. We
show first that, for any p ∈ IR, the set

Ep = {x : there exists a derived number DF (x) < p} (24)

is a Borel set. For n ∈ IN, let

An =

{
x ∈ [a, b] : ∃y ∈ [a, b] such that |x− y| < 1/n

and F (y) − F (x) < p(y − x)

}
.

Then Ep =
⋂∞

n=1An. Since F is continuous, each of the sets An is open, so Ep is of type Gδ and
hence a Borel set.

A similar argument will show that, for any q ∈ IR, the set

Eq = {x : there exists a derived number DF (x) > q}
is also a Borel set. It follows that if p < q the set Eq

p = Ep ∩ Eq is a Borel set. Now the set
of points at which F does not have a derivative, finite or infinite, can be represented as

⋃
Eq

p ,
where the union is taken over all pairs of rational numbers p and q.
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Similarly,

{x : F has ∞ as a derived number at x } =
∞⋂

q=1

Eq

and

{x : F has −∞ as a derived number at x } =
∞⋂

p=1

E−p.

Each of these sets is a Borel set, so the same is true of A. The proof of (i) is thus complete.
Let us now prove assertion (ii). If F is strictly increasing, then F is a homeomorphism and

therefore maps Borel sets onto Borel sets (Exercise 3:12.7). Thus F (A) is a Borel set. To estab-
lish (23), let ε > 0 and choose n ∈ IN such that (b− a)/n < ε. For k ∈ IN, let

Ak =

{
x :

k − 1

n
≤ F ′(x) <

k

n

}
.

Since F is strictly increasing, A =
⋃∞

k=1Ak. By Lemma 7.1,

λ(F (Ak)) ≤ k

n
λ(Ak).

By Lemma 7.5, qλ(Ak) ≤ λ(F (Ak)) for any q < (k − 1)/n. Thus

k − 1

n
λ(Ak) ≤ λ(F (Ak)) ≤ k

n
λ(Ak). (25)

In addition,
k − 1

n
λ(Ak) ≤

∫

Ak

F ′ dλ ≤ k

n
λ(Ak). (26)
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Combining (25) and (26), we find that∣∣∣∣λ(F (Ak)) −
∫

Ak

F ′ dλ

∣∣∣∣ ≤
1

n
λ(Ak). (27)

Now

λ(F (A)) =
∞∑

k=1

λ(F (Ak)) and

∫

A
F ′ dλ =

∞∑

k=1

∫

Ak

F ′ dλ.

From (27) we infer that
∣∣∣∣λ(F (A)) −

∫

A
F ′ dλ

∣∣∣∣ =

∣∣∣∣∣

∞∑

k=1

(
λ(F (Ak)) −

∫

Ak

F ′ dλ

)∣∣∣∣∣

≤
∞∑

k=1

∣∣∣∣λ(F (Ak)) −
∫

Ak

F ′ dλ

∣∣∣∣

≤ 1

n

∞∑

k=1

λ(Ak) =
1

n
λ(A) ≤ b− a

n
< ε.

Since ε is arbitrary,

λ(F (A)) =

∫

A
F ′ dλ,

and the proof is complete. �

Theorem 7.21: Let F be absolutely continuous on [a, b]. Then

F (b) − F (a) =

∫ b

a
F ′ dλ.
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Proof. Assume first that F is strictly increasing. As before, write A for the set of points of
differentiability of F , and let B = [a, b] \A. Using Lemma 7.20, we have

F (b) − F (a) = λ(F ([a, b])) = λ(F (A)) + λ(F (B))

=

∫

A
F ′ dλ+ λ(F (B)).

Since F is monotonic, λ(A) = b − a and λ(B) = 0, and since F satisfies Lusin’s condition (N),
λ(F (B)) = 0. Thus

F (b) − F (a) =

∫ b

a
F ′ dλ.

In the general case, let F = G − H, where G and H are absolutely continuous strictly in-
creasing functions (Exercise 7:5.2). The theorem follows by observing that

F (b) − F (a) = (G(b) −G(a)) − (H(b) −H(a))

=

∫ b

a
G′ dλ−

∫ b

a
H ′ dλ =

∫ b

a
F ′ dλ,

as required. �

Applying Theorem 7.21 to Lebesgue–Stieltjes signed measures, we obtain Theorem 7.22.
Thus, for the Lebesgue–Stieltjes measure µF on the line, the Radon–Nikodym derivative is the
actual derivative of the distribution function F almost everywhere. This is the result that we
anticipated in our heuristic discussion preceding Theorem 5.29.

Theorem 7.22: Let µF be a Lebesgue–Stieltjes signed measure with µF ≪ λ. Then

µF (E) =

∫

E
F ′ dλ for every bounded set E ∈ L.
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We turn now to generalizations of Theorems 7.21 and 7.22. Suppose that F is continuous
and strictly increasing on an interval [a, b]. Again write A for the set of points of differentiabil-
ity of F , and let B = [a, b] \A. From Lemma 7.20, we have

F (b) − F (a) = λ(F ([a, b])) =

∫

A
F ′ dλ+ λ(F (B)).

Since F is monotonic, λ(A) = b− a, so
∫
A F

′ dλ =
∫ b
a F

′ dλ. Thus

F (b) − F (a) =

∫ b

a
F ′ dλ+ λ(F (B)). (28)

Equation (28) shows us how Theorem 7.21 can fail if we do not assume that F is absolutely
continuous. The growth of F on [a, b] has two components, one of which vanishes when F is
absolutely continuous. Let us examine the quantity λ(F (B)) in more detail. Recall that the set
B consists of those points at which F does not have a finite derivative. For every n ∈ IN, let

Bn = {x ∈ B : there exists a derived number DF (x) < n} .
Since λ(B) = 0, λ(Bn) = 0. It follows from Lemma 7.1 that λ(F (Bn)) = 0 for every n ∈ IN.
Thus

λ

(
F

(
∞⋃

n=1

Bn

))
≤

∞∑

n=1

λ(F (Bn)) = 0.

If F is not absolutely continuous, then λ(F (B)) > 0 and

λ(F (B −
∞⋃

n=1

Bn)) > 0.
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The set B∞ = B \⋃∞
n=1Bn is the set where F ′ = ∞. Thus

F (b) − F (a) =

∫ b

a
F ′ dλ+ λ(F (B∞)).

For a Lebesgue–Stieltjes measure µF , we obtain the equality

µF (E) =

∫

E
F ′ dλ+ µF (E ∩B∞).

Theorem 7.23 is the analogous version for Lebesgue–Stieltjes signed measures. The proof de-
pends on other growth lemmas. We shall defer a proof to Section 8.5, where we prove the theo-
rem in a more general setting.

Theorem 7.23 (de la Vallée Poussin) Let F be a continuous function of bounded variation
on [a, b], and let µF be the associated Lebesgue–Stieltjes signed measure. Then, for every Borel
set E,

µF (E) =

∫

E
F ′ dλ+ µF (E ∩B∞) + µF (E ∩B−∞), (29)

where B∞ = {x : F ′(x) = ∞} and B−∞ = {x : F ′(x) = −∞}.

From (29) we see that, when F ′ = 0 a.e., then the mass of any set is concentrated in the
null set B∞ ∪ B−∞. This happens, for example, with the Cantor measure µF (F the Cantor
function) whose mass is concentrated in the Cantor ternary set K. Expression (29) also shows
that the converse is true. If µF ⊥ λ, then F ′ = 0 a.e. To see this, suppose that F ′ were positive
on a set P of positive (Lebesgue) measure. Let Q = P \ (B∞ ∪B−∞). Then λ(Q) > 0 and

µF (Q) =

∫

Q
F ′ dλ > 0,
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so µF has mass outside B∞ ∪B−∞.
A function F of bounded variation is called singular if F ′ = 0 a.e. For continuous noncon-

stant singular functions F , our discussion shows that F must have an infinite derivative on an
uncountable set. For example, the Cantor function F has F ′ infinite on a set that is uncount-
able in every open interval containing points of the Cantor set K. It is not true, however, that
F ′ = ∞ at all two-sided limit points of K. One can show, in fact, that D+F (as defined in
Exercise 7:2.3) takes all values in [0,∞] in every open interval containing points of K (See Ex-
ercise 7:8.15).

Theorem 7.23 is due to Charles de la Vallée Poussin. Observe that this theorem provides a
refinement of the Lebesgue decomposition for Lebesgue–Stieltjes measures. We simply let

α(E) =

∫

E
F ′ dλ and β(E) = µF (E ∩B),

where B = B∞ ∪B−∞. Then µF = α+ β, α(B) = 0 and β(A) = 0.
Let us return to the fundamental theorem of calculus in its various forms. We now know

that if F is differentiable a.e. on [a, b], then

F (x) − F (a) =

∫ x

a
F ′ dλ for all x ∈ [a, b] (30)

if and only if F is absolutely continuous. We also know that if F is continuous and of bounded
variation then F ′ exists a.e. and is integrable, but (30) need not hold. What can fail is Lusin’s
condition (N). On the other hand, if F is differentiable everywhere, then F does satisfy condi-
tion (N), but need not be of bounded variation (see Exercise 7:5.7). It follows that, for such a
function F , (30) fails. The difficulty is that F ′ is not integrable (see Exercise 7:5.4).
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Theorem 7.24: If F is differentiable on [a, b] and F ′ ∈ L1, then

F (x) − F (a) =

∫ x

a
F ′ dλ for all x ∈ [a, b].

Proof. Since every differentiable function satisfies Lusin’s condition (N), the result is an im-
mediate consequence of Corollary 7.15 and Theorem 7.21. �

Thus the Lebesgue integral is sufficiently powerful to recapture a differentiable function
from its derivative, provided that derivative is Lebesgue integrable. But not every derivative
is Lebesgue integrable. One can view this as a flaw in Lebesgue integration. The Lebesgue in-
tegral does much better in this regard than the Riemann integral does—at least every bounded
derivative is Lebesgue integrable. This is not necessarily true for Riemann integrals, as we saw
in Section 5.5.

Other more general integrals have been developed for which any differentiable function can
be recaptured from its derivative via integration. We have addressed this question in Sections 1.21
and 5.10.

We can view Theorems 7.21 and 7.24 as versions of half of the fundamental theorem of cal-
culus: differentiate a function, then integrate the derivative to get back the function. The other
half, in which we integrate first, is the content of Theorem 7.25.

Theorem 7.25: Let f be Lebesgue integrable on [a, b], and let

F (x) =

∫ x

a
f dλ for x ∈ [a, b].

Then F is differentiable at almost every point, and F ′ = f almost everywhere.
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Proof. The function F is absolutely continuous and F (a) = 0, so

F (x) =

∫ x

a
F ′ dλ.

It follows that
∫ x
a (F ′ − f) dλ = 0 for all x ∈ [a, b]. But this implies readily that F ′ = f a.e. (see

Exercise 7:5.8). �

Exercises

7:5.1 Show that the set A in Lemma 7.20 is of type Fσδ. (This is actually true without the assumption
that F is continuous, although the proof is then more complicated.)

7:5.2 Prove that if a function F is absolutely continuous on an interval then F is a difference of two
strictly increasing absolutely continuous functions.

7:5.3♦ Apply Theorem 7.25 to an appropriately chosen function f to prove that there exists an abso-
lutely continuous function F that is nowhere monotonic. That is, for every c, d ∈ IR such that
a ≤ c < d ≤ b, F is not monotonic on [c, d].

7:5.4 Let F be continuous and of bounded variation on [a, b], let µF be the associated Lebesgue–Stieltjes
signed measure, and let |µF | be the variation measure,

|µF |(E) ≡ V (µF , E).

(See Section 2.2.) Prove, for every Borel set E, that

|µF |(E) =

∫

E

|F ′| dλ+ µF (E ∩B∞) + |µF (E ∩B−∞)|,

where B∞ = {x : F ′(x) = ∞} and B−∞ = {x : F ′(x) = −∞}. In particular, if f is absolutely
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continuous, then

V (f ; [a, b]) =

∫ b

a

|f ′| dλ.

7:5.5 Theorem 3.49 provides a sense in which an increasing function F needs Cantor sets to support its
rising: If λ(F (E)) > 0, then E contains a Cantor set. Now we can add this insight: If F rises on a
set E of measure zero, then all the rising F does on E can be attributed to the set on which F ′ is
infinite. Make this statement precise.

7:5.6 State and prove a version of Theorem 7.23 applicable to all Lebesgue–Stieltjes signed measures on
[a, b] (not necessarily nonatomic).

7:5.7 Show that the function F (x) = x2 sinx−2, F (0) = 0, is differentiable for all x ∈ IR, but is not of
bounded variation on any closed interval containing 0. Thus F ′ is not integrable on [0,1].

7:5.8 Prove that if f ∈ L1 on [a, b] and
∫ x

a
f dλ = 0 for all x ∈ [a, b] then f = 0 a.e. on [a, b]. [Hint:

Suppose that f > 0 on a closed set P of positive measure. Show that, on some component interval

(c, d) of (a, b) \ P , the integral
∫ d

c
f dλ is nonzero.]

7:5.9 Given next are two theorems related to the Lebesgue decomposition of a function and of a mea-
sure. Prove these theorems, giving the necessary definitions for “pure jump function” and “pure
atomic measure.” Let f be nondecreasing on [a, b], and let µf be the associated Lebesgue–Stieltjes
measure. Then

(a) f = a + s + j, where a, s, and j are nondecreasing functions with a absolutely continuous, s
continuous and singular, and j a pure jump function.

(b) µf = α+ σ + κ, where α, σ, and κ are Lebesgue–Stieltjes measures with α≪ λ, σ ⊥ λ, and κ
is a pure atomic measure.
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7:5.10 Give examples that illustrate the theorems in Exercise 7:5.9 nontrivially. That is, none of the
functions or measures should reduce to the zero function or zero measure on any open subinterval
of [a, b].

7:5.11 (Growth lemmas for continuous functions of bounded variation.) Let F be a continuous function
of bounded variation on [a, b]. Prove:

(a) If r ∈ IR and F ′ > r on a set A ⊂ [a, b], then µ∗
F (A) ≥ rλ∗(A).

(b) The statement in (a) remains valid if the direction of both inequalities is reversed.

(c) If B ⊂ [a, b], λ(B) = 0, and F is differentiable on B, then µ∗
F (B) = 0.

7.6 Total Variation of a Function

The methods of measure theory can be used to reveal many aspects about the structure of real
functions, particularly the differentiation structure. We have already seen how the Lebesgue-
Stieltjes measure associated with any monotonic function shows a close interrelation between
measure, integral, and derivative.

These ideas can be extended to functions of bounded variation immediately, since any func-
tion of bounded variation is the difference of two monotonic functions. To extend them in greater
generality, however, requires an entirely different approach. We wish to associate with an arbi-
trary continuous function f a measure Vf that carries information about the variation and dif-
ferentiation properties of f , and that allows a formula

Vf (E) =

∫

E
|f ′| dλ

if f has a derivative everywhere on a measurable set E. Recall that, for an absolutely continu-
ous function f , we have already obtained this formula for the total variation on a set E.
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To do this, we use Methods III and IV from Section 3.9. Here are the details. We assume
that f is a continuous function on the real line. We shall use the basic right-hand covering rela-
tion

Hr = {([u, v), u) : u < v, }
consisting of pairs ([u, v), u) where [u, v) is a half-open bounded interval on the real line. This
choice is meant to be reminiscent of our construction of Lebesgue-Stieltjes measures, although
the methods are very different.

We recall that a packing π is a finite subset of of Hℓ for which

π = {([u1, v1), u1), ([u2, v2), u2), . . . , ([un, vn), un)}
and

[ui, vi) ∩ [uj , vj) = ∅ (i 6= j).

We construct our measures using the premeasure

τf ([u, v), u) = |f(v) − f(u)|
so that, for the packing π above,

V (τf , π) =
n∑

i=1

|f(vi) − f(ui)|.

For any β ⊂ Hv we have previously used the notation

V (τf , β) = inf{V (τf , π) : π a packing, π ⊂ β}.
We can think of V (τf , β) as the “variation” of f on β. The relation with ordinary variation of a
function on an interval is transparent.
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We say that β ⊂ Hr is a right full cover of a set E ⊂ IR if, for every u ∈ E, there is a δ > 0
so that

0 < v − u < δ ⇒ ([u, v], u)) ∈ β.

A family β ⊂ Hv is a right fine cover of E if, for every u ∈ E and every ε > 0

∃ ([u, v], u) ∈ β, v − u < ε.

The measures V •
f and V ◦

f shall be defined to be the Methods III and IV measures constructed
using the family Hr and this premeasure

τf (([u, v], u)) = |f(v) − f(u)|.
Explicitly, this means for every E ⊂ IR we define

V •
f (E) = inf{V (f, β) : β a right full cover of E}

and

V ◦
f (E) = inf{V (f, β) : β a right fine cover of E}.

The outer measures V •
f and V ◦

f carry variational information about the function f . Note
that we are assuming that f is continuous to keep matters simple, although these measures are
defined in general. Note, too, that the particular geometry that we are using here (where we
take the left-hand endpoint of the intervals) can be changed to suit the study at hand. It is the
methods that are of the greatest interest to us at this point. By choosing a different geometry
one develops quite a different theory of variational measures. This one-sided version illustrates
many, but not all, of the methods.

Theorem 7.26: For any continuous function f : IR → IR, the set functions V •
f and V ◦

f are
metric outer measures, and V ◦

f ≤ V •
f .
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Proof. See Theorem 3.34 for a proof that these are metric outer measures and that V ◦
f ≤ V •

f .
�

Theorem 7.27: For any continuous function f , the outer measure V •
f is regular.

Proof. See Theorem 3.38 for a method that will work here. The details differ a little. �

That these measures do compute something related to the variation of the function f should
be apparent. In particular, we have the following result showing that the variation of a function
f on an interval [a, b] is exactly V •

f ([a, b]). Recall that V (f ; [a, b]) denotes the variation of f on
the interval [a, b] and that this is finite if and only if f has bounded variation on that interval.

Theorem 7.28: For any continuous function f : IR → IR,

V •
f ([a, b]) = V ◦

f ([a, b]) = V (f ; [a, b]).

Proof. Note that β = {[u, v), u) : [u, v) ⊂ (a, b)} is a right full cover of the open interval (a, b).
Thus it must be true that

V •
f ((a, b)) ≤ V (f, β) ≤ V (f ; [a, b]).

Since, evidently, V •
f ({a}) = V •

f ({b}) = 0 for any continuous function, it follows that

V •
f ([a, b]) = V •

f ((a, b)) + V •
f ({a}) + V •

f ({b}) = V •
f ((a, b)) ≤ V (f ; [a, b]).

The inequality V •
f ([a, b]) ≤ V (f ; [a, b]) follows.

The other direction is more delicate. We obtain this from the following claim.

7.29: Let f : IR → IR be a continuous function and let β be a right fine cover of [c, d). Then
|f(d) − f(c)| ≤ V (f, β).
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We prove this by transfinite induction. Let x0 = c, and choose d > x1 > x0 so that

([x0, x1), x1) ∈ β.

Since β is right fine at x0, this is possible. We continue to define a sequence

x0 < x1 < x2 < · · ·xα ≤ d

inductively. At limit ordinals λ use xλ = supα<λ xα, and otherwise ensure that

([xα, xα+1), xα) ∈ β.

Write

β([x, y)) = {([u, v), u) ∈ β : [u, v) ⊂ [x, y)}.
We always shall have

|f(xα) − f(x0)| ≤ V (f, β([x0, xα)), (31)

as one can see inductively. At limit ordinals the continuity supplies this. The process stops in
a countable number of steps when xα = d, and at that point the claim 7.29 is proved because
of (31).

We can now complete the proof of the theorem. Let β be a right fine cover of the interval
[a, b). Consider any sum

n∑

k=1

|f(di) − f(ci)|

for nonoverlapping intervals {[ci, di]} contained in [a, b]. It follows from 7.29 and an easy argu-
ment that

n∑

k=1

|f(di) − f(ci)| ≤ V (f, β),
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and so the inequality

V (f ; [a, b]) ≤ V (f, β)

follows. Since β is an arbitrary fine cover of [a, b), we have

V (f ; [a, b]) ≤ V ◦
f ([a, b)).

Putting these together, we have

V (f ; [a, b]) ≤ V ◦
f ([a, b]) ≤ V •

f ([a, b]) ≤ V (f ; [a, b]),

and the conclusion of the theorem follows. �

In the case of monotonic functions, the two measures V •
f and V ◦

f are identical on all sets
(not just on subintervals as claimed in Theorem 7.28) and these two outer measures recover the
Lebesgue-Stieltjes outer measure associated with f . This also extends to functions of bounded
variation.

Theorem 7.30: For any continuous function f : IR → IR that has bounded variation on each
finite interval,

V •
f = V ◦

f = µ∗T ,

where the last is the Lebesgue-Stieltjes outer measure associated with T , the total variation of f .

We omit the proof. It can be obtained by a Vitali covering argument, or deduced from the
Vitali covering theorem itself.

7.6.1 Growth lemmas

The interplay between variation and differentiation is particularly easy to establish. Each of the
following computations relates a growth condition on the measure to the derivative in the same
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spirit as we have already seen in Section 7.1. The proofs are particularly immediate because the
Vitali argument is incorporated into the definitions of the measures themselves. The focus on
right-hand derivatives (in fact Dini derivatives) is dictated to us by our choice of full and fine
covers, using as attached points the left-hand endpoints.

Lemma 7.31: Let f : IR → IR be a continuous function.

1. If lim supy→x+

∣∣∣f(y)−f(x)
y−x

∣∣∣ ≥ c at each x ∈ E, then

cλ∗(E) ≤ V •
f (E).

2. If lim infy→x+

∣∣∣f(y)−f(x)
y−x

∣∣∣ ≥ c at each x ∈ E, then

cλ∗(E) ≤ V ◦
f (E).

3. If lim supy→x+

∣∣∣f(y)−f(x)
y−x

∣∣∣ ≤ c at each x ∈ E, then

V •
f (E) ≤ cλ∗(E).

4. If lim infy→x+

∣∣∣f(y)−f(x)
y−x

∣∣∣ ≤ c at each x ∈ E, then

V ◦
f (E) ≤ cλ∗(E).

Proof. Each of these is proved the same way with the obvious changes in interpretation of
the covers. One of the main tools is the fact, from Theorem 7.30, that the Lebesgue outer mea-
sure λ∗(E) of any set E can be written as one of our Method III or IV variational measures by

λ∗(E) = V •
h (E) = V ◦

h (E)
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where here and in the following h(x) = x.
For example, we prove the first assertion of the lemma. Let c′ < c, and let β be any right

full cover of E. Let β1 denote the collection of all interval-point pairs ([x, y), x) with x ∈ E and

|f(y) − f(x)| > c′(y − x) = c′(h(y) − h(x)).

Then β1 is a right fine cover of E (see Exercise 3:9.3). Hence β1 ∩ β is also a right fine cover of
E (see Exercise f). Consequently,

c′λ∗(E) ≤ c′V (h, β1) ≤ V (f, β).

Since β is an arbitrary right full cover of E, we have c′λ∗(E) ≤ V •
f (E). Let c′ → c, and the

required inequality is proved. �

7.6.2 VBG∗ Functions

Definition 7.32: A continuous function f : IR → IR is said to be VBG∗ on a set E if the outer
measure V •

f is σ-finite on E.

If V •
f is finite on [a, b], then we know that f has bounded variation, so this terminology can

be considered an extension of that language. The expression “generalized bounded variation” is
used often to describe the concept. This is classical terminology, although the classical defini-
tion is different (see Exercise 7:6.12).

Some such extension of the class of functions of bounded variation is evidently needed in a
study of differentiation. A function may be everywhere differentiable and yet have unbounded
variation on some intervals (but not on all intervals–see Exercise 7:8.7). The variational ideas
needed to discuss such functions were developed by A. Denjoy and S. Saks in the 1920s and
1930s.
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Our main theorem relates the variational properties of a function to its differentiation struc-
ture. We can consider it an extension of the Lebesgue differentiation theorem for functions of
bounded variation. We have stated it for continuous functions only so that we can avoid ex-
tra details that would have to be handled to take care of the discontinuities in our development
of the variational measures. The theorem is stated for right-hand derivatives because the mea-
sures V •

f and V ◦
f have been defined using this special one-sided geometry. (In fact, though, if a

right-hand derivative exists almost everywhere on a set, then the derivative itself exists almost
everywhere on that set; this follows from the Denjoy–Young–Saks theorem, Exercise 7:8.5.)

Theorem 7.33, together with Exercises 7:6.12 and 7:6.13, relate the concepts of differentia-
bility, variation, and measure.

Theorem 7.33: The following conditions are equivalent for a continuous function f : IR → IR
and a set E.

1. f is VBG∗ on E.

2. The outer measure V •
f is σ-finite on E.

3. The variational outer measures V •
f and V ◦

f are identical on all subsets of E.

4. f has a finite right-hand derivative a.e. on E and a finite or infinite right-hand derivative
V •

f –a.e. on E.

Proof. The second statement is the one we have adopted as our definition of VBG∗ so (i) and
(ii) are equivalent by definition. Let us show that (ii)⇒ (iii). We assume that V •

f (E) < +∞
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and show that this implies that V •
f (E) = V ◦

f (E). Pick a right full cover β of E so that

V (f, β) < +∞.

There must be a δ(x) > 0 for each x ∈ E such that

y − x < δ(x) ⇒ ([x, y), x) ∈ β.

Define

En =

{
x ∈ E : δ(x) <

1

n

}
.

Then the sets En expand to E. The function f is of bounded variation relative to each set En

in the following sense: if {[ai, bi]} are nonoverlapping intervals with endpoints in En and each
bi − ai < 1/n, then the sum ∑

|f(bi) − f(ai)| (32)

remains bounded. To see this, one can adjust the intervals slightly without altering the sum (32)
by more than a specified amount so that the intervals have a left endpoint in En and still re-
main shorter than 1/n. The resulting sum (32) would have to be bounded by 2V (f, β) since it
can be split into two disjoint sequences.

This allows us to define a continuous function gn : IR → IR to be f on En and linear on
the complementary intervals. This function gn is continuous, has bounded variation, and agrees
with f on En.

We shall prove the following claim. The equivalence relation used here is defined in Exer-
cise 7:6.5.

7.34: f ∼ gn on En.
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Let ε > 0. Let {Ii} be the intervals complementary to En. Since
∞∑

i=1

ω(f, Ii) < +∞,

there is an integer N so that
∞∑

i=N+1

ω(f, Ii) < ε/2.

Inside each interval Ii (i = 1, 2, . . . , N), choose a centered interval Ji so that the oscillation of
f − g on the two components of Ii \Ji is less than ε/4N . Since both f and g are continuous and
there are only a finite number of intervals to handle, this is easily done. Now choose a full cover
β of En as follows: we allow all intervals (x, y], with x ∈ En and y − x < 1/n, that meet no
interval Ji for i = 1, 2, . . . N . Consider any collection {(ak, bk]} of disjoint intervals from β, and
estimate the sum ∑

k

|f(bk) − g(bk) − f(ak) + g(ak)| . (33)

We can increase the sum (33), by adding further points if necessary, and we assume that each
ak, bk ∈ En or else that (ak, bk) misses En. If ak, bk ∈ En, then f(ak) = g(ak) and f(bk) =
g(bk). If the interval (ak, bk) misses En, then it either lies in some Ii \ Ji (i = 1, 2 . . . N) or else
in Ii for i > N . In either case, we see that the sum (33) must be smaller than

∞∑

i=N+1

ω(f, Ii) + 2N(ε/4N) < ε.

Consequently,
V •

f−gn
(En) ≤ V (f − gn, β) ≤ ε,
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and 7.34 is proved.
From 7.34 and Theorem 7:6.5, we have

V ◦
f (En) = V ◦

gn
(En)

and

V •
f (En) = V •

gn
(En).

But gn is a continuous function of bounded variation, and so

V •
gn

(En) = V ◦
gn

(En).

From these identities and the regularity of the measure V •
f , we get

V ◦
f (E) ≥ lim

n→∞
V ◦

f (En) = lim
n→∞

V •
f (En) = V •

f (E),

and the identity V •
f (E) = V ◦

f (E) is proved. The converse, (iii)⇒ (ii), follows from the fact that
V ◦

f is always σ-finite (see Exercise 7:6.9).
Let us now prove that (ii)⇒ (iv). We can use (iii) to help obtain this. Again we can assume

that V •
f (E) < +∞. We shall use the notation

D(x) = lim sup
y→x+

∣∣∣∣
f(y) − f(x)

y − x

∣∣∣∣ and d(x) = lim inf
y→x+

∣∣∣∣
f(y) − f(x)

y − x

∣∣∣∣ .

The set of points

E1 = {x ∈ E : D(x) = ∞}
can be shown to have Lebesgue measure zero. Write this set as the intersection of the sets {x ∈
E : D(x) ≥ n} and apply Lemma 7.31. The set of points

E2 = {x ∈ E : d(x) < D(x) <∞}
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can be shown to have Lebesgue measure zero and V •
f –measure zero. The set of points

E3 = {x ∈ E : d(x) < D(x) ≤ ∞}
can be shown to have V •

f –measure zero. See Exercise 7:6.7 for hints on how to accomplish the
proof of these statements. There remains to consider only the following sets:

E4 = {x ∈ E : d(x) = D(x) <∞},
E5 = {x ∈ E : d(x) = D(x) = ∞}.

The set E4 is precisely the set where f has a right-hand derivative (finite) and, since f is con-
tinuous, the set E5 is exactly the set where f ′+(x) = ±∞. From these observations, we obtain
the proof that (ii)⇒ (iv).

To complete the proof of the theorem, we must show that (iv)⇒ (i). The set D1 of points
in E where f has a finite right-hand derivative has σ-finite V •

f –measure as an application of
Lemma 7.31 will show. Let D2 and D3 be the sets of points where f ′+(x) = +∞ and f ′+(x) =
−∞, respectively. We have left it as an exercise (Exercise 7:6.10) to show that each of the sets
D2 and D3 has σ-finite V •

f –measure. One concludes that V •
f is σ-finite on E, since E is the

union of D1, D2, D3 and a set of V •
f –measure zero. This completes the proof. �

Exercises

7:6.1 For any continuous function f show that V •
f ({x0}) = 0 for each x0 ∈ IR. If f is not assumed

continuous, what precisely are V •
f ({x0}) and V ◦

f ({x0})?

7:6.2 Prove Theorem 7.27 (using the proof of Theorem 3.38 as a model if necessary).

7:6.3 Let f : IR → IR be a continuous function that has a zero right-hand derived number at every
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point of (a, b). Show that V ◦
f ((a, b)) = 0. Use Theorem 7.28 to conclude that f is constant. (Find

another, more elementary, proof of this fact.)

7:6.4 Verify the inequality (31) by transfinite induction and show that the process stops in a countable
number of steps.

7:6.5♦ A useful equivalence relation is now introduced. Let f and g be continuous functions and let
E ⊂ IR. We shall write

f ∼ g on E

provided that V •
f−g(E) = 0.

(a) Let E ⊂ IR, and suppose that f ∼ g on E. Show that V •
f (E) = V •

g (E).

(b) Let E ⊂ IR, and suppose that f ∼ g on E. Show that V ◦
f (E) = V ◦

g (E).

(c) Show that the relation f ∼ g on E is an equivalence relation.

(d) Show that if f ∼ g on E then f ∼ g on E′ for every E′ ⊂ E.

(e) Show that if f ∼ g on En for n = 1, 2, . . . then f ∼ g on
⋃∞

n=1En.

7:6.6 Prove the remaining three parts of Lemma 7.31.

7:6.7 Let f be continuous and write

D(x) = lim sup
y→x+

∣∣∣∣
f(y) − f(x)

y − x

∣∣∣∣

and

d(x) = lim inf
y→x+

∣∣∣∣
f(y) − f(x)

y − x

∣∣∣∣
.
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(a) Show that D(x) = d(x) if and only if f has a right-hand derivative f ′+(x) = D(x) = d(x) at
the point x.

(b) Let E be a set of points such that 0 ≤ α < D(x) < β for x ∈ E. Show that

αλ∗(E) ≤ V •
f (E) ≤ βλ∗(E).

(c) Let E be a set of points such that 0 ≤ α < d(x) < β for x ∈ E. Show that

αλ∗(E) ≤ V ◦
f (E) ≤ βλ∗(E).

(d) Let E be a measurable set of points such that 0 < D(x) < +∞ for x ∈ E. Show that

V ◦
f (E) ≤

∫

E

Ddλ.

(e) Let E be a measurable set of points such that 0 < d(x) < +∞ for x ∈ E. Show that

V ◦
f (E) ≤

∫

E

d dλ.

(f) Let E be a measurable set of points such that 0 < d(x) ≤ D(x) < +∞ for x ∈ E. Show that∫

E

(D − d)) dλ = V •
f (E) − V ◦

f (E).

What can you conclude?

7:6.8 Using Exercise 7:6.7 formulate an economical proof of the Lebesgue differentiation theorem for
continuous, monotonic functions f given the identity V •

f = V ◦
f for such functions.

7:6.9 Show that the measure V ◦
f is σ-finite for any continuous function. [Hint: Let E1 denote the set of

points x for which there is a sequence xn ց x with f(xn) = f(x), let E2 denote the set of points
x for which there is a δ(x) > 0 so that f(y) > f(x) if x < y < x + δ(x), and let E3 denote the set
of points x for which there is a δ(x) > 0 so that f(y) < f(x) if x < y < x + δ(x). Show that V ◦

f

vanishes on E1 and is σ-finite on E2 and E3.]
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7:6.10 Suppose that f is a continuous function such that f ′(x) = +∞ for each x ∈ E. Show that E has
σ-finite V •

f –measure. [Hint: Split E into a sequence of bounded sets on each of which f is increas-
ing.]

7:6.11 Prove the following version of the de la Vallée Poussin theorem. Let f be a continuous function
and E a Borel set, and suppose that V •

f (E) < +∞. Then f ′ exists a.e. on E, and

V •
f (E) =

∫

E

|f ′| dλ+ V •
f ({x ∈ E : f ′(x) = ±∞}) .

7:6.12 This definition is due to S. Saks. A function F is Saks-VB∗ on a set E ⊂ IR if, for any sequence
of nonoverlapping intervals {[ak, bk]} with endpoints in E, the sum of the oscillations

∞∑

k=1

ω(F, [ak, bk])

converges. A function F is Saks-VBG∗ on a set E ⊂ IR if

E =

∞⋃

n=1

En

with F Saks-VB∗ on each set En. Show that a continuous function is Saks-VBG∗ on a set if and
only if it is VBG∗ on that set in our sense.

7:6.13 Characterize the class of continuous functions that are almost everywhere differentiable in terms
of the concepts VBG∗ or Saks-VBG∗.
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7.7 Approximate Continuity and Lebesgue Points

Let f be a Lebesgue integrable function defined on [a, b]. Then the function

F (x) =

∫ x

a
f dλ

is differentiable a.e., and F ′(x) = f(x) almost everywhere.
In this section we obtain some information about the set on which F ′(x) = f(x) holds; this

is true at every point of continuity of f , but f can be discontinuous everywhere on [a, b]. In the
process, we obtain an important theorem of Lebesgue. Consider first the case of characteristic
functions. Let A be measurable. Then χ

A
is integrable, and for

F (x) =

∫ x

a
χ

A
dλ

we have

F ′(x) =

{
1, a.e. on A;
0, a.e. on [a, b] \A.

(34)

Let us analyze this derivative further. For h 6= 0, we have

F (x+ h) − F (x)

h
=

1

h

∫ x+h

x
χ

A
dλ =

λ(A ∩ [x, x+ h])

h
.

Thus

lim
h→0

λ(A ∩ [x, x+ h])

h
=

{
1, a.e. on A;
0, a.e. on [a, b] \A.

(35)

The argument leading to (35) is easily modified to give the following result.
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Theorem 7.35: Let A be a measurable set in IR. Then

lim
h→0, k→0, h≥0, k≥0

λ(A ∩ [x− h, x+ k])

h+ k
=

{
1, a.e. on A;
0, a.e. on IR \A.

Theorem 7.35 is called the Lebesgue density theorem. Intuitively, it states that, for almost
all x ∈ A, small intervals containing x consist predominantly of points of A. Consider, for ex-
ample, the set E called for in Exercise 2:14.9. That set and its complement have positive mea-
sure in every interval contained in [0,1]. Theorem 7.35 tells us that some intervals consist pre-
dominantly of points of E, others of points of the complementary set Ẽ.

Definition 7.36: Let A be a measurable set, and let x ∈ A. Let

d(A, x) = lim
h→0, k→0, h≥0, k≥0

λ(A ∩ [x− h, x+ k])

h+ k

if this limit exists. Then d(A, x) is called the density of A at x. If d(A, x) = 1, x is called a den-
sity point of A. If d(A, x) = 0, x is called a dispersion point of A.

From Theorem 7.35, we see that almost all points in a measurable set A are density points
of A; almost all points in the complement Ã are dispersion points of A. We should mention
that it is possible that 0 < d(A, x) < 1 or that d(A, x) does not exist (Exercise 7:7.2).

7.7.1 Approximately continuous functions

Returning to the main topic of this section, we see from Theorem 7.35 that, for F (x) =
∫ x
a χA

dλ,
the derivative F ′(x) is the integrand at all density points of A and all density points of the
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complement Ã. (Clearly, the density points of Ã are the same as the dispersion points of A.)
Let us now replace χ

A
by any bounded measurable function f . We shall see how the notion of

density allows us to obtain a generalization of continuity, called approximate continuity, that
allows

F ′(x) = f(x)

to hold at each point of approximate continuity. We then show that a measurable function is
approximately continuous almost everywhere.

Definition 7.37: Let f be a function defined in a neighborhood of x0. If there exists a set E
such that

d(E, x0) = 1 and lim
x→x0,x∈E

f(x) = f(x0),

we say that f is approximately continuous at x0. If f is approximately continuous at all points
of its domain, we simply say that f is approximately continuous.

If a function is defined on a closed interval [a, b], then approximate continuity at the end
points is defined in the obvious way, invoking one-sided densities. Note that f is approximately
continuous at x0 if there exists a set E having x0 as a density point, such that f |E is contin-
uous at x0. In short, we can ignore the behavior of f on a set (in this case Ẽ) having x0 as a
dispersion point. For example, if A ⊂ IR is Lebesgue measurable, then the function χ

A
is ap-

proximately continuous at every point that is either a point of density or a point of dispersion
of A.
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Theorem 7.38: Let f be a bounded measurable function on [a, b]. If f is approximately contin-
uous at x0 ∈ [a, b] and

F (x) =

∫ x

a
f dλ for all x ∈ [a, b],

then F ′(x0) = f(x0).

Proof. Choose a set E such that d(E, x0) = 1 and f |E is continuous at x0. Let M be an
upper bound for |f |, and let h > 0. Then

∣∣∣∣
F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣∣

=

∣∣∣∣
1

h

∫ x0+h

x0

f dλ− f(x0)

∣∣∣∣ =

∣∣∣∣
1

h

∫ x0+h

x0

(f − f(x0)) dλ

∣∣∣∣

≤ 1

h

∫ x0+h

x0

|f − f(x0)| dλ

=
1

h

∫

[x0,x0+h]∩E
|f − f(x0)| dλ+

1

h

∫

[x0,x0+h]\E
|f − f(x0)| dλ.

We apply the “rectangle principle” we mentioned in Section 5.9. Let ε > 0, and choose δ >
0 such that (i) if t ∈ E and |t− x0| < δ then |f(t) − f(x0)| < ε/2, and (ii) if h < δ, then

λ([x0, x0 + h] \ E)

h
<

ε

4M
.
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For h < δ, we calculate∣∣∣∣
F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣∣

≤ ε

2h
λ([x0, x0 + h] ∩ E) +

2M

h
λ([x0, x0 + h] \ E)

≤ ε
h

2h
+ 2M

ε

4M
= ε.

A similar calculation holds if h < 0. Since ε is arbitrary, we conclude that

lim
h→0

F (x0 + h) − F (x0)

h
= f(x0).

That is, F ′(x0) = f(x0). �

We next show that a measurable, finite a.e. function must be approximately continuous a.e.
This can be viewed as an extension of Theorem 7.35, when the latter is interpreted in terms of
characteristic functions of measurable sets. (In fact, the converse of Theorem 7.39 is also true,
but a bit more difficult to prove. Thus measurable, finite a.e. functions can be characterized in
terms of a type of continuity.)

Theorem 7.39: A measurable, finite a.e. function is approximately continuous at almost every
point.

Proof. Let ε > 0. By Lusin’s theorem (Theorem 4.25), there exists a continuous function g
such that

λ({x : g(x) 6= f(x)}) < ε. (36)
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Let E = {x : g(x) = f(x)}. By Theorem 7.35, almost every point of E is a density point of E.
If x0 ∈ E and x0 is a density point of E, we have

lim
x→x0, x∈E

f(x) = lim
x→x0

g(x) = g(x0) = f(x0).

Thus f is approximately continuous at x0. Since x0 is an arbitrary density point of E, f is ap-
proximately continuous at each density point of E. From (36), we infer that f is approximately
continuous except perhaps on a set of measure less than ε. Since ε is arbitrary, f is approxi-
mately continuous a.e. �

7.7.2 Lebesgue points

In Theorem 7.38, we required f to be bounded. We cannot drop this part of the hypotheses in
the statement of the theorem (Exercise 7:7.4). For unbounded functions, a stronger condition
on a point x0 suffices.

Definition 7.40: Let f be Lebesgue integrable on a neighborhood of a point x0. If

lim
h→0

1

h

∫ x0+h

x0

|f − f(x0)| dλ = 0,

we say that x0 is a Lebesgue point of f .

Theorem 7.41: Let x0 be a Lebesgue point for a function f integrable on [a, b], and let
F (x) =

∫ x
a f dλ. Then F ′(x0) = f(x0).
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Proof. As in the proof of Theorem 7.38, we calculate
∣∣∣∣
F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣∣ ≤
1

|h|

∫ x0+h

x0

|f − f(x0)| dλ.

The result follows directly from Definition 7.40. �

Actually, a Lebesgue point is a special kind of point of approximate continuity [Exercise 7:7.4 (a)],
and for bounded measurable functions, the two notions coincide [Exercise 7:7.4 (c)]. We next
show that Theorem 7.38 extends to Lebesgue points.

Theorem 7.42: Let f be integrable on [a, b]. Then almost every point of [a, b] is a Lebesgue
point of f .

Proof. Let r ∈ Q. Then f − r ∈ L1, and thus

lim
h→0

1

h

∫ x+h

x
|f − r| dλ = |f(x) − r| (37)

a.e. on [a, b]. Let E(r) = {x ∈ [a, b] : (37) fails}. Then λ(E(r)) = 0. Let

E =
⋃

r∈Q

E(r) ∪ {x ∈ [a, b] : |f(x)| = ∞}.

Then λ(E) = 0. We show that every point x0 in [a, b] \ E is a Lebesgue point for f . Let
x0 ∈ [a, b] \ E, and let ε > 0. Choose rn ∈ Q such that

|f(x0) − rn| < 1
3ε. (38)

We then have

||f − rn| − |f − f(x0)|| < 1
3ε.
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on [a, b] so that
∣∣∣∣
1

h

∫ x0+h

x0

|f − rn| dλ− 1

h

∫ x0+h

x0

|f − f(x0)| dλ
∣∣∣∣ ≤

ε

3
(39)

whenever x0 + h ∈ [a, b]. Since x0 /∈ E, (37) applies, so there exists δ > 0 such that
∣∣∣∣
1

h

∫ x0+h

x0

|f − rn| dλ− |f(x0) − rn|
∣∣∣∣ <

ε

3

if |h| < δ. From (38), we infer that, for |h| < δ,

1

h

∫ x0+h

x0

|f − rn| dλ <
2ε

3

so

1

h

∫ x0+h

x0

|f − f(x0)| dλ < ε (40)

by (39).
We have shown that for all x0 /∈ E and every ε > 0 there exists δ > 0 such that (40) holds

whenever |h| < δ. Since λ(E) = 0, we conclude that almost every x ∈ [a, b] is a Lebesgue point
of f . �

It is clear that every point of continuity of a function f ∈ L1 is a Lebesgue point. Note that
a difference between x0 being a Lebesgue point for f and x0 being a point at which it is the
derivative of its integral is that, in the former case, “cancelations” are not possible. See Exer-
cise 7:7.5 in conjunction with Exercise 7:7.4 (c).
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Exercises

7:7.1 Prove Theorem 7.35.

7:7.2 Construct measurable sets A,B ⊂ [0, 1] such that d(A, 0) = 1
2 and d(B, 0) does not exist. One-

sided notions of density apply here.

7:7.3 Define d+(A, x), d+(A, x), d−(A, x), and d−(A, x), the unilateral extreme densities of A at x. Give
an example of a set A for which

d+(A, 0) = 1 > 0 = d+(A, 0).

Relate this to the Dini derivates defined in Exercise 7:2.3.

7:7.4 (a) Prove that an integrable function f is approximately continuous at each Lebesgue point.

(b) Show the converse of (a) fails by giving an example that shows that Theorem 7.38 fails if f is
not assumed bounded.

(c) Prove that if f is bounded and measurable then x0 is a Lebesgue point for f if and only if f
is approximately continuous at x0.

7:7.5♦ Give an example of a function f such that for F (x) =
∫ x

0
f dλ, F ′(0) = f(0), but f is not approx-

imately continuous at 0. [Hint: Use the set A called for in Exercise 7:7.2.]

7:7.6 Show that if f and g are approximately continuous at x0 so are f + g and fg.

7:7.7 Let f be approximately continuous on an interval I, and let g be a continuous function defined on
f(I). Prove that g ◦ f is approximately continuous.

7:7.8 Show that the composition of two approximately continuous functions need not be approximately
continuous.
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7:7.9 Prove that a function that is approximately continuous must have the intermediate-value prop-
erty and must belong to B1 (the first class of Baire). [Hint: Use Theorem 7.38, Exercise 7:7.7, and
parts of Exercise 4:6.2.]

7:7.10 Prove that a function f is approximately continuous on IR if and only if, for every α < β, the set

Eβ
α = {x : α < f(x) < β}

is of type Fσ and satisfies d(Eβ
α, x) = 1 for all x ∈ Eβ

α; that is, every point in Eβ
α is a point of

density of Eβ
α.

7:7.11 Prove that if fn → f [unif] on IR and fn is approximately continuous for all n ∈ IN then f is also
approximately continuous. [Hint: Use Exercises 7:7.9 and 7:7.10.]

7:7.12 Prove the converse of Theorem 7.39.

7.8 Additional Problems for Chapter 7

7:8.1 Let f be absolutely continuous on an interval [a, b] and g continuous there. Show that
∫ b

a

g(x) df(x) =

∫ b

a

g(x)f ′(x) dx,

where the first integral is interpreted as a Riemann–Stieltjes integral.

7:8.2♦ (Integration by parts) Let f , g be absolutely continuous on an interval [a, b]. Show that
∫ b

a

g(x)f ′(x) dx = g(b)f(b) − g(a)f(a) −
∫ b

a

g′(x)f(x) dx.
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7:8.3 Let f be continuously differentiable on [a, b] and let E ∈ L. Prove that the image set f(E) has
Lebesgue measure zero if and only if f ′ = 0 a.e. on E. (This result is actually true under much
weaker hypotheses. It holds, for example, if f is measurable and differentiable only on E.)

7:8.4 (Differentiability of Lipschitz functions) According to Theorem 7.8, a function f of bounded vari-
ation on [a, b] is differentiable a.e. Thus the set N of points of nondifferentiability of f is small
in the sense of measure. The set N can be large in the sense of category. Carry out the following
steps:

(a) (Converse to the Lebesgue density theorem.) Let Z ⊂ [a, b] be any set of measure zero. Then
there exists a measurable set S such that, for every z ∈ Z,

lim sup
h→0,k→0,h+k>0

λ(S ∩ [z − h, z + k])

h+ k
= 1

and

lim inf
h→0,k→0,h+k>0

λ(S ∩ [z − h, z + k])

h+ k
= 0.

[Hint: Let {Gn} be a decreasing sequence of open sets such that the set H =
⋂∞

n=1Gn is a
measurable cover for Z. Choose the sets Gn in such a way that the relative measure of Gn+1

is 1/n in each component interval of Gn. Let

S = (G1 \G2) ∪ (G3 \G4) ∪ (G5 \G6) ∪ . . . .]

(b) Let Z and S be as in (a). Let F (x) =
∫ x

a
χ

S
dλ. Then F is a Lipschitz function with all Dini

derivates bounded by 0 and 1 on [a, b], and F is not differentiable at any point of Z.

(c) There exists a Lipschitz function for which the set of points of differentiability is first cate-
gory.
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7:8.5 (Denjoy–Young–Saks theorem) The theorem with this name is a far-reaching theorem relating
the four Dini derivates D+f , D+f , D−f , and D−f (see Exercise 7:2.3). It was proved indepen-
dently by Grace Chisolm Young and Arnaud Denjoy for continuous functions in 1916 and 1915,
respectively. Young then extended the result to measurable functions. Finally, S. Saks removed the
hypothesis of measurability in 1924. Here is their theorem.

Theorem (Denjoy–Young–Saks) Let f be an arbitrary finite function defined on
[a, b]. Then almost every point x ∈ [a, b] is in one of four sets:

(a) A1 on which f has a finite derivative;

(b) A2 on which D+f = D−f (finite), D−f = ∞, and D+f = −∞;

(c) A3 on which D−f = D+f (finite), D+f = ∞, and D−f = −∞;

(d) A4 on which D−f = D+f = ∞ and D−f = D+f = −∞.

(a) Sketch a picture illustrating points in the sets A2, A3, and A4. To which set does x = 0
belong when f(x) =

√
|x| sinx−1, f(0) = 0?

(b) Give examples showing that it is possible that λ(A1) = b− a. Do the same for A2 and A3.

(c) Use DYS to prove that an increasing function f has a finite derivative a.e.

(d) Use DYS to show that if all derived numbers of f are finite a.e. then f is differentiable a.e.

(e) Use DYS to show that, for every finite function f ,

λ({x : f ′(x) = ∞}) = 0.

7:8.6 Theorem 7.23 and the discussion preceding it might suggest the following formula for a continuous
function F of bounded variation:

F (b) − F (a) =

∫ b

a

F ′ dλ+ λ(F (B∞)) − λ(F (B−∞)).
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(a) Show that such a formula fails.

(b) Partitioning B∞ and B−∞ into sets {Cn} and {Dn} appropriately, we can arrive at a for-
mula of the form

F (b) − F (a) =

∫ b

a

F ′ dλ+

∞∑

n=1

λ(F (Cn)) −
∞∑

n=1

λ(F (Dn)).

Show how to obtain the necessary partitions of B∞ and B−∞. [Hint: Use Theorem 3.23.]

7:8.7 A differentiable function f need not be of bounded variation on an interval [a, b]. The interval
[a, b] can be decomposed into countably many sets Ak such that “f is of bounded variation on
each of these sets.” Provide a definition for the statement in quotes, and prove that the statement
correct. Then show that there exists a sequence of intervals {Ik} with

⋃
Ik dense in [a, b] such

that f is of bounded variation on each interval Ik. (These intervals need not be the components of⋃
Ik.)

7:8.8 (a) Construct a function f that satisfies the following conditions on [0,1]:

(i) f is continuous except at 0,

(ii) f(0) = 0, −1 ≤ f(x) ≤ 1 for all x ∈ [0, 1] and

(iii) d({x : f(x) = 1} , 0) = d({x : f(x) = −1} , 0) = 1
2 .

(b) Let F (x) =
∫ x

0
f dλ. Prove that F ′(x) = f(x) for all x ∈ [0, 1].

(c) Prove that f2 is not the derivative of any function G everywhere on [0,1]. [Hint: What is

H ′(0) if H(x) =
∫ x

0
f2 dλ?]

(d) Prove that if g ∈ △′ and g2 ∈ △′ then g ∈ L1. [Hint: Use an appropriate theorem from
Section 7.2.]

[Part (c) shows that the class △′ of derivatives on [0, 1], i.e., the class

△′ = {f : ∃F : [0, 1] → IR so that F ′(x) = f(x) for all x ∈ [0, 1]},
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is not closed under multiplication or under composition on the outside with continuous functions.
Observe that f is not approximately continuous at 0.]

7:8.9 Suppose that F and G are differentiable on [0,1]. Can we conclude that FG′ ∈ △′? (See Prob-
lem 7:8.8.) Since one of the factors, F , is very well behaved (it is differentiable, not just a deriva-
tive), one might suspect that H ′ = FG′ ∈ △′ where

H(x) =

∫ x

0

FG′ dλ.

But FG′ need not be integrable. What if we assume that FG′ ∈ L1?

(a) Let F (x) = x2 sinx−3 and G(x) = x2 cosx−3 with F (0) = G(0) = 0. Show that FG′ and GF ′

are bounded and therefore integrable on [0,1]. Then verify that

F (x)G′(x) − F ′(x)G(x) =

{
3, if x 6= 0;
0, if x = 0.

If FG′ ∈ △′, then F ′G ∈ △′ and vice versa, since

FG′ +GF ′ = (FG)′ ∈ △′.

But then FG′ −GF ′ ∈ △′, which is impossible, because this function does not even have the
intermediate-value property.

(b) (A positive result.) Show that if F ′ is continuous then FG′ ∈ △′. [Hint: FG′ = (FG)′−F ′G.]

7:8.10 In the early part of the twentieth century, relatively little was known about derivatives. The only
sufficient condition that was known is that the function be continuous. Not many necessary condi-
tions were known either. Lamenting the state of knowledge, W. H. Young wrote in 1911:

The necessary conditions . . . are of considerable importance and interest. . . .

[A derivative] must be pointwise discontinuous with respect to every perfect set; it can
have no discontinuities of the first kind; it assumes in every interval all values between
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its upper and lower bounds in that interval, . . . , its upper and lower bounds, when fi-
nite, are unaltered if we omit the values on any countable set of points; the points at
which it is infinite form an inner limiting set of content zero (i.e., is a Gδ of measure
zero) . . . .

(a) Verify each of the statements made by Young. [Hint: See Exercises 7:8.5 and 4:6.2 (a). The
condition involving “pointwise discontinuity” is the content of the comment at the end of
Section 1.6 or of the comment following the proof of Theorem 1.19. (See also Theorem 10.14.)]

(b) Which theorem in Chapter 7 gives another sufficient condition for a function to be a deriva-
tive?

Most important classes F of functions have many known characterizations, that is theorems of the
form f ∈ F if and only if some condition is met. For example, F is an integral of some function on
[a, b] if and only if F is absolutely continuous.

(c) State and prove theorems that provide characterizations for each of the following classes of
functions:

(i) Integrals of functions on [a, b]. (There are other characterizations than the one mentioned
above.)

(ii) C[a, b].

(iii) The measurable functions on [a, b].

(iv) BV[a, b].

(v) Complex analytic functions on the disk {z : |z| < 1}.

Useful characterizations of each of these classes were already known at the time Young commented
about the lack of knowledge of derivatives. The problem of characterizing derivatives, however, has
not been solved satisfactorily to this day.
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7:8.11♦ (For readers with a background in topology.) Show that the class of subsets of IR that are mea-
surable and have density 1 at each point forms a topology on IR (called the density topology).
Show that the functions f : IR → IR that are continuous (with the density topology on the do-
main and ordinary topology on the range) are precisely the approximately continuous functions.

7:8.12 (Set porosity) A number of theorems we have encountered state that some property holds except
on a “small” set. We have interpreted the term small in various ways: A is small in the sense of
cardinality (measure, category) if A is countable (of zero measure, first category). There are other
notions of smallness. One of these has assumed importance in various parts of analysis, such as
differentiation theory, cluster set theory, and trigonometric series. The notion of porosity origi-
nates in the work of Denjoy; the concept of σ-porosity was introduced by E. P. Dolzhenko (1934–
.)

Definition. Let A ⊂ IR, and let x ∈ A. We define the porosity of A at x as

p(A, x) = lim sup
h→0

ℓ(x, h,A)

h
,

where ℓ(x, h,A) is the length of the longest interval in (x− h, x+ h) \A.

When p(A, x) > 0, we say that A is porous at x. If p(A, x) > 0 for all x ∈ A, we say A is a porous
set. A countable union of porous sets is called σ-porous.

(a) Let

A = {0} ∪
∞⋃

n=1

{
(−1)nn−1

}
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and

B = {0} ∪
∞⋃

n=1

{
(−1)n2−n

}
.

Calculate p(A, 0) and p(B, 0).

(b) Prove that no point of a porous set is a point of density and that a porous set is nowhere
dense.

(c) Prove that a σ-porous set has measure zero and is of the first-category.

(d) Give an example of a first-category set of measure zero that is not σ-porous. (This is not
easy.)

(e) Give an example of a Cantor set C for which p(C, x) = 1 for all x ∈ C.

(f) Show, for each Cantor set C, that the set {x : p(C, x) = 1} is of type Gδ and is dense in C.

(g) It can be proved from the Denjoy–Young–Saks theorem (see Exercise 7:8.5) that, for a Lips-
chitz function f defined on [a, b], the set

{
x : D+f(x) > D−f(x)

}

has measure zero. Show that this set is actually σ-porous.

(h) Prove the following porous version of the Vitali covering theorem, due to Y. A. Shevchenko
(1989): If V is a Vitali covering of a set E ⊂ IR, then there is a countable disjoint collection
{Vk} of sets chosen from V so that E \⋃∞

k=1 Vk is porous.

7:8.13 Let F be continuous on an interval I. Prove that the bounds of the difference quotient

F (y) − F (x)

y − x
(x, y ∈ I, y 6= x)

are the same as the bounds of each of the four Dini derivates on I.
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7:8.14 (a) Review and contrast the definitions of Vitali cover, fine cover, and full cover.

(b) Give examples that illustrate how such covers can arise naturally in a study of sets on which
some or all derived numbers are bounded.

(c) State some theorems or lemmas that relate global “growth” conditions to local conditions on
the derived numbers.

(d) In Exercise 7:3.5 we noted that, if f is measurable and all derived numbers of f vanish at all
points of a measurable set E, then λ(f(E)) = 0. Give an example of a continuous function
f : [0, 1] → [0, 1] such that, for each x ∈ [0, 1], there exists a derived number Df(x) = 0, and
yet f maps [0,1] onto [0,1]. [Hint: See Exercise 3:13.7.]

(We shall see in Section 10.7 that “most” continuous functions on [a,b] have the property ex-
pressed in (d).)

7:8.15 The following theorem, due to A. P. Morse, can be used to provide insights into the differentia-
bility structure of certain continuous functions.

Theorem (Morse). Let F be continuous on IR, and let −∞ < α <∞. If the set {x : D+F (x) ≥ α
is dense in IR, and there exists x0 ∈ IR such that D+F (x0) < α, then the set {x : D+F (x) = α}
has cardinality c.

(a) Prove that if F is continuous on IR and a Dini derivate is unbounded both from above and
below on every interval then D+F takes on every value on every interval. In fact, for every
α ∈ IR, the set {

x : D+F (x) = α
}

has cardinality c in every interval. [Hint: Use Exercise 7:8.13.]

(b) Let F be continuous and nowhere differentiable on IR. Prove that D+F takes on every real
value in every interval. In fact, for every α ∈ IR, the set{

x : D+F (x) = α
}
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has cardinality c in every interval.

(c) Let E be a set of real numbers with the property that, for every open interval I, λ(I ∩E) > 0
and λ(I \ E) > 0. Let f = χ

E
, and let F (x) =

∫ x

0
f dλ. Prove that, for every α ∈ [0, 1], the

set {
x : D+F (x) = α

}

has cardinality c in every interval.

(d) Let F be the Cantor function and let I be any open interval containing points of the Cantor
set. Prove that, for every α > 0, the set

I ∩ {x : D+F (x) = α}
has cardinality c. [Hint: Apply Morse’s theorem to −F .]

7:8.16 Prove Smı́tal’s lemma1.

Lemma (Smı́tal) Let B, D ⊂ IR so that B has positive outer Lebesgue measure and D
is dense. Then

λ∗((B +D) ∩ (a, b)) = b− a

for any interval (a, b).

[Hint: Let c < 1, and choose x0 ∈ B and δ > 0 so that

λ∗(B ∩ [x0 − h, x0 + h]) > cλ∗([x0 − h, x0 + h])

for all h < δ. Show that

λ∗((B +D) ∩ [x− h, x+ h]) > cλ∗([x− h, x+ h])

1 This result, usually called Smtal’s lemma in the literature [M. Kuczma and J. Smtal, ”On measures con-
nected with the Cauchy equation,” Aequationes Math. 14 (1976), no. 3, 421–428], has numerous applications. It
is also valid in IRn for n-dimensional Lebesgue outer measure.
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for all x ∈ D + x0 and h < δ. Construct a Vitali cover of (a, b) from these intervals.]
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Chapter 8

DIFFERENTIATION OF MEASURES

The differentiation theory of real functions can be extended to a theory of differentiation for
measures that has many similar features and many intriguing problems. The first problem to
address is how to find an appropriate way to differentiate a measure. In Section 8.1 we discuss
an approach that is appropriate for Lebesgue–Stieltjes measures in IRn. We develop this in Sec-
tions 8.2 to 8.5. Then in Section 8.6 we extend the method to abstract measure spaces.

Even for Lebesgue-Stieltjes measures in IR2 it is not clear how to begin, and it is less clear
which of the many possibilities is the correct one to pursue. Motivation for this is given in Sec-
tion 8.1. We shall discuss differentiation in IRn based on cubes in Section 8.2, intervals in Sec-
tion 8.4, and net structures in Section 8.5.

One of our main concerns is to reconsider the Radon-Nikodym theorem as a genuine differ-
entiation theorem. We recall that we have defined a Radon–Nikodym derivative of a measure
ν with respect to a measure µ, and have denoted it by dν

dµ . This function was not, however, ob-
tained by any process even remotely similar to a differentiation process. It may appear a bit of

520
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a fraud to label it as a derivative. This chapter will show how to resolve this problem. In par-
ticular, we find in Section 8.6 that dν

dµ can be viewed as a “genuine” derivative whenever the
hypotheses of the Radon-Nikodym theorem (Theorem 5.29) are satisfied.

Our concern throughout is the differentiation of measures, and we do not touch upon differ-
entiation of other types of set functions. Some references that deal with that subject appear in
Section 8.7.

8.1 Differentiation of Lebesgue–StieltjesMeasures

It is not immediately clear how one might try to extend the familiar derivative of a real func-
tion of one real variable to more general structures. We can motivate an approach by reconsid-
ering the ordinary derivative.

Let f be integrable on [a, b], and let F (x) =
∫ x
a f dλ. Then, because of Theorem 7.25,

F ′(x) = f(x) a.e. (1)

We rewrite (1) in a way that suggests a route for generalization. Let ν =
∫
f dλ. Then, for x ∈

[a, b],

F (x+ h) − F (x)

h
=

1

h

∫ x+h

x
f dλ =

ν([x, x+ h])

λ([x, x+ h])
.

Expression (1) then takes the form

lim
h→0

ν([x, x+ h])

λ([x, x+ h])
= f(x) a.e. (2)

To this point we have been dealing with intervals that have x as an endpoint. We wish to
be less restrictive by allowing any closed nondegenerate intervals that contain x. It is easy to
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verify (Exercise 8:1.1) that

lim
h→0+,k→0+,h+k>0

ν[x− h, x+ k]

λ[x− h, x+ k]
= f(x) a.e. (3)

Finally, we simplify the notation. We write

lim
I=⇒x

ν(I)

λ(I)
= f(x) a.e. (4)

The understanding of the symbol I =⇒ x (read “I contracts to x”) is that I is an arbitrary
closed interval, x ∈ I and the diameters δ(I) → 0. [Here and elsewhere in this chapter, for any
set I ⊂ IRn, we write δ(I) to denote its diameter.]

When dealing with more general spaces (X,M, µ), we seek a family J of sets of positive
measure and a notion =⇒ of “contraction” of sets in J to points of X such that (4) is valid.
This can often be done in many ways. A pair (J ,=⇒), where J is a family of sets of positive
measure and “=⇒” is a notion of contraction, is called a differentiation basis.

8.1.1 The ordinary derivative using the cube basis

Consider first the case X = IRn with µ equal to Lebesgue measure. As an example of a differ-
entiation basis, we take J to be the family of closed nondegenerate cubes having edges parallel
to the coordinate axes in IRn, and we write I =⇒ x if x ∈ I and the diameters δ(I) → 0. This
will provide a relatively simple theory of differentiation of Lebesgue–Stieltjes signed measures
in IRn. For simplicity, we shall usually denote n-dimensional Lebesgue measure by λ (instead of
λn) and the class of measurable sets by L. No confusion should arise from this practice, since
the dimension will usually be fixed in any part of our development.

Let ν be a Lebesgue–Stieltjes signed measure on IRn and let x ∈ IRn. Let {Ik} be a se-
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quence from J such that Ik =⇒ x; that is, x ∈ Ik, for all k ∈ IN and the diameters δ(Ik) tend to
0. If

lim
k→∞

ν(Ik)

λ(Ik)

exists or is infinite, this limit is called an ordinary derived number of ν at x. The supremum of
all ordinary derived numbers at x (taken over all sequences {Ik} contracting to x) is called the
upper ordinary derivative of ν at x, denoted as Dν(x). The lower ordinary derivative Dν(x) is
defined similarly. Thus

Dν(x) = sup lim sup
k→∞

ν(Ik)

λ(Ik)

and

Dν(x) = inf lim inf
k→∞

ν(Ik)

λ(Ik)
,

the sup and inf being taken over all sequences {Ik} contracting to x. If Dν(x) = Dν(x) we say
that ν has a derivative Dν(x). If Dν(x) is finite, we say that ν is differentiable at x or has an
ordinary derivative there.

The following example illustrates the computations involved and will prove useful to us sev-
eral times in this chapter.

Example 8.1: Let L be the line with equation y = x in IR2, and let ν(E) = λ1(E ∩ L), where
λ1 is one-dimensional Lebesgue measure on L. Let λ2 denote two-dimensional Lebesgue mea-
sure in IR2. Note that ν ⊥ λ2, since ν(IR2 \ L) = 0 and λ2(L) = 0. Let x ∈ L. By choosing
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{Ik} ⊂ J such that Ik =⇒ x and x is the lower-right corner of Ik, we find that

ν(Ik)

λ2(Ik)
= 0

for all k ∈ IN; thus Dν(x) = 0. If, instead, x is the lower-left corner of Ik, we find that

ν(Ik)

λ2(Ik)
=

√
2Sk

Sk
2
,

where Sk is the side length of Ik, so Dν(x) = ∞. Thus Dν = 0 on IR2 \ L, and Dν(x) = ∞ >
0 = Dν(x) on L.

8.1.2 Mixed partial derivatives

The cube basis and the ordinary derivative are not powerful enough to describe all ideas in mul-
tivariable differentiation. As an example, let us look at the details involved in computing mixed
partial derivatives for functions in IR2. We shall use this example as a basis for some applica-
tions of the differentiation theory proved in Section 8.4.

Example 8.2: In elementary calculus, one usually has enough regularity on a function F :
IR2→ IR to imply that

∂2F

∂y∂x
=

∂2F

∂x∂y
,

so that the order of computing mixed partials does not affect the outcome. (Sometimes, how-
ever, the order does matter: see Exercise 8:1.2.)

Let us try to interpret this as a derivative, in an appropriate sense, when F is an integral.
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Suppose that f is integrable on S = [0, 1] × [0, 1], and define F on S by

F (ξ, η) =

∫

[0,ξ]×[0,η]
f dλ.

The function F determines a Lebesgue–Stieltjes measure ν on the Lebesgue measurable sets in
S. For I = [ξ, ξ + h] × [η, η + k] ⊂ S,

ν(I) = F (ξ + h, η + k) − F (ξ, η + k) − F (ξ + h, η) + F (ξ, η).

Thus the quotient ν(I)/λ(I) can be written as

1

k

[
F (ξ + h, η + k) − F (ξ, η + k)

h
− F (ξ + h, η) − F (ξ, η)

h

]
(5)

or as
1

h

[
F (ξ + h, η + k) − F (ξ + h, η)

k
− F (ξ, η + k) − F (ξ, η)

k

]
. (6)

Suppose now that F possesses second partial derivatives in a neighborhood of a point (ξ, η)
in S. Letting first h and then k approach zero in (5), we obtain the mixed partial

∂2F

∂y∂x
=

∂

∂y

(
∂F

∂x

)
.

On the other hand, letting first k and then h approach zero in (6), we obtain the other mixed
partial

∂2F

∂x∂y
=

∂

∂x

(
∂F

∂y

)
.

A stronger kind of limit that will express both of these computations and require them to
be equal is to ask for the limit as h, k → 0 together. We can express this as a derivative by
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letting J denote the family of all intervals in IR2 and by requiring that “I =⇒ (ξ, η)” mean
(ξ, η) ∈ I ∈ J with diameters δ(I) → 0. If

lim
I=⇒(ξ,η)

ν(I)

λ(I)
= f(ξ, η)

for some (ξ, η) ∈ IR2, then the double limit appearing in (5) or (6) exists and converges to
f(ξ, η). In that case

∂2F

∂y∂x
=

∂2F

∂x∂y

at (ξ, η).

8.1.3 The strong derivative using the interval basis

This example suggests that we should investigate a stronger version of the derivative, one that
uses arbitrary intervals rather than cubes. Let J denote the family of closed intervals in IRn.
Each element I of J is a Cartesian product of nondegenerate closed intervals in IR1:

I = [a1, b1] × [a2, b2] × · · · × [an, bn].

Let x ∈ IRn. Write “I =⇒ x” if x ∈ I ∈ J and the diameters δ(I) → 0. Let ν be a Lebesgue–
Stieltjes signed measure on IRn. If

lim
I=⇒x

ν(I)

λ(I)

exists, we denote this limit by Dsν(x) and call it the strong derivative of ν at x. When Dsν
does not exist at x, we can still define the strong upper derivative Dsν(x) and strong lower
derivative Dsν(x) via lim sups and lim infs, as we just did for the ordinary derivative. We thus
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have a framework for studying strong differentiation of a measure, that is, a theory in which the
family of intervals replaces the family of cubes.

There is an immediate relation between ordinary differentiation and strong differentiation.
It is clear that the inequalities

Dsν ≤ Dν ≤ Dν ≤ Dsν

are valid at every point. They can be strict, as the following example shows.

Example 8.3: Let

A =
{

(ξ, η) ∈ IR2 : |η| ≥ |ξ|
}
,

and let ν(E) = λ(E ∩A) for all E ∈ L. Then

Dsν(0) = 0 < 1
4 = Dν(0) < Dν(0) = 3

4 < 1 = Dsν(0).

Exercises

8:1.1 Verify that (3) is valid at each x for which (2) is valid.

8:1.2 Let

f(x, y) = xy

(
x2 − y2

x2 + y2

)
, f(0, 0) = 0.

Show that
∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0).

[Hint: Note that
∂f

∂x
(0, y) = −y and

∂f

∂y
(x, 0) = x.
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8:1.3 Let F be defined as in Example 8.2. One can show that ∂F/∂x and ∂F/∂y exist a.e. If ∂F/∂y
fails to exist everywhere on a segment of the form x1 < x < x2, y = y0, then one cannot even
discuss

∂

∂x

(
∂F

∂y

)
=

∂2F

∂x∂y

at some point (x0, y0) of that segment. Interpret the meaning of the statement

Dsν(x0, y0) =
∂2F

∂x∂y

at such a point.

8:1.4 Show that the lower and upper ordinary derivatives of a measure ν, Dν, and Dν are themselves
lower and upper ordinary derived numbers. Thus these derivatives are the minimum and maxi-
mum of the ordinary derived numbers. (The same is true for strong derivatives.)

8.2 The Cube Basis

We begin by studying the ordinary derivative of a Lebesgue-Stieltjes measure in IRn. Through-
out this section, J will denote the family of all cubes in IRn having edges parallel to the coordi-
nate axes, and we write I =⇒ x if x ∈ I and the diameters δ(I) → 0. By λ we mean Lebesgue
measure on IRn.

Because the Vitali theorem is valid for the family J , we can make use of the methods in
Sections 7.1 to 7.7. We shall do this with some modifications and streamlining.
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8.2.1 Vitali’s covering theorem for the cube basis

We begin with a rephrasing of the definition of a Vitali cover and with the statement of the Vi-
tali covering theorem in our present notation.

Definition 8.4: Let V ⊂ J , and let E ⊂ IRn. If, for every x ∈ E, there exists a sequence {Vk}
from V such that Vk =⇒ x, we say that V is a Vitali cover of E.

Theorem 8.5: If V is a Vitali cover of a set E ⊂ IRn, then there exists a sequence of sets {Vk}
from V such that

1. Vi ∩ Vj = ∅ if i 6= j.

2. λ (E \⋃∞
k=1 Vk) = 0.

Proof. Exercise 7:1.8 addressed the case when n = 2. The general case is similar; see the
references at the end of this chapter for details if needed. �

To begin our development, we use the Vitali covering theorem just stated to obtain a growth
lemma reminiscent of Lemma 7.5.

Lemma 8.6: Let ν be a Lebesgue–Stieltjes measure on IRn, and let E ⊂ IRn. If, for all x ∈ E,
Dν(x) ≥ q > 0, then

ν∗(E) ≥ qλ∗(E). (7)

Proof. We establish (7) on the assumption that E is bounded, the extension to unbounded
sets being left as Exercise 8:2.1.
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Let ε > 0, and let 0 < q0 < q. Choose a bounded open set G such that E ⊂ G and ν∗(E) >
ν(G) − ε. Let

V = {V ∈ J : V ⊂ G and ν(V ) ≥ q0λ(V )} .
Since, by hypothesis Dν(x) ≥ q > q0 for all x ∈ E, the family V forms a Vitali cover of E. By
Theorem 8.5, there exists a pairwise disjoint sequence {Vk} of sets from V such that

λ

(
E \

∞⋃

k=1

Vk

)
= 0.

Thus

ν∗(E) > ν(G) − ε ≥
∞∑

k=1

ν(Vk) − ε ≥ q0

∞∑

k=1

λ(Vk) − ε ≥ q0λ
∗(E) − ε.

We obtain (7) by letting ε→ 0 and q0 → q. �

The reader may have observed that Lemma 8.6 provides an analog to Lemma 7.5. What
about an analog for Lemma 7.1? For n = 1, we can provide an analog simply by rephrasing
Lemma 7.1 in terms of the Lebesgue–Stieltjes measure µf . But for n > 1, such an analog is no
longer available.

This can be seen from the measure ν constructed in Example 8.1. Let S = [0, 1] × [0, 1]
denote the unit square. We see that Dν = 0 on S. Thus, for 0 < p <

√
2, Dν < p on S, yet

ν(S) =
√

2 > pλ2(S).

This example illustrates how an attempt to prove an analog of Lemma 7.1 along the lines of
the proof of Lemma 8.6 would fail. We could take V = J , select a pairwise disjoint sequence
{Vk} from V that covers almost all of S except L ∩ S, and obtain ν(

⋃∞
k=1 Vk) < pλ2(S). Now
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λ2(S \⋃∞
k=1 Vk) = 0, but

ν

(
S \

∞⋃

k=1

Vk

)
= ν(L) =

√
2 6= 0.

Observe that in one dimension a Lebesgue–Stieltjes measure ν for which Dν < p on [a, b]
implies, by Theorem 7.23, that ν ≪ λ. Example 8.1 shows that this is not the case in higher
dimensions.

8.2.2 Differentiability of Lebesgue–Stieltjes measures on IRn

Nonetheless, we can use Lemma 8.6, together with some of the ideas in the proof that functions
of bounded variation are differentiable a.e., to prove that Lebesgue–Stieltjes measures on IRn

are differentiable a.e.

Theorem 8.7: Let ν be a signed Lebesgue–Stieltjes measure on IRn. Then ν is differentiable
a.e.

Proof. Because of the Jordan decomposition theorem (Theorem 2.23), we may assume that ν
is a measure. Let

A =
{
x ∈ IRn : Dν(x) > Dν(x)

}
,

and for each pair (p, q) of rational numbers satisfying 0 < p < q, let

Apq =
{
x : Dν(x) < p < q < Dν(x)

}
.

Then A =
⋃

p,q Apq.
Suppose that λ∗(A) > 0. Then there must exist p and q such that λ∗(Apq) > 0. Let B be a

bounded subset of Apq such that λ∗(B) > 0. Let ε > 0, and let G be a bounded open set such
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that B ⊂ G and λ(G) < λ∗(B) + ε. Now let

V = {V ∈ J : V ⊂ G and ν(V ) ≤ pλ(V )} .
Then V is a Vitali cover for B. Thus there exists a pairwise disjoint sequence {Vk} from V such
that

λ

(
B \

∞⋃

k=1

Vk

)
= 0,

so

λ∗

(
∞⋃

k=1

(Vk ∩B)

)
= λ∗(B). (8)

It follows that

ν

(
∞⋃

k=1

Vk

)
=

∞∑

k=1

ν(Vk) ≤ p
∞∑

k=1

λ(Vk) ≤ pλ(G) < p(λ∗(B) + ε). (9)

Now, since B ⊂ Apq, we have Dν(x) > q at each point of B. Applying Lemma 8.6 and not-
ing (8), we obtain the inequalities

ν

(
∞⋃

k=1

Vk

)
≥ ν∗

(
∞⋃

k=1

(Vk ∩B)

)
≥ qλ∗

(
∞⋃

k=1

(Vk ∩B)

)
= qλ∗(B). (10)

Comparing (9) with (10), we find that

qλ∗(B) < p(λ∗(B) + ε). (11)

The inequality (11) is valid for every ε > 0, since ε was not chosen until after p, q, and B had
been determined. Thus qλ∗(B) ≤ pλ∗(B). Since p < q and λ∗(B) < ∞, we conclude that
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λ(B) = 0. But this contradicts our choice of B.
We have shown that Dν = Dν a.e. It remains to show that the set

A∞ = {x : Dν(x) = ∞}
has measure zero. If λ(A∞) > 0, there exists a bounded set B such that λ∗(B ∩ A∞) > 0. From
Lemma 8.6, we infer that

ν∗(B ∩A∞) ≥ qλ∗(B ∩A∞)

for every q ∈ IN. But this would imply that ν∗(B ∩ A∞) = ∞, which is impossible, since a
Lebesgue–Stieltjes outer measure is finite on bounded sets. �

Lebesgue obtained Theorem 8.7 in a slightly more general form in 1910. We mention that
the sets A and Apq are actually measurable (see Exercise 8:2.3). Our proof could have been
given using only measurable sets, but doing so would not have simplified matters.

8.2.3 A theorem of Fubini

In 1915, G. Fubini proved that if {Fk} is a convergent series of nondecreasing functions on [a, b]
and F =

∑∞
k=1 Fk, then

F ′ =
∞∑

k=1

F ′
k a.e.

We shall now obtain the analog of his theorem for Lebesgue–Stieltjes measures in IRn. We can
use this result to obtain a version of the fundamental theorem of calculus for the ordinary deriva-
tive of integrals.
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Theorem 8.8: Suppose that {νj} is a monotone sequence of Lebesgue Stieltjes measures on IRn

such that, for every E ∈ L, ν(E) = limj→∞ νj(E) is also a Lebesgue–Stieltjes measure. Then

Dν = lim
j→∞

Dνj a.e.

Proof. Assume without loss of generality that {νj} is nondecreasing. Let ηj = ν − νj . It
suffices to show that the set

A =

{
x : lim

j→∞
Dηj(x) = 0 does not hold

}

has measure zero. For k ∈ IN, let

Ak =

{
x : lim

j→∞
Dηj(x) ≥ 1

k

}
.

Then A =
⋃∞

k=1Ak. Let B be a bounded subset of Ak. The sequence {νj} is nondecreasing by
hypothesis, so the sequence {ηj} is nonincreasing. Therefore, the sequence {Dηj} is also non-

increasing. From this it follows that Dηj ≥ 1/k for all j ∈ IN and all x ∈ B ⊂ Ak. Applying
Lemma 8.6, we find that

kη∗j (B) ≥ λ∗(B)

for every j ∈ IN.
Let K ∈ J , K ⊃ B. Then, for all j ∈ IN,

kηj(K) ≥ kη∗j (B) ≥ λ∗(B). (12)

From (12) we infer that

k lim
j→∞

ηj(K) ≥ λ∗(B).
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But, from the definition of ηj , we infer that

k lim
j→∞

ηj(K) = k lim
j→∞

(ν(K) − νj(K)) = 0.

Thus λ∗(B) = 0.
We have shown that, for each k ∈ IN, every bounded subset of Ak is of measure zero. It

follows that λ(Ak) = 0. Thus λ(A) = 0. From the definition of the set A, we see that

lim
j→∞

Dηj = 0

holds a.e. �

8.2.4 The fundamental theorem of the calculus

We can now state and prove half of the fundamental theorem of calculus for our present setting.
Theorem 8.9 provides an analog to Theorem 7.25.

Theorem 8.9: Let f be integrable on IRn, and let

ν =

∫
f dλ.

Then f = Dν a.e.

Proof. As usual, we may assume that f is nonnegative. Let us suppose first that f = χ
A

,
where A ⊂ IRn is measurable, and let ν(E) =

∫
E χA

dλ. We show that Dν = χ
A

a.e. Since
computation of a derivative at a point x ∈ IRn involves only local behavior, we may assume that
A is bounded. Let {Gk} be a descending sequence of open sets such that A ⊂ H =

⋂∞
k=1Gk
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and λ(H) = λ(A). For each k ∈ IN, let

νk =

∫
χ

Gk
dλ.

Then {νk} is a nonincreasing sequence of Lebesgue–Stieltjes measures on IRn.
Now χ

Gk
→ χ

H
everywhere and χ

H
= χ

A
a.e., so

∫

E
χ

Gk
dλ→

∫

E
χ

A
dλ

for every bounded measurable set E; that is, limk→∞ νk = ν. It follows from Theorem 8.8 that
Dν = limk→∞Dνk = 1 a.e. on A. A similar argument shows that Dν = 0 a.e. on Ã, and we
have Dν = χ

A
a.e., as required.

It follows easily now that the result of the theorem is valid for integrable simple functions.
For an arbitrary nonnegative integrable function f , let {fk} be a nondecreasing sequence of
simple functions converging pointwise to f , and let νk =

∫
fk dλ. Then ν = limk→∞ νk. An

application of Theorem 8.8 results in the equalities

Dν = lim
k→∞

Dνk = lim
k→∞

fk = f a.e.,

as required. �

In Section 5.8 we defined the Radon–Nikodym derivative of ν as that function f such that
ν =

∫
f dµ. We used the notation f = dν

dµ and provided some explanation for the notation. We
can now see that the notation is indeed appropriate, at least in the setting of this section. If ν
is a Lebesgue–Stieltjes signed measure on IRn and ν ≪ λ, then the Radon–Nikodym derivative
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dν
dλ is the ordinary derivative Dν. That is,

dν

dλ
= lim

I=⇒x

ν(I)

λ(I)
a.e. on IRn.

Exercises

8:2.1 Verify that Lemma 8.6 is valid for unbounded sets E ⊂ IRn.

8:2.2 Prove that an arbitrary union of nondegenerate closed cubes in IRn for n ≥ 2 is Lebesgue mea-
surable, but not necessarily Borel measurable. [Hint: Use the Vitali covering theorem for the first
statement. For the second statement, consider a subset S of the line y = x that is not a Borel sub-
set of IR2. Show that a linear set is a Borel set when viewed as a subset of the line if and only if it
is a Borel set when considered as a subset of the plane.]

8:2.3 Let ν be a signed measure on IRn. Prove that Dν and Dν are Lebesgue measurable functions.
[Hint: For α ∈ IR, let

Ajk =
⋃{

I ∈ J : δ(I) ≤ 1/k and
ν(I)

λ(I)
> α+ 1/j

}
.

Show that

{
x ∈ IRn : Dν(x) > α

}
=

∞⋃

j=1

∞⋂

k=1

Ajk.

Use Exercise 8:2.2.]
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8.3 Lebesgue Decomposition Theorem

As an application of our methods we now show that the ordinary derivative allows a version of
the Lebesgue decomposition theorem in IRn and clarifies the nature of Lebesgue-Stieltjes mea-
sures that are singular or absolutely continuous with respect to Lebesgue measure. This is simi-
lar to the one-dimensional theory.

Recall that the Cantor function F is singular because F is nondecreasing and F ′ = 0 a.e.
On the other hand, the Cantor measure µF and Lebesgue measure λ are mutually singular,
µF ⊥ λ, because µF and λ are concentrated on disjoint sets. Theorem 8.10 relates singularity
of a measure to ordinary differentiation of the measure.

Theorem 8.10: Let ν be a Lebesgue–Stieltjes signed measure on IRn. Then ν ⊥ λ if and only if
Dν = 0 a.e.

Proof. We may assume that ν ≥ 0. Suppose first that ν ⊥ λ. By definition there exist Borel
sets A and B such that IRn = A ∪B, A ∩B = ∅, λ(B) = 0 and ν(A) = 0. For k ∈ IN, let

Pk = {x ∈ A : Dν(x) ≥ 1/k} .
Then 0 = ν(A) = ν(Pk) ≥ λ∗(Pk)/k, the inequality following from Lemma 8.6. Let P =⋃∞

k=1 Pk. Then λ(P ) = 0. Now

{x : Dν(x) > 0} ⊂ P ∪B.
Since λ(P ) = 0 and λ(B) = 0, we conclude that Dν = 0 a.e.

Conversely, suppose that Dν = 0 a.e. By Theorem 5.34, there exist measures α and β such
that α ≪ λ, β ⊥ λ, and ν = α + β. It follows from Theorem 8.9 that α =

∫
Dαdλ. Since

α = ν − β, we have Dα = Dν − Dβ. Since β ⊥ λ, it follows, from the first paragraph of this
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proof, that Dβ = 0 a.e. But Dν = 0 a.e. by hypothesis, and so Dα = 0 a.e., from which we
obtain α =

∫
Dαdλ = 0. We have shown that ν = α+ β = β, so ν ⊥ λ as required. �

We can now obtain a form of the Lebesgue decomposition theorem that displays derivatives
explicitly.

Theorem 8.11: Let ν be a signed Lebesgue–Stieltjes measure on IRn. Then, for all bounded
Borel sets E,

ν(E) =

∫

E
Dν dλ+ β(E),

where β is a signed Lebesgue–Stieltjes measure on IRn for which Dβ = 0 a.e.

Proof. Again, we may assume that ν ≥ 0. By Theorem 5.34, there exist Lebesgue–Stieltjes
measures α and β such that α≪ λ, β ⊥ λ, and ν = α+ β. By Theorem 8.9,

α =

∫
Dαdλ.

Now Dν = Dα + Dβ a.e. By Theorem 8.10, Dβ = 0 a.e. Thus Dν = Dα a.e., so that α =∫
Dν dλ and

ν =

∫
Dν dλ+ β,

as required. �

As an immediate corollary, we obtain the other half of the fundamental theorem of calculus.
Corollary 8.12 extends Theorem 7.22 to IRn.
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Corollary 8.12: A Lebesgue–Stieltjes signed measure ν is absolutely continuous with respect to
λ if and only if

ν(E) =

∫

E
Dν dλ

for all bounded measurable sets E.

Proof. See Exercise 8:3.3. �

We have seen that most of the results in Section 7.5 involving µf carry over to IRn. A no-
table exception is de la Vallée Poussin’s result Theorem 7.23. Example 8.1 shows that no such
theorem is available in the setting of this section. In Section 8.5, we provide a setting in which
an analog of Theorem 7.23 is valid.

Exercises

8:3.1 Show that the analog of Theorem 7.23 is not valid in dimensions greater than 1 when J and =⇒
have the meanings given in this section. (In Section 8.5, we provide a setting in which that analog
is available.)

8:3.2♦ Let {Pn} be a sequence of pairwise disjoint Cantor sets of measure zero in [0,1] with
⋃∞

n=1 Pn

dense in [0,1]. For each n ∈ IN, let Fn be a Cantor-like function that maps Pn onto [0, 2−n], let
Gn =

∑n
k=1 Fn, and let νn = µGn

.

(a) Show that {νn} forms a nondecreasing sequence of Lebesgue–Stieltjes measures.

(b) Show that ν = limn→∞ νn is a nonatomic Lebesgue–Stieltjes measure by showing that ν =
µF , where F =

∑∞
n=1 Fn.

(c) Show that ν(I) > 0 for every open interval I ⊂ [0, 1].
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(d) Show that F is strictly increasing and continuous on [0,1].

(e) Show that ν ⊥ λ.

(f) Show that F ′ = 0 a.e.

Thus F is a continuous strictly increasing singular function.

8:3.3 (a) Show that the conclusion of Theorem 8.11 does not hold for every bounded Lebesgue mea-
surable set . [Hint: Let F be the Cantor function, and let ν = µF . Show that the Cantor set
has a subset E that is not ν-measurable.]

(b) Prove Corollary 8.12. [Hint: Prove that µf ≪ λ if and only if f is continuous and every λ-
measurable set is ν-measurable.]

8.4 The Interval Basis

We turn now to a study of the strong derivative of a Lebesgue-Stieltjes measure in IRn. Through-
out this section J denotes the family of all intervals in IRn; that is, rectangles having edges par-
allel to the coordinate axes. We write I =⇒ x if x ∈ I and the diameters δ(I) → 0. Again, λ is
Lebesgue measure in IRn.

A difficulty in dealing with strong differentiation is that the family J of intervals does not
have the Vitali covering property; that is, the Vitali covering theorem is not valid1 for this fam-
ily J . This means that the methods of the preceding sections that worked for the ordinary
derivative are not available here to apply to the strong derivative. Indeed, it turns out that we

1This is proved, for example, in M. de Guzmán, Differentiation of Integrals in IRn, Lecture Notes in Mathe-
matics, vol. 481, Springer, Berlin (1975).
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cannot always assert that if ν =
∫
f dλ then Dsν = f a.e. We can, however, prove that if f is

bounded then Dsν = f a.e.

8.4.1 The Lebesgue density theorem for the interval basis

The tool needed is the analog of Lebesgue’s density theorem, which we now prove is valid in
any dimension. Note that this theorem is already proved to be true for the weaker notion of
ordinary convergence using cubes (it was the first step in the proof of Theorem 8.9). Here we
must prove it for strong convergence using intervals.

Theorem 8.13: Let A be a measurable subset of IRn, and let J be the family of intervals in
IRn. Then

lim
I=⇒x

λ(I ∩A)

λ(I)
=

{
1, a.e. on A;
0, a.e. on IRn \A.

Proof. For simplicity of notation, we present the proof for sets in IR2. We use λ2 for Lebes-
gue’s two-dimensional measure and λ1 for one-dimensional measure. Using Theorem 3.13, one
verifies easily that we may assume that A is closed and bounded. We leave this verification as
Exercise 8:4.1.

The proof continues in two steps. We first obtain certain one-dimensional density estimates.
We then apply the pre-Fubini theorem (Theorem 6.5) to obtain the desired two-dimensional
density estimate.

For S ⊂ IR2 and η ∈ IR, let S[η] = {x : (x, η) ∈ S}. Let ε > 0. For n ∈ IN, let En denote the
set of points (ξ, η) ∈ A for which

λ1(A[η] ∩ I) ≥ (1 − ε)λ1(I)
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whenever I is a linear interval containing ξ and λ1(I) ≤ 1/n.
The sequence En is an expanding sequence of sets on each of which a certain one-dimensional

density estimate is satisfied. Let N = A \ limn→∞En. We show that λ2(N) = 0. To verify this,
observe first that, if ξ ∈ N [η], then for each n ∈ IN there exists a linear interval I such that
ξ ∈ I, λ1(I) < 1/n and

|N [η] ∩ I| < |A[η] ∩ I| < (1 − ε)λ1(I).

From the one-dimensional Lebesgue density theorem (Theorem 7.35), it follows that

λ1(N [η]) = 0 for all η ∈ IR. (13)

In order to apply Theorem 6.5 and thereby claim that λ2(N) = 0, we must show that N is
measurable. To do this, we note that each of the sets En is closed. To see this, fix n ∈ IN and
let {(ξk, ηk)} be a sequence of points in En converging to {ξ0, η0}. Let I be a linear interval
containing I0 in its interior with λ1(I) < 1/n. For k sufficiently large, ξk ∈ I, so

λ1(A[ηk] ∩ I) ≥ (1 − ε)λ1(I).

But A is closed, so

A[η0] ⊃ lim sup
k→∞

A[ηk].

Thus

λ1(A[η0] ∩ I) ≥ lim sup
k→∞

λ1(A[ηk] ∩ I) ≥ (1 − ε)λ1(I).

Letting I → I0, we find that

λ1(A[η0] ∩ I0) ≥ (1 − ε)λ1(I0),

so (ξ0, η0) ∈ En and En is closed. It follows that N = A \ limn→∞En is measurable. We can
now apply Theorem 6.5 and, noting (13), conclude that λ2(N) = 0.
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From this it follows that the sequence λ2(A \ En) → 0. Consequently, for each ε > 0 there
exists σ > 0 and a closed set E ⊂ A such that λ2(A \ E) < ε and such that

λ1({x : (x, η) ∈ A and a ≤ x ≤ b}) ≥ (1 − ε)(b− a) (14)

whenever (ξ, η) ∈ E, a ≤ ξ ≤ b, and b− a < σ.
Interchanging the roles of x and y and applying the above argument to E, we obtain τ > 0

and a closed set F ⊂ E such that τ < σ, λ2(E \ F ) < ε, and

λ1({y : (ξ, y) ∈ E and a ≤ y ≤ b}) ≥ (1 − ε)(b− a) (15)

whenever (ξ, η) ∈ F , a ≤ η ≤ b and b− a < τ .
On the set F , we have one-dimensional density estimates in both directions. We now apply

Theorem 6.5 once again to obtain a two-dimensional density estimate.
Let (ξ0, η0) ∈ F . Let J = [a1, b1] × [a2, b2] be any interval in IR2 having diameter less than τ

and containing (ξ0, η0). From Theorem 6.5 we infer that

λ2(A ∩ J) =

∫ b2

a2

λ1({x : (x, y) ∈ A, a1 ≤ x ≤ b1}) dy.

It follows from (15) and (14) that

λ2(A ∩ J) ≥ (1 − ε)(b2 − a2)(b1 − a1) = (1 − ε)λ2(J).

From this it now follows that

lim
J=⇒(ξ0,η0)

inf
λ2(A ∩ J)

λ2(J)
≥ (1 − ε)
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for all (ξ0, η0) ∈ F . But λ2(A\F ) ≤ 2ε and ε is arbitrary. We can thus conclude that, for almost
every point (ξ0, η0) in A,

lim
J=⇒(ξ0,η0)

λ2(A ∩ J)

λ2(J)
= 1.

Thus almost every point of A is a point of density of A. It is now clear that almost every point
of Ã is a point of dispersion of A. �

As before, if

lim
I=⇒x

λ(I ∩A)

λ(I)
= 1,

we call x a density point of A. Theorem 8.13 thus states that almost all points of a measurable
set A are density points of A. We shall obtain analogs to Theorems 7.38 and 7.39 with the help
of Theorem 8.13. We then use these theorems to obtain an analog to Theorem 7.25 for bounded
measurable functions.

8.4.2 Approximate continuity

As in Section 7.7, we say a function f is approximately continuous at x0 ∈ IRn if there exists a
measurable set E that contains x0 and has x0 as a density point and such that f |E is continu-
ous at x0.

Theorem 8.14: A measurable, finite a.e. function is approximately continuous a.e.

Proof. Because of Theorem 8.13, the proof of Theorem 8.14 is identical to that of Theo-
rem 7.39. �
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8.4.3 Differentiation of the integral for bounded functions

Theorem 8.15: Let f be a bounded integrable function on IRn, and let ν =
∫
f dλ. Then

Dsν(x) = f(x) at each point of approximate continuity of f . In particular, Dsν = f a.e.

Proof. Let x0 be a point of approximate continuity of f . Let E be a measurable set having
x0 as a density point such that f |E is continuous at x0. Without loss of generality, assume that
f(x0) = 0. Let ε > 0. There exists γ > 0 such that if x0 ∈ I ∈ J and δ(I) < γ then

1. λ(I ∩ Ẽ) < ελ(I), and

2. |f(x)| < ε for each x ∈ I ∩ E.

Let M be an upper bound for |f |. Let x0 ∈ I ∈ J with δ(I) < γ. Then, from (i) and (ii), we
infer that

|ν(I)| ≤ |ν(I ∩ Ẽ)| + |ν(I ∩ E)|
≤ Mελ(I) + ελ(I) = ε(M + 1)λ(I).

Thus
|ν(I)|
λ(I)

≤ ε(M + 1).

It now follows that Dsν(x0) = 0 = f(x0). �

A version of the other half of the fundamental theorem of calculus is also available.
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Theorem 8.16: Let ν be a Lebesgue–Stieltjes signed measure on IRn. If there exists a number
M > 0 such that |ν(I)| ≤Mλ(I) for all intervals I ⊂ IRn, then

ν(E) =

∫

E
Dsν dλ

for all E ∈ L.

Proof. We show that ν ≪ λ. To see this, let E ∈ L with λ(E) = 0. We need to prove that
ν(E) = 0. Let ε > 0, and let {Ik} be a sequence of intervals whose interiors cover E and such
that

∞∑

k=1

λ(Ik) < λ(E) + ε.

Then

|ν(E)| ≤
∣∣∣∣∣ν
(

∞⋃

k=1

Ik

)∣∣∣∣∣ ≤
∞∑

k=1

|ν(Ik)|

≤ M
∞∑

k=1

λ(Ik) < M(λ(E) + ε).

Since ε is arbitrary, ν(E) = 0. Thus ν ≪ λ and, consequently, there exists f ∈ L1 such that
ν =

∫
f dλ.

We may apply Theorem 8.15, provided we show that f is bounded off a set of measure zero.
We verify that |f | ≤M a.e. It is enough to show that the set

A = {x : f(x) > M}
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has measure zero, since a similar argument applies to the

{x : f(x) < −M} .
If λ(A) > 0, then, by Theorem 8.9, Dν(x) > M a.e. on A. But since Dsν ≥ Dν, this im-
plies the existence of a point x ∈ A such that Dsν(x) > M . In view of the assumed inequality
|ν(I)| ≤ Mλ(I), this is impossible. Thus λ(A) = 0. By redefining f on a set of measure zero if
necessary, we can take |f | ≤M everywhere.

It now follows from Theorem 8.15 that Dsν = f a.e. Thus

ν =

∫
Dsν dλ

as required. �

8.4.4 Mixed partials

Theorem 8.15 sheds some light on Example 8.2 involving some questions about mixed partials.
Let f be a bounded measurable function on the square S, and let ν =

∫
f dλ. Then

Dsν = f a.e. (16)

Recalling our discussion in Example 8.2, we find that

Dsν =
∂2F

∂y∂x
=

∂2F

∂x∂y

wherever Dsν exists. We thus see from (16) that

f =
∂2F

∂y∂x
=

∂2F

∂x∂y
a.e.
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We summarize with a theorem.

Theorem 8.17: Let f be a bounded measurable function defined on the square S = [0, 1]× [0, 1],
and let

F (ξ, η) =

∫

[0,ξ]×[0,η]
f dλ.

If F has first partials on S, then a.e. on S the second mixed partials

∂2F

∂y∂x
and

∂2F

∂x∂y

exist and are equal. Furthermore, they are equal to f at each point of approximate continuity of
f .

8.4.5 Additional remarks

We conclude this section with several remarks offering the reader further insight into some as-
pects of these ideas.

Remark 1. We can compare Theorem 8.16 with Corollary 8.12. In the latter, we assumed only
that ν ≪ λ and were able to conclude that ν =

∫
Dν dλ. For Theorem 8.16, we assumed more

and obtained the stronger conclusion ν =
∫
Dsν dλ. In other language, Corollary 8.12 required

only that Dν ∈ L1, while our hypothesis in Theorem 8.16 required Dsν to be bounded. It is
Theorem 8.16 that applies to Example 8.2. Under appropriate hypotheses on F , we obtain the
conclusion

F (ξ, η) =

∫

[0,ξ]×[0,η]

∂2F

∂y∂x
dλ =

∫

[0,ξ]×[0,η]

∂2F

∂x∂y
dλ.
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Remark 2. Observe that the inequality |ν(I)| ≤ Mλ(I) of Theorem 8.16 is reminiscent of a
Lipschitz condition. The analogy with a Lipschitz condition can be reinforced. Note that the
intervals Ik that appear in the proof of Theorem 8.16 need not be pairwise disjoint. Compare
this with Exercises 5:7.5 and 5:7.10.

Remark 3. If we strengthen the requirements on differentiability, we might expect to obtain
fewer theorems related to the fundamental theorem of calculus. We saw this when we passed
from the system of cubes to the system of intervals. What happens if, for example, we let J
consist of all nondegenerate closed rectangles in IR2? (In contrast to intervals, a rectangle need
not have sides parallel to the coordinate axes in IR2.) In that setting it is no longer true that an
analog of the Lebesgue density theorem is available. In fact, there exists a closed set K ⊂ IR2

such that, for

ν =

∫
χ

K
dλ,

the equality

lim
I=⇒x

ν(I)

λ(I)
= χ

K
(x)

fails a.e. on K. See Exercise 8:4.2. No pleasing theory of differentiation is possible2 with this
choice of J .

In the other direction, weakening the requirements for differentiability can produce addi-
tional results. Suppose, for example, that we let J consist of the nondegenerate closed disks in
IR2 and write I =⇒ x if I ∈ J , δ(I) → 0 and x is the center of I. In that case, a version of

2See M. de Guzmán, Differentiation of Integrals in IRn, Lecture Notes in Mathematics, vol. 481, Springer,
Berlin (1975), for a discussion of differentiation with respect to this system.
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de la Vallée Poussin’s theorem (Theorem 7.23) is available. Denoting the resulting derivative by
Dsymν, we obtain, for a Lebesgue–Stieltjes signed measure, the identity

ν(E) =

∫

E
Dsymν dλ+ ν(E ∩ S∞), (17)

where S∞ consists of those points at which ν has an infinite symmetric derived number. Con-
sider Example 8.1 once again. Here Dsymν = ∞ on L and Dsymν = 0 on L̃, so (17) clearly
applies. We shall not prove (17). Instead, we shall study another less restrictive form of dif-
ferentiation in Section 8.5. We shall prove a version of de la Vallée Poussin’s theorem in that
setting.

Remark 4. Applications and interpretation of the type of differentiation theory that we de-
veloped in Section 8.2 and are discussing in this section are plentiful.3 The family of cubes or
intervals in IRn can be replaced with other families of sets, and the notion =⇒ of contraction
can vary. We mention some examples.

A number of important concepts in vector analysis can be viewed as derivatives. This is
true of the concepts of circulation, curl and divergence. The same is true of the Jacobian of a
differentiable transformation T defined on an open subset of IRn. The Jacobian JT (x) of T at x
is usually defined as a determinant involving partial derivatives. One can show that

|JT (x)| = lim
I=⇒x

λ(T (I))

λ(I)
= Dν(x),

where ν(E) = λ(T (E)).
Here is a quick heuristic treatment in IR2. Suppose that I is a square in IR2 with sides par-

allel to the coordinate axes, and let T = (f, g) be a continuously differentiable surjection of I

3See A. M. Bruckner, “Differentiation of Integrals,” Amer. Math. Monthly 78 (1971), no. 9, Part II.
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onto a set S. By use of line integrals, one verifies in elementary calculus that

ν(I) = λ(T (I)) = λ(S) =

∫

I

∣∣∣∣
∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

∣∣∣∣ dλ =

∫

I
|JT | dλ.

Thus, by Theorem 8.9,

Dν(x) = lim
I=⇒x

ν(I)

λ(I)
= |JT | a.e.

The Jacobian applies to “change of variable” theorems. For example, if T is a differentiable
homeomorphism mapping a bounded open set V ⊂ IRn onto another bounded open set W ⊂
IRn, then, for each integrable function f on W ,

∫

W
f dλ =

∫

V
(f ◦ T )|JT | dλ =

∫

V
(f ◦ T )

∣∣∣∣
dν

dλ

∣∣∣∣ dλ,

where ν(E) = λ(T (E)) for every measurable set E ⊂ V .

Exercises

8:4.1 In the proof of Theorem 8.13, show that Theorem 3.13 can be used to reduce the argument to the
case where the set A is closed.

8:4.2 In 1927, Nikodym gave an example of a closed set S ⊂ IR2 of positive Lebesgue measure such
that to almost every x ∈ S corresponds a line segment Lx such that S ∩ Lx = {x}. That is,

almost all points of S are linearly accessible from S̃. Use this to show that the family R of closed
nondegenerate rectangles in IR2 does not have Lebesgue’s density property. Here “I =⇒ x” means
I ∈ R, x ∈ I, δ(I) → 0. Show that, for almost all x ∈ S,

lim
I=⇒x

inf
ν(I)

λ(I)
= 0,
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where ν =
∫
χ

S
dλ.

8.5 Net Structures

In Section 7.5 we discussed relationships holding between integrals and derivatives in the one-
dimensional setting. We saw in Section 8.2 that much of our development carried over to n
dimensions if we used cubes for the family J in our differentiation basis. No analog of de la
Vallée Poussin’s theorem 7.23 was available, however, as Example 8.1 showed. Then, in Sec-
tion 8.4, we discussed the differentiation basis of intervals in IRn. We found that some theorems
of Section 8.2 were no longer valid without additional assumptions. The class of intervals in IRn

(n > 1) is larger than the class of cubes. This made it sufficiently more difficult for Dsν to exist
that even the analog of Theorem 8.9 required a stronger hypothesis than absolute continuity of
ν with respect to λ.

In this section we study a certain type of differentiation basis called a net structure. Here,
the requirements for differentiability of a measure are less demanding. We shall see that an ana-
log of de la Vallée Poussin’s theorem is available in this setting. We present a development in
IRn, but mention that virtually the same development is possible in any σ-finite measure space
(X,M, µ) for which X is a separable metric space.

We begin with an example of a net structure in IR2. Partition IR2 into half-open squares of
side length 1, and denote the resulting family by J1. Now partition each member I of J1 into
four congruent half-open squares of side length 1

2 , and let J2 be the resulting family of squares.
Continue the process, obtaining a sequence {Jk} of partitions of IR2 into half-open squares.
Each family Jk is called a net, and the sequence {Jk} is called a net structure. The members
of Jk are called cells.
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We list the important features of this net structure.

8.18 (Net structure features)

1. Each family Jk consists of Borel sets of finite positive measure and partitions IRn (here
n = 2).

2. Each family Jk+1 refines Jk: that is, if I ∈ Jk+1, then there exists J ∈ Jk such that
I ⊂ J .

3. Let δk = sup {δ(I) : I ∈ Jk}. Then limk→∞ δk = 0.

We use the three assertions of 8.18 to define nets and net structures in IRn. Thus a net is
any family Jk satisfying the first condition. A net structure is a sequence {Jk} of nets that sat-
isfies conditions (ii) and (iii). A member of Jk is called a cell of Jk.

8.5.1 Differentiation with respect to a net structure

In order to discuss differentiation with respect to a net structure, we need to determine a family
J of sets and a notion =⇒ of contraction. For J , we simply take

{I : There exists k ∈ IN such that I ∈ Jk} .
For contraction, we note that for all x ∈ IRn and every k ∈ IN there is a unique Ik ∈ Jk such
that x ∈ Ik. This follows from condition (1) of the net structure. From conditions (ii) and (iii),
we see that the resulting sequence {Ik} is a decreasing sequence whose intersection is {x}. We
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shall write I =⇒ x or Ik =⇒ x to indicate that the sequence contracts to x. We call the result-
ing differentiation basis (J ,=⇒) the basis associated with the net structure {Jk}. As before,
we define upper and lower derivatives of a Lebesgue–Stieltjes measure ν on IRn by

DJ ν(x) = lim sup
I=⇒x

ν(I)

λ(I)
and DJ ν(x) = lim inf

I=⇒x

ν(I)

λ(I)
(18)

and write DJ ν(x) if DJ ν(x) = DJ ν(x). When DJ ν(x) is finite, we say ν is differentiable at x.

Lemma 8.19: Let ν be a Lebesgue–Stieltjes signed measure on IRn, and let {Jk} be a net
structure with associated differentiation basis (J ,=⇒). The functions DJ ν(x) and DJ ν(x) are
Borel measurable.

Proof. To see this, let

dk(x) =
ν(Ik)

λ(Ik)

if x ∈ Ik ∈ Jk. Since each Ik ∈ Jk is a Borel set, dk takes on only countably many values, each
on a Borel set. Thus dk is Borel measurable, so the same is true of DJ ν and DJ ν, by (18). �

8.5.2 A growth lemma

We could now attempt to follow the development in Section 7.1 for functions and Section 8.2
for measures. This would involve establishing the Vitali property, followed by certain growth
lemmas. The structure here is much simpler, however. There are only countably many cells in
our family J , and disjointedness is given as one of the features. The Vitali property is clearly
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satisfied, but it is not needed for our development. We prove the relevant growth lemma di-
rectly.

Lemma 8.20: Let ν be a Lebesgue–Stieltjes signed measure on a cube X in IRn, and let {Jk}
be a net structure with associated differentiation basis (J ,=⇒).

1. If A ⊂ X is a Borel set, q ∈ IR, and DJ ν ≥ q on A, then ν(A) ≥ qλ(A).

2. If B ⊂ X is a Borel set, λ(B) = 0, and ν does not have an infinite derivative at any point
of B, then ν(B) = 0.

Proof. Without loss of generality, we assume that q = 0. (See Exercise 8:5.3.) Let ε > 0.
Using Corollary 3.15 and applying the Jordan decomposition to ν, we obtain an open set G ⊃
A such that λ(G) <∞ and |ν(E)| < ε for every Borel set E ⊂ G \A. Let x ∈ A. By hypothesis,
DJ ν(x) ≥ 0. Thus, for each k ∈ IN, there exists j ≥ k and I ∈ Jj such that

x ∈ I , I ⊂ G, and ν(I) > −ελ(I). (19)

Let J 1 consist of those cells I ∈ J1 that satisfy (19). Inductively, for k > 1, let J k+1 consist
of those cells I in Jk+1 that satisfy (19) and are not contained in any cells of J 1 ∪ · · · ∪ J k.
Our construction guarantees that the cells of

⋃∞
k=1 J k form a disjoint sequence {Jj}. From our

construction and (19), we see that

ν(Jj) ≥ −ελ(Jj) for each j = 1, 2, 3, . . .

and that

A ⊂
∞⋃

j=1

Jj ⊂ G.
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Our choice of G guarantees that |ν(G \⋃k Jk)| < ε, so

ν(G) ≥ ν


⋃

j

Jj


− ε.

Thus,

ν(A) + ε > ν(G) ≥ ν


⋃

j

Jj


− ε =

∑

j

ν(Jj) − ε

≥ −ε
∑

j

λ(Jj) − ε ≥ −ελ(G) − ε.

Since these inequalities are valid for every ε > 0, we conclude that ν(A) ≥ 0, establishing
part (1).

Let Bn =
{
x ∈ B : DJ ν(x) ≥ −n

}
. By the definition of B, DJ ν(x) > −∞ for all x ∈ B,

since DJ ν(x) = −∞ whenever DJ ν(x) = −∞. Thus B =
⋃∞

n=1Bn. By part (1) of the lemma,
for all n ∈ IN,

ν(Bn) ≥ −nλ(Bn) = 0.

This implies that ν(B) ≥ 0. By applying the same argument to the signed measure −ν, we find
that −ν(B) ≥ 0; that is, ν(B) ≤ 0. Thus ν(B) = 0. �

8.5.3 An analog of de la Vallée Poussin’s theorem for net structures

We can now prove the main result of this section, an analog of de la Vallée Poussin’s theorem
(Theorem 7.23).
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Theorem 8.21: Let ν be a Lebesgue–Stieltjes measure on a cube X in IRn. Let {Jk} be a net
structure on IRn with associated differentiation basis (J ,=⇒). Then DJ ν exists a.e. on X and
is integrable on X. Furthermore,

ν(E) =

∫

E
DJ ν dλ+ ν(E ∩B∞) + ν(E ∩B−∞) (20)

for every Borel set E ⊂ X.

Proof. By Theorem 5.34 and the Jordan decomposition, there exist signed measures α, β
such that

α≪ λ , β ⊥ λ, and ν = α+ β.

There exists f ∈ L1 such that α =
∫
f dλ. Let A and B be complementary Borel sets in X with

λ(B) = 0 = |β|(A). For real numbers p < q, let

Epq =
{
x : DJ ν(x) ≥ q > p ≥ f(x)

}
.

Then, noting that β(Epq ∩A) = 0, we calculate

ν(Epq ∩A) ≥ qλ(Epq ∩A) ≥ pλ(Epq ∩A)

≥
∫

Epq∩A
f dλ = ν(Epq ∩A).

Since the first and last terms in the preceding inequalities are the same, all the inequalities are,
in fact, equalities. Thus

qλ(Epq) = pλ(Epq).

But q > p, and λ(Epq) ≤ λ(X) <∞. Thus λ(Epq) = 0.
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Now let M =
⋃{Epq : p, q ∈ Q}. Then

M =
{
x : DJ ν(x) > f(x)

}
,

and λ(M) = 0. Therefore, DJ ν(x) ≤ f(x) a.e. on X. The same argument shows that

DJ (−ν(x)) ≤ −f(x)

a.e. on X, that is DJ ν(x) ≥ f(x) a.e. on X. Thus DJ ν = f a.e. on X. We have shown that,
for every Borel set E ⊂ X,

ν(E) = α(E) + β(E) =

∫

E
f dλ+ β(E ∩B) =

∫

E
DJ ν dλ+ β(E ∩B).

Thus, for every Borel set E ⊂ X,

ν(E) =

∫

E
DJ ν dλ+ β(E ∩B). (21)

To complete the proof, we study the role of the sets B∞ and B−∞. The function f is inte-
grable, so f is finite a.e. on X. Thus the same is true of DJ ν, so λ(B∞ ∪ B−∞) = 0. If E is a
Borel set contained in (B∞ ∪B−∞) ∩A, then λ(E) = 0, and we see from (21) that

ν(E) =

∫

E
DJ ν dλ = 0.

Thus only the parts of B∞ and B−∞ that are contained in B contribute to the calculation of ν.
We next show that B∞ and B−∞ are the only parts of B that contribute to ν. Let

S = B \ (B∞ ∪B−∞).

Since S ⊂ B, λ(S) = 0. Applying Lemma 8.20 to S, we find that ν(E) = 0 for every Borel set
E ⊂ S. It follows that

β(E ∩B) = ν(E ∩B∞) + ν(E ∩B−∞). (22)
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Substituting (22) into (21), we obtain the desired form (20). �

8.5.4 Further remarks

We conclude with several further remarks.

Remark 1. The assumption that ν be defined only on subsets of X with λ(X) < ∞ was
needed only to assure that the sets Epq have finite measure. By partitioning IRn into cubes and
obtaining (20) for each cube, we can drop this assumption and assume only that ν be finite on
IRn.

Remark 2. Since DJ ν = f a.e., we see that two different sequences of nets will give rise to
the same derivatives a.e. It is, perhaps, easiest to visualize J as half-open cubes, as de la Vallée
Poussin did in 1915, but the cells of J can be any Borel sets of positive measure satisfying the
three conditions in 8.18.

Remark 3. When ν ≪ λ, we see from (20) that

ν(E) =

∫

E
DJ ν dλ

as expected. When ν ⊥ λ, all of the mass of ν is concentrated on the set on which DJ ν is infi-
nite. Thus it follows from (20) that ∫

E
DJ ν dλ = 0

for every Borel set E. This implies DJ ν = 0 a.e..
Conversely, if DJ ν = 0 a.e., then it follows once again from (20) that ν is concentrated on

B∞ ∪B−∞, so that ν ⊥ λ. These remarks show ν ⊥ λ if and only if DJ ν = 0 a.e.
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Remark 4. Let us compare the Lebesgue and de la Vallée Poussin decompositions. For a Lebesgue–
Stieltjes signed measure on IRn we have this situation. When differentiating with respect to a
net structure, (20) is valid for each Borel set E,

ν(E) =

∫

E
DJ ν dλ+ ν(E ∩ (B∞ ∪B−∞)). (23)

When differentiating with respect to the cubes in IRn, we obtain

ν(E) =

∫

E
Dν dλ+ ν(E ∩ (B∞ ∪B−∞)). (24)

The set B∞ ∪B−∞ is the same set in (23) as in (24). The difference is that in (23),

B∞ = {x : DJ ν(x) = ∞} and B−∞ = {x : DJ ν(x) = −∞} ,
while in (24) no such interpretation is possible as Example 8.1 shows. De la Vallée Poussin’s
decomposition is simply a more delicate one than Lebesgue’s when it applies.

Observe that many of the theorems related to the fundamental theorem of calculus are spe-
cial cases of (23) and (24).

Exercises

8:5.1 Define a Vitali cover in the setting of this section. Then state and prove a Vitali covering theorem
for net structures.

8:5.2 Show that Lemma 8.20 does not hold for the basis of cubes in IRn. [Hint: Use Example 8.1 and
take ν(E) = −λ(E ∩ L).]

8:5.3 Show that there is no loss of generality in the proof of Lemma 8.20, part (i) by taking q = 0 .
[Hint: Consider ν − qλ.]
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8:5.4 Prove that if F is continuous and of bounded variation on [a, b] and N is the set on which F ′ does
not exist, finite or infinite, then λ(F (N)) = 0.

8:5.5 Refer to Example 8.1. Study the behavior of DJ ν on L with particular focus on Lemma 8.20,
part (ii).

8.6 Radon–Nikodym Derivative in a Measure Space

In Sections 7.1 to 7.5 we developed enough differentiation theory to understand the inverse re-
lationship that exists between the operations of differentiation and integration on IR. Because
of the intimate connection between functions of bounded variation and Lebesgue–Stieltjes mea-
sures, we were able to interpret many of the results that we obtained for functions in terms of
measures. Then, in Sections 8.2 to 8.5, we tried to extend the results to Lebesgue–Stieltjes mea-
sures on IRn. We found that the extent to which the material in Sections 7.1 to 7.5 generalized
depended on the differentiation basis (J ,=⇒) under consideration. When this basis has the Vi-
tali property, the Radon–Nikodym derivative can be expressed as a familiar pointwise limit of
the form

lim
I=⇒x

ν(I)

λ(I)
a.e.

Suppose now that (X,M, µ) is a σ-finite, complete measure space. The Radon–Nikodym
theorem guarantees that if ν ≪ µ then there exists f ∈ L1 such that

ν(E) =

∫

E
f dµ for each E ∈ M.
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We shall obtain a differentiation basis (J ,=⇒) such that

lim
I=⇒x

ν(I)

µ(I)
= f(x) a.e. (25)

This will provide a sense of how the Radon–Nikodym derivative f behaves like a “genuine”
derivative a.e.

In the setting of IRn, a number of bases (J ,=⇒) come to mind naturally. The family J can
be chosen in many ways, and we were able to obtain a notion of contraction using diameters of
the members of J . In the abstract setting, we have no metric to aid us in obtaining a notion of
contraction, nor do we have a natural class of subsets, such as the cubes or the intervals, to use
for the differentiation basis.

Some considerations will lead us to the right idea of contraction. If the ratio ν(I)/µ(I) is to
approximate f(x), then I must in some sense be close to x. Thus writing I =⇒ x if x ∈ I ∈ J
and µ(I) → 0 is not likely to provide satisfying results. If, for example, we had chosen this
notion of contraction for J , the collection of intervals in IR2, we would not have been able to
obtain (25) even for bounded measurable functions. The reason is clear: µ(I) can be small, but
if I is a sufficiently thin interval, then much of I can sample values f(y) for y far from x.

We can obtain a sense of “nearness” of I ∈ J to x as follows. We take J to be a family of
sets of positive measure. For each x ∈ X, we let Jx = {I ∈ J : x ∈ I}. We require that Jx be
directed by downward inclusion. This means that there exists an index set A for Jx such that
Jx = {Iα : α ∈ A}, and for each pair α, β ∈ A, there exists γ ∈ A for which Iγ ⊂ Iα ∩ Iβ . For
example, in IR2 we could take Jx to consist of all open intervals containing x and index I ∈ Jx
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by its lower-left and upper-right corners. We then write

lim
I=⇒x

ν(I)

µ(I)
= ℓ,

provided that for each ε > 0 there exists α ∈ A such that∣∣∣∣
ν(I)

µ(I)
− ℓ

∣∣∣∣ < ε

if I ∈ Jx and I ⊂ Iα. Taking J to be the open intervals in IR2, we find that this notion of
contraction agrees with the notions that we considered in Section 8.4. (It does not agree with
the notion of contraction relative to closed intervals, however.)

It remains to determine which family we should select for J . As a first attempt, we might
try the family of all sets of positive measure. We see an immediate difficulty: the families Jx

are not directed by downward inclusion, since two sets of positive measure containing x can in-
tersect in a set of zero measure. A clue for proceeding can be obtained from the Lebesgue den-
sity theorem (Theorem 7.35).

Example 8.22: Consider the space (X,M, µ) = ([0, 1],L, λ). For A,B ⊂ X, write

A△B = (A \B) ∪ (B \A).

For each A ∈ M, let L(A) be the set of all density points of A. Then for A,B ∈ M:

1. µ(L(A)△A) = 0.

2. If µ(A△B) = 0, then L(A) = L(B).

3. L(∅) = ∅ and L(X) = X.
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4. L(A ∩B) = L(A) ∩ L(B).

5. If A ⊂ B, then L(A) ⊂ L(B).

We leave verification of these facts as Exercise 8:6.1.

It is easy to verify that the nonempty members of

{I ∈ M : There exists A ∈ M such that I = L(A)}
can serve as a differentiation basis under our present notion of contraction. If Iα ∈ Jx and Iβ ∈
Jx, then Iγ = Iα ∩ Iβ ∈ Jx.

Now, in a general σ-finite measure space, we do not have a Lebesgue density theorem. In
fact, in order to have such a theorem, we first need a differentiation basis (J ,=⇒) and then
need to determine whether the basis has the Lebesgue density property. (Recall that the rect-
angle basis in IR2 does not have this property.)

8.6.1 Liftings

In 1931, J. von Neumann proved a theorem that can serve as a suitable substitute for the den-
sity property. He showed that in every complete finite measure space (X,M, µ) there is a map-
ping L : M → M that satisfies conditions (1) to (5) of Example 8.22. We call L a lifting, and
we call

{I ∈ M : There exists A ∈ M such that I = L(A)}
the family of lifted sets. Let J denote the nonempty members of this family. In 1968, D. Kölzow4

showed that von Neumann’s theorem is valid in any complete measure space for which the Radon–

4 D. Kölzow, Differentiation von Massen, Lecture Notes in Mathematics, vol. 65, Springer, Berlin (1968).
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Nikodym theorem holds. In particular, von Neumann’s theorem holds in a complete σ-finite
space.

The term lifting derives from the following interpretation. The relation µ(A△B) = 0 par-
titions M into equivalence classes. The mapping L : M → M lifts one member from each
equivalence class. Observe that, for each M ∈ M, L(L(M)) = L(M).

We shall make frequent use of the following:

8.23: If A and B are measurable and µ(A ∩B) = 0, then

L(A) ∩ L(B) = ∅.

To verify (8.23), note that

∅ = L(∅) = L(A ∩B) = L(A) ∩ L(B)

by conditions (iii) and (iv).
We can now begin our formal development. For the rest of this section we shall make the

following five assumptions about the measure space.

(a) (X,M, µ) is a complete σ-finite measure space.

(b) L : M → M is a lifting on M.

(c) J consists of all nonempty lifted sets.

(d) For each x ∈ X, Jx = {I ∈ J : x ∈ I}.

(e) {Jx} is directed by downward inclusion.
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Definition 8.24: Let V ⊂ J , and let E ∈ M. If for all x ∈ E and J ∈ Jx, there exists I ∈
Jx ∩ V such that I ⊂ J , we say that V is a Vitali cover for E.

Theorem 8.25 (Vitali covering property) Suppose that V is a Vitali cover for E ∈ M.
Then there exists a sequence {Ik} from V such that

1. Ii ∩ Ij = ∅ if i 6= j,

2. µ (E \⋃k Ik) = 0, and

3. µ (
⋃

k Ik \ E) = 0.

Observe that condition (iii) indicates that the sequence {Ik} has “zero overflow.” In our ear-
lier settings, we were able to achieve “ε-overflow” by enclosing E in an appropriate open set
G. Here we do not have open sets to use, but (iii) more than overcomes this deficiency. In the
proof of Theorem 8.25, we make use of Zorn’s lemma (a statement of which can be found in
Section 1.11).

Proof. Let V be a Vitali cover for E ∈ M. Suppose that µ(E) > 0; otherwise, the empty
subfamily of V does the job. Let B = L(E), and let

V∗ = {I ∈ V : I ⊂ B} .
We first verify that V∗ 6= ∅. Let x ∈ E ∩ B. Then B ∈ Jx. Since V is a Vitali cover for E, there
exists I ∈ V such that I ⊂ B. Thus I ∈ V∗ and V∗ is nonempty.

A subfamily V1 of V∗ is called admissible if each pair of its members is disjoint. Partially
order the admissible subfamilies of V∗ by upward inclusion: V1 is beyond V2 if V1 ⊃ V2. Since
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(X,M, µ) is σ-finite, each admissible family is at most countably infinite. Now each chain of
admissible families has an upper bound (its union), which is also an admissible family.

By Zorn’s lemma, there exists a maximal admissible family. Denote its members by I1, I2, . . . .
We show that the family {Ik} has the desired properties. That the members of {Ik} are pair-
wise disjoint is clear.

We next show that µ (B \⋃k Ik) = 0. Since
⋃

k Ik is a finite or countably infinite union of
measurable sets,

⋃
k Ik is also measurable. Suppose that µ (B \⋃k Ik) > 0. Let

M = L

(
B \

⋃

k

Ik

)
.

Then µ(M) > 0 and, by (8.23), M ∩ Ik = ∅ for every k. Let y ∈M ∩ E. Then M ∈ Jy, and

M = L(M) ⊂ B.

Since V is a Vitali cover for E, there exists I0 ∈ V such that I0 ∈ Jy and

I0 ⊂ L(M) ⊂ B.

The family I0, I1, I2, . . . is thus an admissible family, contradicting our assumption that the
family I1, I2, . . . is a maximal admissible family. Thus

µ

(
B \

⋃

k

Ik

)
= 0.

Since B = L(E), we conclude that

µ

(
E \

⋃

k

Ik

)
= 0,

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 8.6. Radon–Nikodym Derivative in a Measure Space 569

establishing (ii). Finally, to verify (iii), we need only observe that
⋃

k Ik ⊂ B and that µ(B△E) =
0. �

8.6.2 Growth lemmas

We can now obtain growth lemmas analogous to Lemmas 7.1 and 7.5. The reader will notice
two differences. We restrict our attention to absolutely continuous measures, and the definitions
of upper and lower derivatives appear more complicated. Exercises 8:6.2, 8:6.3, and 8:6.4 offer
some explanations for these differences.

Definition 8.26: Let x ∈ X, and let ν be a signed measure on M with ν ≪ µ. We define the
lower derivative Dν(x) as

inf{p ∈ IR : ∀I ∈ Jx ∃J ∈ Jx so that J ⊂ I and ν(J) < pµ(J) }.
Similarly, we define the upper derivative Dν(x) as

sup{q ∈ IR : ∀I ∈ Jx ∃J ∈ Jx so that J ⊂ I and ν(J) > qµ(J)}.
If Dν(x) = Dν(x), we say that ν has a derivative at x and write Dν(x) for the common

value of Dν(x) and Dν(x). When Dν(x) is finite, we say that ν is differentiable at x.

It is easy to verify (Exercise 8:6.5) that Dν(x) = s ∈ IR if and only if for every ε > 0 there
exists I ∈ Jx such that ∣∣∣∣

ν(J)

µ(J)
− s

∣∣∣∣ < ε

for each J ∈ Jx such that J ⊂ I.
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Lemma 8.27: Let E ∈ M, and let ν be a measure on M with ν ≪ µ.

1. If for each x ∈ E, Dν(x) < p, then ν(E) ≤ pµ(E).

2. If for each x ∈ E, Dν(x) > q, then ν(E) ≥ qµ(E).

Proof. Assume that µ(E) > 0; otherwise, there is nothing to prove in either assertion. Let

V =

{
I ∈ J :

ν(I)

µ(I)
< p

}
.

Then V is a Vitali cover for E. By Theorem 8.25, there exists a pairwise disjoint sequence {Ik}
from V such that

µ

(
E \

⋃

k

Ik

)
= µ

(
⋃

k

Ik \ E
)

= 0.

Since ν ≪ µ, we also have

ν

(
E \

⋃

k

Ik

)
= ν

(
⋃

k

Ik \ E
)

= 0.

Thus

ν(E) =
∑

k

ν(Ik) ≤
∑

k

pµ(Ik) = pµ

(
⋃

k

Ik

)
= pµ(E),

establishing assertion (1). The proof of assertion (ii) is similar. �
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8.6.3 The Radon–Nikodym derivative as a genuine derivative

We can now establish the main result of this section, that the Radon–Nikodym derivative is a
genuine derivative.

Theorem 8.28: Let (X,M, µ) be a complete σ-finite measure space, let L : M → M be a
lifting, and let J denote the family of nonempty lifted sets. Let ν be a signed measure on M
with ν ≪ µ, and let Dν be as in Definition 8.26. Then

ν(E) =

∫

E
Dν dµ (26)

for every E ∈ M.

Proof. We may assume that ν is a measure and that µ(X) < ∞. Since ν ≪ µ, there exists
f ∈ L1 such that ν(E) =

∫
E f dµ for all E ∈ M. For 0 < p < q, let

Epq = {x : f(x) < p < q < Dν(x)}.
By Lemma 8.27 (ii), we have

ν(Epq) ≥ qµ(Epq) ≥ pµ(Epq) ≥
∫

Epq

f dµ = ν(Epq). (27)

Since the first and last terms in (27) are the same, it follows that all terms in (27) are equal.
But p < q and µ(Epq) <∞. Thus µ(Epq) = 0.

Let A = {x :Dν(x) > f(x)}. Then

A =
⋃

{Epq : p, q ∈ Q},
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so µ(A) = 0. It follows that Dν ≤ f a.e. In a similar way, using Lemma 8.27 (i), we find that
Dν ≥ f a.e. From these two inequalities we obtain Dν = f a.e. The desired equality (26) is
now apparent. �

We end this section by mentioning that there are many other differentiation bases that lead
to satisfactory developments in abstract spaces. The results one finds are similar to those we
obtained in Sections 8.2 to 8.5. If the basis has the Vitali property, the Radon–Nikodym deriva-
tive will be an actual derivative whenever ν ≪ µ. Vitali properties come in various strengths:
the stronger the property, the better the theorem. The density property is actually a weak form
of the Vitali property in which a certain amount of overlap is allowed in the resulting sequence
{Ik}. It is a necessary and sufficient condition for the Radon–Nikodym derivative f to be a gen-
uine derivative when f is bounded and measurable.5

Exercises

8:6.1 Verify (1) to (5) in Example 8.22.

8:6.2 In Sections 8.2 to 8.5, the families J consisted of Borel sets. Thus every Lebesgue–Stieltjes mea-
sure was defined on J , and we could discuss

lim
I=⇒x

ν(I)

µ(I)
.

In the present setting, we cannot make such assumptions in general. Show, however, that if ν ≪ µ
then ν is defined for all I ∈ J .

5We refer the interested reader to C. A. Hayes and C. Y. Pauc, Derivation and Martingales, Ergebnisse der
Mathematik und ihrer Grenzgebiete, vol. 49, Springer, Berlin (1970).
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8:6.3 The definitions of Dν(x) and Dν(x) seem more complicated than the definitions of Dsν(x) and
Dsν(x) in Section 8.4.

(a) Show that if, in Section 8.4, we had chosen J to consist of open intervals then the definitions
of Dsν(x) and Dsν(x) could have been given as in Definition 8.26 while obtaining the same
values.

(b) In the setting of part (a), show that there exists a sequence {Ik} ⊂ Jx such that, if I ∈ Jx,
then there exists k such that Ik ⊂ I.

(c) Refer to Example 8.22. Show that, if {Ik} is any sequence of lifted sets containing x, then
there exists I ∈ Jx such that, for every k, Ik \ I 6= ∅. Thus no sequence has enough members
to get some member inside every member of Jx. [Hint: Remove a bit from each Ik in such a
way that a lifted set remains.]

(d) Explain why we do not define Dν(x) as

sup

(
lim sup

n→∞
ν(In)/µ(In)

)
,

where the sup is taken over all sequences {In} contracting to x [as we defined Dν(x) in Sec-
tion 8.2].

8:6.4 Refer to Example 8.22. Let J denote the lifted sets. Let F be the Cantor function, let β = µF ,
and let K be the Cantor set. Part (a) shows that β is defined on J . We can now define Dβ as we
did for absolutely continuous measures. Part (d) shows that Dβ = 0 at every point (not just that
Dβ = 0 a.e.). This illustrates that a notion of differentiation for measures that are not absolutely
continuous may be of limited use in our present setting.

(a) Show that each I ∈ J is Borel measurable.
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(b) Let x0 be an arbitrary point in K. Construct an open set G ⊂ [0, 1] such that H = G ∪
{x0} ∈ Jx0

. [Hint: Let

Jn =

[
x0 +

1

2n+1
, x0 +

1

2n

]
∪
[
x0 −

1

2n
, x0 −

1

2n+1

]
.

Remove from Jn a finite number of closed intervals whose union contains K ∩ Jn. Do this
for each n ∈ IN. Make the removed intervals so short that the remaining set H has x0 as a
density point.]

(c) Show that if I ∈ Jx0
and I ⊂ H then β(I) = 0.

(d) Prove that Dβ(x) = 0 for all x ∈ K and, hence, that Dβ(x) = 0 for all x ∈ [0, 1].

(e) Show that Lemma 8.27 fails for β.

8:6.5 Verify that Dν(x) = s ∈ IR if and only if for every ε > 0 there exists I ∈ Jx such that, if J ∈ Jx

and J ⊂ I, then |ν(J)/µ(J) − s| < ε.

8:6.6 Let X be an uncountable set, and let

M =
{
E ⊂ X : E countable or Ẽ countable

}
.

Let µ(E) = 0 if E is countable and µ(E) = 1 if Ẽ is countable.

(a) Determine a lifting L for M. That is, indicate for every set M ∈ M what the set L(M)
should be.

(b) Let ν ≪ µ with ν(X) = 1. Calculate Dν.

(c) Let Y = y1, y2, . . . be a countable subset of X. Define a measure β on M by

β({yi}) =
1

2i
and β

(
X \

∞⋃

i=1

{yi}
)

= 0.
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Calculate Dβ. Observe that β ⊥ µ, yet β never takes the values 0 or ∞ on the set Y .

8:6.7 The Vitali covering theorem fails for the family J1 of open intervals in IR2 with the notion of con-
traction of Sections 8.2 and 8.4. If one instead gives contraction the meaning of the present sec-
tion, we find that the two notions of contraction agree for this family J1. By Theorem 8.13, the
family J1 has the Lebesgue density property. Thus the mapping L : M → M defined as in Exam-
ple 8.22 is a lifting. Let J2 be the family of nonempty lifted sets.

By Theorem 8.25, (J2,=⇒) does have the Vitali property if =⇒ has the meaning of this section.
Since, for the family of open intervals, the two notions of contraction agree, this seems to be a con-
tradiction. Explain why there is no contradiction. [Hint: Does J1 contain any Vitali covers when
=⇒ has the meaning of this section?]

8.7 Summary, Comments, and References

The unifying theme of Chapters 7 and 8 has been the study of the inverse relationship that
exists between integration and differentiation. The starting point may have been the Radon–
Nikodym Theorem. See Section 5.8, where we saw that, under suitable hypotheses, if ν ≪ µ,
then there exists f ∈ L1 such that ν =

∫
f dµ. We called the function f the Radon–Nikodym

derivative of ν with respect to µ and wrote

f =
dν

dµ
.

While we were able to show that dν
dµ has some properties reminiscent of derivatives of functions

(Theorem 5.31), it did not really “look” like a derivative as a limit of an appropriate difference
quotient.

In these two chapters we saw that such a realization of dν
dµ is possible, even when dealing
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with abstract measure spaces. We now know it is essentially correct to say that, when the Radon–
Nikodym theorem holds for a measure space (X,M, µ), then dν

dµ can actually be expressed as

dν

dµ
= lim

I=⇒x

ν(I)

µ(I)
a.e.

by choosing an appropriate differentiation basis (J ,=⇒).
Let us review some of the features of this theory.

1. In Sections 7.1 to 7.7 we dealt with differentiation of functions of bounded variation and
interpreted some of the results in terms of Lebesgue–Stieltjes signed measures on IR1. The
main tools were the Vitali covering theorem and several growth lemmas.

2. A principal objective was to determine when a real function F can be recaptured from its
derivative; that is, for F defined on [a, b], when can we write

F (x) − F (a) =

∫ x

a
F ′ dλ for all x ∈ [a, b]? (28)

For F of bounded variation on [a, b], we found F is differentiable a.e., and F ′ ∈ L1; but (28)
need not hold, even for F continuous. What can be lacking is Lusin’s condition (N): the
function F could do some rising and falling on sets of measure zero, as the Cantor func-
tion does.

The Banach-Zarecki theorem showed that this is all that could go wrong. If F is con-
tinuous, of bounded variation, and satisfies condition (N), then F is absolutely continuous
and (28) holds.
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3. For Lebesgue–Stieltjes signed measures, (28) takes the form

µF (E) =

∫

E
F ′ dλ. (29)

Once again, (29) will hold for all Borel sets E if and only if µF ≪ λ. This is equivalent to
F being absolutely continuous (Theorem 5.28).

4. For F continuous and increasing, we obtained formulas that contained many of the other
results as special cases:

F (b) − F (a) =

∫ b

a
F ′ dλ+ λ(F (B∞)) (30)

where B∞ = {x : F ′(x) = ∞}, and

µF (E) =

∫

E
F ′ dλ+ µF (E ∩B∞). (31)

We had already noted in Section 7.2 that λ(B∞) = 0. The proofs of (30) and (31) de-
pended on many earlier results, but now that we have these formulas, we can use them to
clarify a number of matters related to continuous functions F of bounded variation and to
nonatomic Lebesgue–Stieltjes measures µF .

From (30), we see that the growth of F on [a, b] has two components, one related to the
absolutely continuous component of F , the other to the singular component. When F is
absolutely continuous, λ(F (B∞)) = 0, so (28) is valid. When F is singular, F ′ = 0 a.e., so

F (b) − F (a) = λ(F (B∞)).

Thus F does all its rising on the zero measure set on which F ′ = ∞. The formula itself
can remind us of several facts: the a.e. differentiability of F , the integrability of F ′, the
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measurability of F (B∞), the uncountability of B∞ when F is not absolutely continuous,
and others.

From (31), we obtain similar information about µF . It also provides a refinement of the
Lebesgue decomposition because it shows that

dµF

dν
= F ′ a.e.

and that all the mass of the singular component of µF is concentrated on the set B∞ =
{x : F ′(x) = ∞}. One also sees from (31) that µF ⊥ λ if and only if F ′ = 0 a.e.

For signed Lebesgue–Stieltjes measures, the equation (31) generalizes to Theorem 7.23,
a form of de la Vallée Poussin’s theorem.

5. Let us return to (28). It is valid if and only if F is absolutely continuous. We saw that
if F is differentiable then F is continuous and satisfies Lusin’s condition (N). Thus, be-
cause of the Banach-Zarecki theorem, F will be absolutely continuous if and only if F is
of bounded variation. And we saw that happens if and only if F ′ ∈ L1. As a result, we
obtained this form of the fundamental theorem of calculus:

If F is differentiable on [a, b] and F ′ ∈ L1, then

F (b) − F (a) =

∫ b

a
F ′ dλ.

The function F (x) = x2 sinx−2, F (0) = 0, provides an example of a differentiable func-
tion not of bounded variation. We had already mentioned earlier that, in order for this
form of the fundamental theorem of calculus to be valid for every differentiable function
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F , we need a more general form of integration, as, for example, the integral discussed in
Sections 1.21 and 5.10.

6. In Sections 8.2 to 8.6 we discussed ways in which the development of differentiation of
measures can be extended to spaces more general than (IR,L, λ). The basic idea was to
obtain a system J of sets of positive measure and a notion =⇒ of contraction such that,
if ν =

∫
f dµ, then

lim
I=⇒x

ν(I)

µ(I)
= f(x) a.e. (32)

When this happens, the Radon–Nikodym derivative f takes the appearance of a deriva-
tive. We saw that analogs of tools that we used in Sections 7.1 to 7.7 played important
roles in developing the theory. Table 8.7 summarizes some of our findings.

The analog of de la Vallée Poussin’s theorem is not valid in these settings except for the
case of net structures. In each case but the last, contraction had the usual meaning involving
the diameters δ(I) tending to zero. In general, if (J ,=⇒) possesses the Vitali covering prop-
erty, then (32) holds for all f ∈ L1. The Lebesgue density property is necessary and sufficient
for (32) to hold for all bounded functions in L1.

We end this section by mentioning that most of the material in Sections 8.1 to 8.3 is treated,
in some form or other, by many texts on the subject. The material in Sections 8.4 to 8.6 is less
standard. We list some works that deal with various aspects of this material in some detail.
Several have been mentioned already in footnotes in the chapter.

1. Bruckner, A. M., “Differentiation of Integrals,” Amer. Math. Monthly 78 (1971), no. 9, Part II.
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Space Basis (32) holds for: Comments

(IRn,L, λ) Cubes All functions in L1 Vitali valid,

LDT valid

(IRn,L, λ) Intervals All bounded, Vitali fails,

measurable functions LDT valid

(IRn,L, λ) Rectangular Fails even for Vitali fails,

parallelepipeds characteristic functions LDT fails

of closed sets

(IRn,L, λ)

(or any separable Net structure All functions in L1 Vitali valid,

metric space LDT valid

of finite measure)

(X,M, µ) Lifted sets All functions in L1 Vitali valid,

σ-finite, complete LDT valid

Table 8.1. Fundamental theorem of calculus in various spaces.

2. de Guzmán, M., Differentiation of Integrals in IRn, Lecture Notes in Mathematics, vol. 481, Springer,
Berlin (1975).

3. Hayes, C. A., and Pauc, C. Y., Derivation and Martingales, Ergebnisse der Mathematik und ihrer
Grenzgebiete, vol. 49, Springer, Berlin (1970).

4. Kölzow, D., Differentiation von Massen, Lecture Notes in Mathematics, vol. 65, Springer, Berlin
(1968).

5. Munroe, M. E., Introduction to Measure and Integration, Addison-Wesley, Reading, MA (1953).
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6. Saks, S., Theory of the Integral, second revised ed., Monographie Matematyczne, vol. 7, Hafner,
New York (1937).

8.8 Additional Problems for Chapter 8

8:8.1 List the various growth lemmas or theorems of Chapter 7 that were based on the Vitali covering
theorem. Which were needed for various forms of the fundamental theorem of calculus? Recon-
sider Example 8.1, noting how the differentiation schemes we studied in Sections 8.2 to 8.6 relate
to differentiation on the set L. Which of the relevant growth lemmas will detect that ν(L) > 0?

8:8.2 Let J be an arbitrary family of measurable sets in IRn of positive Lebesgue measure, and let =⇒
have the usual meaning. Suppose that J has the Lebesgue density property: that is, if A ∈ L,
then

lim
I=⇒x

λ(A ∩ I)

λ(I)
= 1 a.e. on A.

Prove that if f is a bounded measurable function and ν =
∫
f dλ then

lim
I=⇒x

ν(I)

λ(I)
= f a.e.

Thus, for any differentiation basis possessing the Lebesgue density property, half of the fundamen-
tal theorem of calculus is valid, at least for bounded measurable functions f : the derivative (rela-
tive to J ) of the integral of f equals f a.e.

8:8.3 A family J of bounded closed sets in IRn is said to have the Morse halo property if the “halo”

H(I) =
⋃

{J ∈ J : I ∩ J 6= ∅, δ(J) ≤ 2δ(I)}
satisfies the inequality λ∗(H(I)) ≤ Mλ(I) for some M > 0. Let J be a family of closed sets in
IRn, and let =⇒ have the usual meaning. A. Morse showed in 1947 that if J has the Morse halo
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property then J also has the Vitali property. Show that the family of intervals in IRn does not
have the Morse halo property, but the family of cubes in IRn does.

8:8.4 Let (X,M, µ) be a measure space and assume µ(X) < ∞. Let L be a lifting on M (as defined in
Section 8.6).

(a) Show that the statement L(A ∪ B) = L(A) ∪ L(B) is not necessarily true. [Hint: Use Exam-
ple 8.22 and take A = (0, 1), B = (1, 2).]

(b) Let T = {A ∈ M : A ⊂ L(A)}. Show T is closed under arbitrary (not necessarily countable)
unions. In particular, an arbitrary union of members of T is measurable. What does this say
when applied to Example 8.22?

(c) Show that T is a topology on X. (See ahead to Definition 9.69.)

In the setting of Example 8.22, T is called the density topology; see also Exercise 7:8.11. We men-
tion that if

T 1 = {L(A) \ Z : A ∈ M, µ(Z) = 0}
then T 1 is also a topology on X. This topology6 has interesting properties: the nowhere dense sets
are exactly the zero measure sets and the measurable sets are exactly those with the property of
Baire (defined in Exercise 11:10.5). The definitions of nowhere dense and Baire property are the
same in topological spaces as in metric spaces.

6 A development of this topology can be found in J. C. Oxtoby, Measure and Category, 2nd edition, Springer
(1980), Chapter 22.
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Chapter 9

METRIC SPACES

We have encountered a number of ways in which a notion of convergence plays a fundamen-
tal role. A sequence {xn} of numbers can converge to a number x, and a sequence of functions
{fn} can converge in several different senses to a function f . There are, however, many other
situations in which various sorts of sequences can converge.

In this chapter we study general notions of convergence in the setting of a metric space. We
have used, in earlier chapters, some of the more rudimentary ideas in metric space theory. In
this chapter and the next we present a self-contained account of the basic theory and its appli-
cations. In the first three sections, we present a development of the elementary concepts related
to metric spaces and provide some examples that illustrate the scope of the concepts. The most
important of metric space concepts—separability, completeness, and compactness—are inves-
tigated then. We obtain a few significant theorems for spaces possessing these properties and
provide applications to several areas of mathematics.

The Baire category theorem and its applications are the subjects of the Chapter 10. The
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special topics of Banach spaces and Hilbert spaces can be found in Chapters 12 and 14.

9.1 Definitions and Examples

We begin by recalling the definition of a metric space.

Definition 9.1: Let X be a set and let ρ : X × X → IR. If ρ satisfies the following conditions,
then we say that ρ is a metric on X and call the pair (X, ρ) a metric space.

1. ρ(x, y) ≥ 0 for all x, y ∈ X.

2. ρ(x, y) = 0 if and only if x = y.

3. ρ(x, y) = ρ(y, x) for all x, y ∈ X.

4. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X (triangle inequality).

In some situations the metric ρ is understood from the context or does not appear explicitly
in the discussion. In that case we sometimes write X for the metric space, suppressing ρ from
the notation. For example, when we talk about the metric space (IR, ρ), we shall often write IR,
omitting mention of the metric ρ. This is not to suggest that IR cannot be equipped with other
interesting metrics, just that the majority of studies of IR are done with this metric and that it
can be taken for granted.

If (X, ρ) is a metric space and Y ⊂ X, then the restriction of ρ to Y × Y induces a metric
on Y . We shall designate this metric by ρ, as well, and call (Y, ρ) a subspace of (X, ρ) or Y a
subspace of X. For example, the interval [a, b] is a subspace of IR.
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Observe that X can be any nonempty set equipped with a metric; sets of numbers, vectors,
sequences, functions, or sets can have interesting and important metrics. In the remainder of
this section, we provide a few examples that will reappear in later sections. For these examples
we will use notation that is in common usage. The verification that the supplied metric ρ has
all the properties required of a metric is left, in most cases, to the exercises.

9.1.1 Euclidean Space

The space IRn of all n-tuples of real numbers is the basic example that should be used to orient
ourselves. In this space we use the metric

ρ2(x, y) =

(
n∑

i=1

|xi − yi|2
)1/2

.

To verify that this is a metric requires some classical elementary inequalities, in particular, the
familiar Cauchy–Schwarz inequality,

n∑

i=1

|aibi| ≤
(

n∑

i=1

|ai|2
)1/2( n∑

i=1

|bi|2
)1/2

. (1)

In this space, there is a wealth of geometric and linear structure as well that is not available
in a general metric space. In an abstract metric space, spheres are not “round,” there are no
lines and planes and no orthogonal directions. Many of the examples we shall now give do have
natural algebraic structures: they are linear spaces. We shall exploit this algebraic structure in
Chapters 12 and 14; here we consider only the metric structure and ignore any other features
that might be present.
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9.1.2 The Discrete Space

Let X be any nonempty set with the metric ρ(x, y) = 1 for all x, y ∈ X, with x 6= y. To ver-
ify that this function, called the discrete metric, satisfies Definition 9.1 is entirely trivial. It is
useful to test one’s intuition for general metric space principles by considering all concepts and
theorems as they apply to this extreme example.

9.1.3 The Minkowski Metrics

On the set IRn, a variety of natural metrics were introduced by Hermann Minkowski (1864–
1909) in a study having applications in number theory. These metrics will also help to motivate
a number of later considerations.

For any points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in IRn and for any 1 ≤ p <∞, we
define a distance

ρp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

,

and for p = ∞,

ρ∞(x, y) = max
1≤i≤n

|xi − yi|.

The case p = 2 is the usual Euclidean metric. For the cases p = 1 and p = ∞, it is easy to check
that ρ1(x, y) and ρ∞(x, y) are metrics. It is much less immediate that for other values of p we
do indeed have a genuine metric.

The triangle inequality is the real challenge. To show that

ρp(x, y) ≤ ρp(x, z) + ρp(z, y)
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for 1 < p <∞, write a = x− y and b = y − z. Then the triangle inequality assumes the form

(
n∑

i=1

|ai + bi|p
)1/p

≤
(

n∑

i=1

|ai|p
)1/p

+

(
n∑

i=1

|bi|p
)1/p

(2)

and is known as Minkowski’s inequality. A proof is most easily obtained from a related inequal-
ity of Otto Hölder (1860–1937):

n∑

i=1

|aibi| ≤
(

n∑

i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

(3)

where p > 1, q > 1, and p−1 + q−1 = 1. (Note that for p = q = 2 this inequality reduces to that
of Cauchy–Schwarz.)

To prove (3), observe that, should it hold for a, b ∈ IRn, then it holds for any linear combi-
nation αa + βb. Thus we can reduce our proof to the case where

∑n
i=1 |ai|p =

∑n
i=1 |bi|q = 1;

that is, we show that
∑n

i=1 |aibi| ≤ 1.
Consider the curves u = tp−1 and the inverse t = uq−1, and compute

∫ α

0
tp−1 dt = p−1αp and

∫ β

0
uq−1 du = q−1βq.

By considering the areas under the curves that these integrals measure, we find that

αβ ≤ p−1αp + q−1βq. (4)

(Exercise 9:1.1 shows how to obtain this more analytically.) Apply (4) with α = |ai| and β =
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|bi| to get

n∑

i=1

|aibi| ≤
n∑

i=1

(
p−1|ai|p + q−1|bi|q

)

= p−1
n∑

i=1

|ai|p + q−1
n∑

i=1

|bi|q = p−1 + q−1 = 1,

and we have proved (3).
Now (2) follows from some elementary manipulations. Note first that

n∑

i=1

(|ai| + |bi|)p =

n∑

i=1

|ai| (|ai| + |bi|)p−1 +

n∑

i=1

|bi| (|ai| + |bi|)p−1 .

The first sum on the right of this equality can be estimated by using Hölder’s inequality with p,
q as before, so that (p− 1)q = p to obtain

n∑

i=1

|ai| (|ai| + |bi|)p−1

≤
(

n∑

i=1

(|ai| + |bi|)p

)1/q ( n∑

i=1

|ai|p
)1/p

.
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The second sum in the equality has a similar estimate, and so
n∑

i=1

(|ai| + |bi|)p

≤
(

n∑

i=1

(|ai| + |bi|)p

)1/q


(

n∑

i=1

|ai|p
)1/p

+

(
n∑

i=1

|bi|p
)1/p


 .

Finally, dividing both sides of this inequality by the first expression on the right gives
(

n∑

i=1

(|ai| + |bi|)p

)1/p

≤
(

n∑

i=1

|ai|p
)1/p

+

(
n∑

i=1

|bi|p
)1/p

,

from which (2) immediately follows. (If we have divided by zero, then the inequality holds triv-
ially.)

9.1.4 Sequence Spaces

All our examples in this next collection are metric spaces formed of sequences of real numbers.

Example 9.2: We write s for the set of all sequences of real numbers equipped with the metric

ρ(x, y) =
∞∑

i=1

|xi − yi|
2i(1 + |xi − yi|)

.

Example 9.3: (Baire space) By ININ we denote the space of all sequences

n = (n1, n2, n3, . . . )
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of natural numbers. The metric on this space is defined as

ρ(m,n) =
∞∑

i=1

|mi − ni|
2i (1 + |mi − ni|)

.

This is a subspace of s of the preceding example and will be studied extensively in Chapter 11.

Example 9.4: (Cantor space) We denote by 2IN the set of all sequences of 0’s and 1’s equipped
with the metric

ρ(x, y) =
∞∑

i=1

|xi − yi|
2i

.

This space is closely related to the Cantor ternary set, hence its name.

Example 9.5: By ℓp (1 ≤ p < ∞), we denote the set of all sequences x = (x1, x2, x3 . . . ) of real
numbers such that

∑∞
i=1 |xi|p <∞ and we write

‖x‖p =

(
∞∑

i=1

|xi|p
)1/p

.

The metric that we furnish on ℓp is defined by ρ(x, y) = ‖x− y‖p. Checking that this is indeed a
metric requires the following version of Minkowski’s inequality, which follows directly from (2):

(
∞∑

i=1

|ai + bi|p
)1/p

≤
(

∞∑

i=1

|ai|p
)1/p

+

(
∞∑

i=1

|bi|p
)1/p

. (5)

[The ℓp spaces (1 ≤ p < ∞) are particular cases of the general Lp spaces studied in Chapter 13.
The space ℓ2 is a concrete realization of a Hilbert space as studied in Chapter 14.]
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Example 9.6: We denote by ℓ∞ the set of all bounded sequences of real numbers. The nota-
tion is chosen to indicate that this space is a natural extension of the ℓp spaces (1 ≤ p < ∞).
For x, y ∈ ℓ∞, x = {xi}, y = {yi}, define the metric

ρ(x, y) = sup
i

|xi − yi|.

It is easy to check that this is a metric. We verify only the triangle inequality. Let x, y, z ∈ ℓ∞.
For each i ∈ IN,

|xi − zi| ≤ |xi − yi| + |yi − zi|
≤ sup

i
|xi − yi| + sup

i
|yi − zi| = ρ(x, y) + ρ(y, z).

These inequalities are valid for all i ∈ IN, so

ρ(x, z) = sup
i

|xi − zi| ≤ ρ(x, y) + ρ(y, z).

Important subspaces of ℓ∞ are c, the space of convergent sequences, and c0, the space of se-
quences converging to zero.

9.1.5 Function Spaces

All our examples in this collection are metric spaces formed of real-valued functions.

Example 9.7: We denote by M [a, b] the set of all bounded real-valued functions on the closed
interval [a, b]. For f, g ∈M , define ρ by

ρ(f, g) = sup
a≤t≤b

|f(t) − g(t)|.
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This is often called the sup metric or uniform metric, since convergence in this metric is exactly
uniform convergence. To verify that this is a metric is easy enough. The triangle inequality in
the space follows quickly from the triangle inequality for real numbers.

Some important subspaces of M [a, b] that we have encountered in earlier chapters are

1. C[a, b], the space of continuous functions,

2. △[a, b], the space of differentiable functions,

3. P[a, b], the space of polynomials, and

4. R[a, b], the space of Riemann integrable functions.

The bounded members of various other families of functions also form subspaces of M [a, b].

Example 9.8: Let (X,M, µ) be a measure space. Let f, g ∈ L1. A natural candidate for a
metric ρ on L1 is given by

ρ(f, g) =

∫

X
|f − g| dµ.

One sees immediately that, with this definition, ρ(f, g) = 0 if and only if f = g a.e., so condi-
tion 2 of Definition 9.1 fails. All the other properties of a metric do hold.

We can address this single deficiency by identifying equivalent functions. If f = g a.e., we
consider f and g to be the same element of the space. To avoid additional notation, we shall
still use the designation L1 for the resulting space. Properly speaking, now L1 does not consist
of functions, but equivalence classes of functions defined by the relation f ∼ g if f = g a.e.
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In a more formal treatment, we would be obliged now to show that the metric ρ(f, g) remains
unchanged if f and g are replaced by any other equivalent functions.

This is a common feature in the study of metric spaces of functions that arise in integration
theory. Functions that are identical almost everywhere must be considered to be the “same”
function in order for the metric space definitions to work. While this does not often cause any
difficulties, one must be cautious on occasion. Suppose that a function f ∈ L1 has been given
and x is a point in X. What is f(x)? The answer is that we do not know! For most applica-
tions, however, we do not need specific values: we need integrated or averaged values.

Example 9.9: Let S denote the measurable, finite a.e. functions on [0,1], and let

ρ(f, g) =

∫ 1

0

|f − g|
1 + |f − g| dλ.

Again, as in Example 9.8, we shall identify members of S that agree almost everywhere.
To verify that this is a metric on S is easy except for the triangle inequality. To prove this,

note first that the function t/(1 + t) is an increasing function. Thus, if h(t) is between f(t) and
g(t), then

|f(t) − h(t)|
1 + |f(t) − h(t)| ≤

|f(t) − g(t)|
1 + |f(t) − g(t)| .

If h(t) is not between f(t) and g(t), then either

|f(t) − h(t)| ≤ |g(t) − h(t)|
or

|f(t) − h(t)| = |f(t) − g(t)| + |g(t) − h(t)|.
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The first possibility leads to the inequality

|f(t) − h(t)|
1 + |f(t) − h(t)| ≤

|g(t) − h(t)|
1 + |g(t) − h(t)| .

The second implies that

|f(t) − h(t)|
1 + |f(t) − h(t)| ≤

|f(t) − g(t)|
1 + |f(t) − g(t)| +

|g(t) − h(t)|
1 + |g(t) − h(t)| . (6)

Thus, in all cases, (6) holds for all t ∈ [0, 1]. The triangle inequality now follows by integrating
both sides of (6).

Example 9.10: Denote by BV[a, b], the set of functions of bounded variation on [a, b]. Define
ρ by

ρ(f, g) = |f(a) − g(a)| + V (f − g; [a, b]).

(The variation of a function has been defined in Section 1.14.) To verify that this is a metric,
one needs to know basic properties of the variation. Note that, if the first part of the definition
had been omitted and the metric taken as ρ(f, g) = V (f − g; [a, b]), we could have ρ(f, g) = 0,
and yet f and g may not coincide.

A special subspace of this space will be used in Section 12.8. By NBV[a, b] we denote the
space of those functions f of bounded variation on [a, b] that are right continuous on (a, b) and
that satisfy f(a) = 0. The metric is that inherited as a subspace and so is evidently given by
ρ(f, g) = V (f − g; [a, b]). The “N” in the name is meant to indicate that the functions have
been “normalized” by selecting a right continuous member that vanishes at the left end of the
interval.
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Example 9.11: Let C′[a, b] denote the set of continuously differentiable functions on [a, b]. De-
fine ρ by

ρ(f, g) = max
a≤t≤b

|f(t) − g(t)| + max
a≤t≤b

|f ′(t) − g′(t)|.

To verify that this is a metric is similar to checking that the sup metric has the correct proper-
ties in M [a, b].

9.1.6 Spaces of Sets

Both of the examples in this collection are metric spaces whose elements are sets.

Example 9.12: Let (X,M, µ) be a measure space with µ(X) <∞. We seek a metric on M
that measures the size of the set on which two sets differ. If, for A,B ∈ M, we define

ρ(A,B) = µ(A△B),

we find that ρ(A,B) = 0 if and only if A and B agree except on a set of measure zero. In order
to have ρ be a metric, we must identify A and B if µ(A△B) = 0. We can do this, for example,
by restricting our attention to lifted sets. (See Example 8.22.) We have more flexibility, how-
ever, by restricting our attention to the equivalence classes; that is, by identifying A and B if
µ(A△B) = 0.

Example 9.13: Let K denote the family of nonempty closed subsets of [0, 1] × [0, 1]. We would
like to capture the idea that the distance between two sets A and B in K is smaller than δ if
every point of A is within δ of some point of B, and vice versa.

For A ∈ K and δ > 0, let Aδ denote the union of all closed disks of radius δ centered at
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points of A. Define ρ by

ρ(A,B) = inf {δ > 0 : A ⊂ Bδ and B ⊂ Aδ} .
Using the notation of Section 3.2, we also find that

ρ(A,B) = max

(
max
x∈A

dist(x,B),max
y∈B

dist(y,A)

)
. (7)

In short, ρ(A,B) measures the greatest distance that a point in A can be from the set B or a
point in B from the set A.

To verify the triangle inequality, let A,B,C ∈ K, let r = ρ(A,B), and let s = ρ(B,C).
Then Ar+s = (Ar)s ⊃ Bs ⊃ C and also Cr+s = (Cs)r ⊃ Br ⊃ A. Thus ρ(A,C) ≤ r + s =
ρ(A,B) + ρ(B,C).

This metric ρ is called the Hausdorff metric on the space of closed subsets of [0, 1] × [0, 1].

Exercises

9:1.1♦ Give an analytic proof for the inequality (4) as follows: Let p > 1 and

f(t) = t1/p − t/p+ 1/p− 1 (t ≥ 0).

Since f(1) = f ′(1) = 0 and f ′ is positive on (0, 1) and negative on (1,∞), it follows that f(t) ≤ 0
for all t ≥ 0. In particular, f(αpβ−q) ≤ 0, and this leads to (4).

9:1.2 Verify that all the examples in this section are actually metric spaces. (In some cases the triangle
inequality, usually the hardest part to check, has been proved.)

9:1.3 Verify that in Example 9.13 the alternative expression (7) for ρ is valid.

9:1.4 Describe, informally, what it means for two functions in M [a, b] to be “close” to one another. Do
the same for Example 9.8.
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9:1.5 Let g be a function defined on [0,∞) such that g(0) = 0 and g is strictly increasing and satisfies
g(x+ y) ≤ g(x) + g(y) for all x, y ≥ 0.

(a) Prove that if ρ is a metric for a set X then σ = g ◦ ρ is also a metric for X.

(b) Use (a) to verify that if ρ is a metric on X then so is σ = ρ(1 + ρ)−1 and that σ(x, y) < 1 for
all x, y ∈ X.

9.2 Convergence and Related Notions

Let (X, ρ) be a metric space. A sequence {xn} of members of X converges to x ∈ X if limn→∞ ρ(xn, x
0. When {xn} converges to x, we write

lim
n→∞

xn = x or xn → x.

For each of our examples in the previous section, it is an important exercise to determine
what convergence of a sequence means relative to the stated metric. For example, applying this
definition of convergence to the space M [a, b] or its subspaces, we find that fn → f if and only
if {fn} converges uniformly to f . In Example 9.8, convergence is our familiar notion of mean
convergence. In Example 9.9, convergence is convergence in measure (see Exercise 5:4.6).

9.2.1 Metric space terminology

A number of familiar concepts from IRn carry over to arbitrary metric spaces (X, ρ).

• For x0 ∈ X and r > 0, the set

B(x0, r) = {x ∈ X : ρ(x0, x) < r}
is called the open ball with center x0 and radius r.
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• The set

B[x0, r] = {x ∈ X : ρ(x0, x) ≤ r}
is called the closed ball with center x0 and radius r.

• A set G ⊂ X is called open if for each x0 ∈ G there exists r > 0 such that B(x0, r) ⊂ G.

• A set F is called closed if its complement F̃ is open.

• A set E is bounded if sup{ρ(x, y) : x, y ∈ E} is finite.1

• A neighborhood of x0 is any open set G containing x0.

• If G = B(x0, ε), we call G the ε-neighborhood of x0.

• The point x0 is called an interior point of a set A if x0 has a neighborhood contained in
A.

• The interior of A consists of all interior points of A and is denoted by Ao or, occasionally,
int(A).

• A point x0 ∈ X is a limit point or point of accumulation of a set A if every neighborhood
of x0 contains points of A distinct from x0.

1This is the definition of boundedness appropriate to metric space theory. In the setting of a metric linear
space, a different (not equivalent) definition is used.
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• The closure A of a set A consists of all points that are either in A or limit points of A.
[It is the smallest closed set containing A. That there exists such a set follows from Exer-
cise 9:2.5 (c). One verifies easily that x0 ∈ A if and only if there exists a sequence {xn} of
points in A such that xn → x.]

• A boundary point of A is a point x0 such that every neighborhood of x0 contains points of
A as well as points of Ã.

• Let A and B be subsets of X. If A ⊃ B or, equivalently, if every open ball centered at a
point of B contains a point of A, we say that A is dense in B. (Note that this does not
require A to be a subset of B.) If A = X, we simply say that A is dense.

• The distance between a point x ∈ X and a nonempty set A ⊂ X is defined as

dist(x,A) = inf{ρ(x, y) : y ∈ A}.
We illustrate some of these concepts with examples.

Example 9.14: Consider the space C[a, b] furnished with its supremum norm. Let f0 ∈ C[a, b],
and let ε > 0. Then B(f0, ε) consists of all continuous functions f that satisfy |f(t) − f0(t)| < ε
for all t ∈ [a, b]. A continuous function f is a boundary point of B(f0, ε) if and only if |f(t) − f0(t)| ≤
for all t ∈ [a, b] and there exists t0 such that |f(t0) − f0(t0)| = ε. Geometrically, f ∈ B(f0, ε) if
and only if the graph of f lies strictly between the graphs of f0 − ε and f0 + ε. Similarly, f is
a boundary point of B(f0, ε) if and only if the graph of f lies between the graphs of f0 − ε and
f0 + ε and there exists t0 such that f(t0) = f0(t0) + ε or f(t0) = f0(t0) − ε.

The subspace △[a, b] of differentiable functions on [a, b] is neither open nor closed in C[a, b].
To see that △ is not open, observe that every neighborhood of f0 ∈ △ contains a polygonal
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function that is not differentiable. Thus △ is not only not open, it has an empty interior. Since
the uniform limit of a sequence of differentiable functions need not be differentiable, △ is not
closed. (See Exercise 9:2.4.)

Example 9.15: Let K be the Cantor set, and let {(an, bn)} be the sequence of complementary
intervals. Let X = K ∪ C, where C consists of the midpoints of the intervals (an, bn). Take
ρ(x, y) = |x − y|. Then K is closed, C is open and C = X. Observe that, for c ∈ C, {c} is both
open and closed. For c = (an + bn)/2 and ε < (bn − an)/2,

B(c, ε) = B[c, ε] = {c}.

Example 9.16: Let K be the family of all closed subsets of the square [0, 1] × [0, 1] equipped
with the Hausdorff metric (see Example 9.13). We shall show that all nonempty members of K
can be approximated by finite subsets of [0, 1] × [0, 1] so that the collection of all finite subsets
forms a set dense in K.

Let ε > 0, and let K be any nonempty closed set in K. The union of all open disks of radius
ε centered at points of K is an open set in IR2. By the Heine-Borel Theorem, there exist points
x1, x2, . . . , xn ∈ K such that

K ⊂ S(x1, ε) ∪ · · · ∪ S(xn, ε),

where S(x, ε) is the open disk of radius ε centered at x. Let E be the finite collection {x1, . . . , xn}.
Note that ρ(E,K) < ε, since Eε ⊃ K and Kε ⊃ K ⊃ E. Thus K has been approximated by a
finite subset of [0, 1] × [0, 1].

Exercises

9:2.1 (a) Prove that if xn → x and xn → y then x = y.
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(b) Prove that xn → x if and only if for every ε > 0 there exists N ∈ IN such that xn ∈ B(x, ε)
for all n ≥ N .

9:2.2 Characterize convergence in Example 9.2 and in Example 9.6.

9:2.3 Show, in a general metric space, that the open ball is open and that the closed ball is closed, but
that (contrary to what one finds in Euclidean space) the closed ball B[x0, ε] is not necessarily the
closure of the open ball B(x0, ε). [Hint: Let X = IN, ρ(x, y) = |x− y|.]

9:2.4 Show that A is closed if and only if A contains all its limit points (i.e., if A = A).

9:2.5 Let (X, ρ) be a metric space.

(a) Prove that X and ∅ are both open and closed.

(b) Prove that a finite union of closed sets is closed and a finite intersection of open sets is open.

(c) Prove that an arbitrary union of open sets is open, and an arbitrary intersection of closed
sets is closed.

9:2.6 Refer to Example 9.7. Prove that C[a, b] and R are closed subspaces of M [a, b], but P and △ are
not closed. Let Pn denote the polynomials of degree ≤ n. Is Pn closed?

9:2.7♦ Refer to Example 9.6. Show that c and c0 are closed subspaces of ℓ∞.

9:2.8 Describe the 1/10 (base ten) neighborhood of a point in 2IN.

9:2.9 Let X be an arbitrary set furnished with the discrete metric. Show that every subset of X is both
open and closed.

9:2.10 Consider the set C of continuous functions on [0, 1] with two different metrics, both of interest:
the sup metric

ρ1(f, g) = sup |f(t) − g(t)|,
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and the L1 metric

ρ2 =

∫

X

|f − g| dλ

from Example 9.8. Let B1 and B2 be the open balls centered at the zero function with respect to
the two metrics ρ1 and ρ2. Is B1 open in (C, ρ2)? Is B2 open in (C, ρ1)?

9:2.11 The space C[a, b] of Example 9.7 is a closed subspace of M [a, b]. Show that the collections of
bounded functions from each of the Baire classes on [a, b] are also closed subspaces of M [a, b]. (See
Exercise 4:6.2.)

9.3 Continuity

Let (X, ρ) and (Y, σ) be metric spaces, and let T : X → Y . We say that T is continuous at
x ∈ X if, for every sequence {xn} converging to x, {T (xn)} converges to T (x). If T is contin-
uous at every x ∈ X, we say T is continuous. One verifies, just as for real functions, that T is
continuous at x if and only if, for every ε > 0, there is a δ > 0 so that σ(T (x), T (y)) < ε,
whenever ρ(x, y) < δ. Also T is continuous at every point in X if and only if, for every open set
G ⊂ Y , the set

T−1(G) = {x ∈ X : T (x) ∈ G}
is open. Proofs of some of the properties of continuous functions are virtually identical to the
corresponding proofs for real functions of a real variable. We leave these as Exercises 9:3.1, 9:3.2,
and 9:3.3.

We present a few examples of continuous functions on some of the metric spaces we men-
tioned in Section 9.1.
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Example 9.17: Let X = Y = C[a, b]. Define T : X → Y by

(T (f))(t) =

∫ t

a
f (s) ds.

To check the continuity of T at f ∈ X, let fn → f in (X, ρ). This means that ρ(fn, f) =
maxt |fn(t) − f(t)| → 0 as n→ ∞. We calculate

ρ(T (fn), T (f)) = max
t

|(T (fn))(t) − (T (f))(t)|

= max
t

∣∣∣∣
∫ t

a
(fn(s) − f(s)) ds

∣∣∣∣

≤ max
t

∫ t

a
|fn(s) − f(s)| ds =

∫ b

a
|fn(s) − f(s)| ds

≤ (b− a) max
t

|fn(t) − f(t)| = (b− a)ρ(fn, f).

Since limn→∞ ρ(fn, f) = 0 by hypothesis, we conclude that

lim
n→∞

ρ(T (fn), T (f)) = 0.

That is, T (fn) → T (f), and T is continuous.

Example 9.18: Let X = C[a, b], Y = IR. Define T : X → Y by

T (f) =

∫ b

a
f(t) dt.

We verify easily that if fn → f in X then T (fn) → T (f) in IR, so T is continuous at f .

Observe that the functions in Examples 9.17 and 9.18 are defined by integrals. Such func-
tions are often continuous. When functions are defined by differentiation, continuity is likely to
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fail, as illustrated by the next example.

Example 9.19: Let X ⊂ M [0, 1] consist of those functions on [0, 1] with bounded deriva-
tives, and let Y ⊂ M [0, 1] consist of the derivatives of functions in X. Define D : X → Y by
D(f) = f ′. In the space M [0, 1], fn → f if and only if fn → f [unif] on [0, 1]. The sequence
{fn} from M [0, 1] defined by fn(t) = n−1tn furnishes an example such that fn → 0 in X, but
for every n ∈ IN, f ′n(1) = 1, and the sequence {D(fn)} = {f ′n} does not converge in Y . (See also
Example 9.11 and Exercise 9:3.6.)

Several other examples of continuous or discontinuous functions can be found in the exer-
cises. Observe that, when X consists of a space of functions, we are using uppercase symbols
such as T or D (rather than f or g). This is a common practice, particularly when X is a lin-
ear space other than IR and the functions involved are linear functions. One often emphasizes
this by calling the function a linear transformation or operator. We shall encounter examples of
integral or differential operators in what follows.

Example 9.20: Let (X, ρ) be a metric space and A a nonempty subset of X. Let

f(x) = dist(x,A) = inf {ρ(x, y) : y ∈ A} .
Then f : X → IR, and f is continuous. To verify this, let ε > 0, and let x, y ∈ X with ρ(x, y) <
ε/2. Choose a ∈ A such that

ρ(x, a) < dist(x,A) + 1
2ε.

Then

dist(y,A) ≤ ρ(y, a) ≤ ρ(y, x) + ρ(x, a)

< 1
2ε+ dist(x,A) + 1

2ε = dist(x,A) + ε.
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Similarly,

dist(x,A) < dist(y,A) + ε.

It follows that |f(y) − f(x)| < ε if ρ(x, y) < ε/2, so f is continuous at x.

One verifies, as in elementary analysis, that the class of real-valued continuous functions on
a metric space is closed under uniform limits and under the standard algebraic operations. This
allows an immediate proof of a result of P. Urysohn, proved in 1925.

9.3.1 Urysohn’s Lemma

Theorem 9.21 (Urysohn) Let X be a metric space, and let A and B be disjoint nonempty
closed subsets of X. Then there exists a continuous function g : X → IR such that g(x) = 0 for
all x ∈ A, g(x) = 1 for all x ∈ B, and 0 < g(x) < 1 for all x ∈ Ã ∩ B̃.

Proof. Let

g(x) =
dist(x,A)

dist(x,A) + dist(x,B)
.

It is clear that g has all the required properties. �

Theorem 9.21 is a special case of the Tietze extension theorem that we mentioned in Sec-
tion 4.5. We needed Tietze’s theorem to prove Lusin’s theorem, but proved it only for X =
[a, b]. We can now prove the version of Tietze’s theorem that we needed for Theorems 4.23
and 4.25.

9.3.2 Proof of Tietze’s theorem

We begin with a lemma.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



606 Metric Spaces Chapter 9

Lemma 9.22: Let X be a metric space, F a closed subset of X and f a real-valued function
defined on F and let M > 0. Suppose that f is continuous on F and |f(x)| ≤ M for all x ∈ F .
Then there exists a continuous function g : X → IR such that

1. |g(x)| ≤ 1
3M for all x ∈ F .

2. |g(x)| < 1
3M for all x ∈ F̃ .

3. |f(x) − g(x)| ≤ 2
3M for all x ∈ F .

Proof. Define the sets

A = {x ∈ F : f(x) ≤ −1
3M} and B = {x ∈ F : f(x) ≥ 1

3M}.
Both A and B are closed (see Exercise 9:3.1). It is clear that A and B are disjoint. If A and B
are nonempty let

g(x) = 1
3M

dist(x,A) − dist(x,B)

dist(x,A) + dist(x,B)
.

One verifies routinely that g has the required properties. If A and/or B is empty, the function g
must be defined differently. See Exercise 9:3.9. �

Theorem 9.23: Let f be a continuous real-valued function defined on a closed subset F of a
metric space X. Then there exists a continuous extension f of f to all of X. If |f(x)| ≤ M for
all x ∈ F , where M > 0, then f can be chosen so that |f(x)| ≤ M for all x ∈ X and |f(x)| < M
for x ∈ F̃ .
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Proof. Suppose first that f is bounded on F and |f(x)| ≤ M for all x ∈ F . We shall use
Lemma 9.22 to obtain a sequence {gn} of continuous functions on X so that

f =
∞∑

n=0

gn

is the desired function. We obtain the sequence {gn} inductively.
Let g0(x) = 0 for all x ∈ X. Suppose for n ≥ 0 that we have continuous functions g0, . . . , gn

defined on X such that ∣∣∣∣∣f(x) −
n∑

i=0

gi(x)

∣∣∣∣∣ ≤
(

2
3

)n
M (8)

for all x ∈ F . Applying Lemma 9.22 to the functions

f −
n∑

i=0

gi

with respect to the constants (2
3)nM , we obtain a continuous function gn+1 defined on X such

that

|gn+1(x)| ≤ 1
3(2

3)nM (x ∈ F ), (9)

|gn+1(x)| < 1
3(2

3)nM (x ∈ F̃ ), (10)

and ∣∣∣∣∣f(x) −
n+1∑

i=0

gi(x)

∣∣∣∣∣ <
(

2
3

)n+1
M (x ∈ F ). (11)
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Because of (9), the series
∑∞

n=0 gn converges uniformly on X to some continuous function f on
X. (See Exercise 9:3.3.) From (8), we infer that f =

∑∞
n=0 gn on F , so f = f on F .

It remains to verify that |f | < M on F̃ . Let x ∈ F̃ . Then

|f(x)| =

∣∣∣∣∣

∞∑

n=0

gn(x)

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

n=0

gn+1(x)

∣∣∣∣∣

≤
∞∑

n=0

|gn+1(x)| < M
∞∑

n=0

1
3(2

3)n = M,

the last inequality following from (10). This completes the proof of the theorem when f is bounded
on F .

We leave the verification of the theorem for unbounded continuous functions on F as Exer-
cise 9:3.7. �

Exercises

9:3.1 Prove that T : X → Y is continuous if and only if T−1(E) is closed (open) for every closed (open)
set E ⊂ Y .

9:3.2 (a) Prove that the class of continuous real-valued functions on a metric space is closed under the
arithmetic operations of addition, subtraction, and multiplication. (How about division?)

(b) State precisely and prove a theorem that asserts under what conditions the composition f ◦ g
of two continuous functions is continuous.

9:3.3 Prove that if {fn} is a sequence of continuous real-valued functions on (X, ρ) and fn → f [unif]
then f is continuous.
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9:3.4 (Refer to Example 9.12.) Define T : M → IR by T (A) = µ(A). Is T continuous?

9:3.5 (Refer to Example 9.4.) For each s = s1s2s3 · · · ∈ 2IN, define T (s) = s2s3s4 . . . . Then T : 2IN →
2IN. Is T continuous?

9:3.6 (Refer to Example 9.11.) Is the mapping D : C′[a, b] → C[a, b], where D(f) = f ′, continuous?

9:3.7 Complete the proof of Tietze’s theorem for unbounded functions. [Hint: Let h be a strictly in-
creasing continuous function mapping IR onto (−1, 1). Consider the function h ◦ f and note Exer-
cise 9:3.2.]

9:3.8 In the space of Example 9.12, let f(A) = Ã. Is f continuous?

9:3.9 In the proof of Lemma 9.22 show how to define g if A and/or B is empty.

Hint: For example, if A = ∅ and B 6= ∅, then try using

g(x) =
1

3
M(1 − min(1,dist(x,B))).

9.4 Homeomorphisms and Isometries

Given two metric spaces (X, ρ) and (Y, σ), we shall often need to know if there is a close rela-
tion between them. Do the two spaces have identical or nearly identical structures? There are
two important ways to describe this.

A bijection h : X → Y is called a homeomorphism if h and h−1 are both continuous. The
condition that h−1 be continuous is equivalent to the condition that h map open sets onto open
sets. Two spaces are said to be homeomorphic, or topologically equivalent, if there is a homeo-
morphism between them. A property that is preserved under homeomorphisms is called a topo-
logical property.
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A homeomorphism h : X → Y that also preserves distances is called an isometry. This
means that

σ(h(x1), h(x2)) = ρ(x1, x2) (x1, x2 ∈ X). (12)

In fact, this condition alone characterizes isometries: if the mapping h : X → Y is onto and
satisfies (12), then it is a homeomorphism that preserves distances and hence is an isometry.
If there exists an isometry between X and Y , we say that X and Y are isometric. Two metric
spaces that are isometric are, from the metric point of view, the same except for such things as
labeling and notation.

A special case should be noted. Suppose that we are given (as we often are) two different
metrics ρ and d on the same space X. When are they equivalent? That is, when is the identity
mapping a homeomorphism from (X, ρ) to (X, d)? The proof of Theorem 9.24 is left as Exer-
cise 9:4.4.

Theorem 9.24: Let ρ and d be metrics on a nonempty set X. Then the identity mapping is a
homeomorphism from (X, ρ) to (X, d) if and only if, for every x ∈ X and ε > 0, there is a δ > 0
such that, for all y ∈ X,

ρ(x, y) < δ ⇒ d(x, y) < ε and d(x, y) < δ ⇒ ρ(x, y) < ε.

The following examples will help to illustrate the ideas of this section. Example 9.26 is par-
ticularly illuminating, since one can sketch pictures that show how the topological equivalence
of the Minkowski metrics can occur. In this example, the spaces compared involve a single set
X with two or more different metrics on it. Example 9.27 illustrates that two spaces involving
entirely different sorts of objects can be isometric.
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Example 9.25: For a simple example, consider any two subsets X and Y of the real numbers,
both equipped with the usual metric. When are they topologically equivalent or isometric?

Any two open intervals in IR are topologically equivalent under an obvious mapping, but
the homeomorphism between them cannot be an isometry (cannot preserve distances) unless
they have the same length. Thus two open subintervals of IR are isometric if and only if they
have the same length. Further questions can be asked. For example, are any two Cantor sets
homeomorphic (Exercise 4:1.13)? When is there an isometry between two Cantor sets?

Example 9.26: Recall that on the set IRn we have defined a family of metrics

ρp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

(1 ≤ p <∞),

ρ∞(x, y) = max
1≤i≤n

|xi − yi|,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Let us compare the spaces (IRn, ρp) with the
help of Theorem 9.24.

A picture for the special case n = 2 tells it all. Consider the open unit balls centered at the
origin in each of the metrics

Bp(0, 1) = {y ∈ IR2 : ρp(0, y) < 1}
for 1 ≤ p ≤ ∞. In Figure 9.1, these are drawn for p = 1

2 , p = 1, 2, 4, 8, and p = ∞. (The case
p = 1

2 is included for contrast—it does not define a metric.) We see that, as p → ∞, the balls
Bp(0, 1) become increasingly flatter and approach B∞(0, 1) from below. In general, we also see
that Bp(0, 1) ⊂ Bq(0, 1) if p < q.
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Figure 9.1. The unit balls Bp(0, 1) in IR2 (p = 1
2
, 1, 2, 4, 8, and ∞).

It is easy to see geometrically that, for any fixed 1 ≤ p, q ≤ ∞ and for every ε > 0, there
is a δ > 0 so that Bp(0, δ) ⊂ Bq(0, ε). (This can also be verified analytically, as Exercise 9:4.8
demands.) This is true at any point of the space (not just at the origin), and so Theorem 9.24
shows that the identity map is a homeomorphism between (IR2, ρp) and (IR2, ρq). Indeed, the
spaces (IRn, ρp) (1 ≤ p ≤ ∞) are all, from the topological point of view, the same.

Let us look closer at the metric spaces (IR2, ρ1) and (IR2, ρ∞). As we have observed, the
function h : IR2 → IR2 defined by h(x) = x is a homeomorphism, so these spaces are topo-
logically equivalent, but h is not an isometry. Nonetheless, these spaces are isometric. For an
isometry, we need to find some other homeomorphism that does preserve distances. (This is left
as Exercise 9:4.5.)

Example 9.27: Let (X,M, µ) be a measure space with µ(X) < ∞. Let (L1, ρ1) be the metric
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space of Example 9.8 with metric

ρ1(f, g) =

∫

X
|f − g| dµ for f, g ∈ L1,

and let (M, ρ2) be the metric space of Example 9.12 with metric

ρ2(A,B) = µ(A△B) for A,B ∈ M.

(Here we allow ourselves the usual convenience of writing, for example, f for an equivalence
class of functions and A for an equivalence class of sets.) Let

K =
{
f ∈ L1 : f = χ

A
for some A ∈ M

}
.

Then (K, ρ1) and (M, ρ2) are isometric (Exercise 9:4.6).

Exercises

9:4.1 Find a homeomorphism between [0, 1) and [0,∞). Thus an unbounded set can be homeomorphic
to a bounded one.

9:4.2 If the mapping h is onto and satisfies (12), then it is an isometry.

9:4.3 Is the curve y = 1/x, x > 0, in the plane homeomorphic to the interval (0,∞)? Are the two sets
isometric? (Assume that IR and IR2 have the usual metrics.)

9:4.4 The identity mapping is a homeomorphism from (X, ρ) to (X, d) if and only if for every x ∈ X
and ε > 0 there is a δ > 0 such that, for all y ∈ X, ρ(x, y) < δ ⇒ d(x, y) < ε and d(x, y) < δ ⇒
ρ(x, y) < ε.

9:4.5 Show that the spaces (IR2, ρ1) and (IR2, ρ∞) are isometric by showing that

f(x, y) =

(
x+ y

2
,
x− y

2

)
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is an isometry from (IR2, ρ∞) to (IR2, ρ1). (Explain the geometry of this mapping.)

9:4.6♦ Prove that the two spaces of Example 9.27 are isometric. [Hint: Let T (A) = χ
A

.]

9:4.7♦ Let X be a set and ρ a metric on it. Show that d = ρ/(1 + ρ) is also a metric on X and that the
function h : X → X defined by h(x) = x is a homeomorphism, so the spaces (X, ρ) and (X, d)
are topologically equivalent. Note, in particular, that a bounded metric can be equivalent to an
unbounded metric.

9:4.8 Verify analytically that the identity map is a homeomorphism between (IR2, ρp) and (IR2, ρq) for
any 1 ≤ p, q ≤ ∞.

9:4.9 Show that limp→∞ ρp(x, y) = ρ∞(x, y).

9:4.10 Sketch the “unit balls” Bp(0, 1) for 0 < p < 1 in IR2 and IR3 and note that they are not convex.
(See Figure 9.1 for p = 1

2 and n = 2.) Is

ρp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

a metric on IRn for 0 < p < 1.

9:4.11 On the Cantor space 2IN of Example 9.4, consider the two metrics

ρ(x, y) =

∞∑

i=1

|xi − yi|
2i

and

d(x, y) = 2−n,

where n is the first index for which xn 6= yn. Show that these metrics are equivalent.

9:4.12 Show that Cantor space (Example 9.4) is homeomorphic to the Cantor ternary set.
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9.5 Separable Spaces

Many metric spaces possess special properties of some importance. Arguments on the real line
can often be carried out by using the fact that the rationals form a dense subset. The only
feature here that matters is that there is some countable dense subset. Similar arguments are
available in general metric spaces that have a countable dense subset.

Definition 9.28: Let X be a metric space. If X possesses a countable dense subset, then X is
called a separable metric space.

For example, IRn with the usual metric is separable since

{(x1, x2, . . . , xn) : xi ∈ Q}
is a countable dense subset of IRn.

9.5.1 Examples of separable metric spaces

Let us check some of the spaces from Section 9.1 for separability.

Example 9.29: The space ℓ∞ (of Example 9.6) is not separable. To see this, observe that the
set

A = {{xi} : xi = 0 or xi = 1}
is an uncountable subset of ℓ∞. If x and y are distinct elements of A, then ρ(x, y) = 1. Thus
the family {B(x, 1/2) : x ∈ A} is an uncountable pairwise disjoint family of balls in ℓ∞. Any
dense subset of ℓ∞ must contain points of each ball in this family and so must be uncountable.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



616 Metric Spaces Chapter 9

Example 9.30: The subspace c of ℓ∞ is separable. To see this, let {rj} be an enumeration of
Q. For every triple i, j, n ∈ IN, let

Aijn = {x ∈ c : ∀i, xi ∈ Q and ∀i ≥ n, xi = rj } ,
and let A =

⋃
i,j,nAijn. One verifies easily that A is dense in c. Since each of the sets Aijn is

countable, so is A.

Example 9.31: The space C[a, b] is separable. This can be based on Weierstrass’s approxima-
tion theorem, which states that every f ∈ C[a, b] is a uniform limit of a sequence of polynomials.
Since each polynomial can be approximated uniformly by polynomials with rational coefficients,
we see that C[a, b] is separable. (For proofs of the Weierstrass approximation theorem, see Sec-
tion 9.13 or Section 15.6.)

Example 9.32: The space M [a, b] is not separable. If f and g are the characteristic functions
of distinct sets, then ρ(f, g) = 1. There are uncountably many distinct subsets of [a, b] and thus
uncountably many distinct elements of M [a, b], each at distance 1 from the other. No countable
set can be dense in this space.

Example 9.33: The space S of Example 9.9 is separable. To see this, recall that to every
measurable function f corresponds a sequence {fn} of continuous functions such that fn →
f [meas]. Each of the functions fn can be approximated uniformly by polynomials with rational
coefficients. It follows that the set of polynomials with rational coefficients is a countable dense
subset of S.

Example 9.34: Let ([0, 1],L, λ) be the Lebesgue measure space, and let ρ be the metric of Ex-
ample 9.12 on the equivalence classes of L. Then L is separable. Let A consist of all sets that
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are finite unions of open intervals with rational endpoints. Then A is a countable and dense
subset of this space.

Example 9.35: The space K of Example 9.13 is separable. We observed in Example 9.16 that
the family of finite sets is dense in K. A slight variation in the argument shows that the family
of finite sets whose members have rational coordinates is also dense in K.

In Exercise 9:5.1, we indicate the separability or nonseparability of the other spaces appear-
ing in Section 9.1.

Exercises

9:5.1 Verify, or complete the verifications, that each of the spaces s, 2IN, c, c0, C[a, b], S, C′[a, b], and K
is separable, while the spaces ℓ∞, M [a, b] and BV[a, b] are not.

9:5.2 Let Kc denote the subspace of compact, convex members of K (the space of Example 9.13) . Prove
that Kc is separable.

9:5.3 Prove that a metric space X is separable if and only if there exists a countable collection U of
open sets such that each open set in X can be expressed as a union of members of U .

9:5.4 Prove that in a separable metric space every uncountable set contains a convergent sequence of
distinct points.

9:5.5♦ Prove Lindelöf’s theorem: Every open cover of a separable metric space has a countable sub-
cover.

9:5.6 Prove that a subspace of a separable metric space is itself separable.

9:5.7♦ Prove that the following spaces are separable:
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(a) The spaces ℓp for 1 ≤ p < ∞. [Also explain how ℓ1 can be considered a special case of L1

(Example 9.8).]

(b) The space L1([0, 1],L, λ). [Hint: Show first that the class of continuous functions is dense.]

9.6 Complete Spaces

We turn now to a discussion of one of the most important properties that can be possessed by a
metric space—completeness. All the deep properties of real sequences and real functions depend
on the fact that IR is complete. Many of these properties can be carried over to general metric
spaces.

A sequence {xn} in a metric space is called a Cauchy sequence if for every ε > 0 there ex-
ists N ∈ IN such that, if m ≥ N and n ≥ N , then ρ(xm, xn) < ε. This is equivalent to the
requirement that

lim
m,n→∞

ρ(xm, xn) = 0.

Some elementary observations are immediate. A Cauchy sequence must be bounded, since
all but a finite number of members of the sequence must lie in some ball of radius 1. Every con-
vergent sequence is a Cauchy sequence. To verify this, observe that if xn → x and ε > 0 then
there exists N ∈ IN such that ρ(x, xn) < 1

2ε for all n ≥ N . If m,n ≥ N , then

ρ(xn, xm) ≤ ρ(xn, x) + ρ(x, xm) < 1
2ε+ 1

2ε = ε.

The converse is not true in general: there can be Cauchy sequences that are not convergent.
For example, the sequence {1/n} is a Cauchy sequence in X = (0, 1), but does not converge in
X.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 9.6. Complete Spaces 619

Definition 9.36: A metric space is said to be complete if every Cauchy sequence in X con-
verges.

A useful equivalent definition is that every Cauchy sequence has a convergent subsequence,
since this implies (see Exercise 9:6.4) that every Cauchy sequence converges. In many complete-
ness proofs it is convenient to stop once we have established this fact. We leave the proof of the
next theorem as an exercise. In IR, this theorem is just the familiar Cantor intersection theorem
(see Theorem 1.2). Observe that, if we do not assume that the radii approach zero, the intersec-
tion may be empty (see Exercise 9:6.1).

Theorem 9.37: A metric space (X, ρ) is complete if and only if the intersection of every de-
scending sequence of closed balls whose radii approach zero consists of a single point.

Theorem 9.38: A subspace Y of a complete metric space is complete if and only if Y is
closed.

Proof. Suppose that Y is closed and {yn} is a Cauchy sequence in Y . Since X is complete,
{yn} converges to some point x ∈ X. Since Y is closed, x ∈ Y . Thus Y is complete.

Conversely, suppose that Y is complete and x is a limit point of Y . Then there exists a se-
quence {yn} in Y such that yn → x. The sequence {yn} is a Cauchy sequence in Y . Since Y is
complete, {yn} converges to a point y ∈ Y . But limits are unique, so y = x. Thus x ∈ Y , and Y
is closed. �

It is often important in analysis to establish that a given space X is complete. We must
show that every Cauchy sequence {xn} in X converges. Unless we have some theorem, such as
Theorem 9.38, to apply, this must be done directly. In many cases the method can be described
by the following three steps applied to an arbitrary Cauchy sequence {xn}:
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1. Often there is a natural “candidate” x0 for the limit of the sequence.

2. The “candidate” x0 must be shown to be in the space X.

3. We verify that xn → x0.

Here is an explanation of the second step. The sequence {1/n} is Cauchy in the metric space
X = (0, 1]. One expects the sequence to converge to 0, so that is our candidate. Unfortunately,
0 6∈ X, so the process collapses. If, instead, X is the space X = [0, 1] then all steps can be
carried through.

9.6.1 Examples of complete metric spaces

We now check some of the spaces in Section 9.1 for completeness.

Example 9.39: The space M [a, b] is complete.

Proof. (This space is defined in Example 9.7.) Let {fn} be a Cauchy sequence in M [a, b]. For
each t ∈ [a, b], {fn(t)} is a Cauchy sequence of real numbers. This follows immediately from the
inequality

|fn(t) − fm(t)| ≤ sup
a≤s≤b

|fn(s) − fm(s)| = ρ(fn, fm).

Since IR is complete, limn→∞ fn(t) exists for each t ∈ [a, b]. This limit defines a function f on
[a, b]. The function f is our candidate for the limit of the sequence.

The second step requires us to check that f is in M [a, b]. (The reader should check this.
Simply show that f is bounded.)
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For the final step, we must show that fn → f in the space M [a, b]; that is, fn → f [unif].
Let ε > 0. Since {fn} is a Cauchy sequence in M [a, b], there exists N such that n ≥ N implies
that ρ(fn, fN ) < 1

2ε, and so

|fN (t) − fn(t)| < 1
2ε for all t ∈ [a, b].

Thus, for all t ∈ [a, b],

|fN (t) − f(t)| = lim
m→∞

|fN (t) − fm(t)| ≤ 1
2ε.

It follows that, for n ≥ N ,

|fn(t) − f(t)| ≤ |fn(t) − fN (t)| + |fN (t) − f(t)| < ε

for all t ∈ [a, b]. Thus fn → f [unif], as required. �

We see from Theorem 9.38 and this example that all closed subspaces of M [a, b] are com-
plete. For example, since a uniform limit of continuous functions is continuous, C[a, b] is a closed
subspace of M [a, b]. Hence C[a, b] is a complete metric space.

We next consider Example 9.8. Here L1 consists of the integrable functions on a complete
measure space (X,M, µ), with

ρ(f, g) =

∫

X
|f − g| dµ,

and our usual understanding that the functions in the space are identical if they are a.e. equal.

Example 9.40: The space L1 is complete.

Proof. Let {fn} be a Cauchy sequence in L1. We find a function f ∈ L1 such that fn → f .
Since {fn} is a Cauchy sequence, there exists an increasing sequence {nk} from IN such that,
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for every k ∈ IN, ρ(fn, fnk
) ≤ 2−k for all n ≥ nk. Thus

∫

X

∞∑

k=1

|fnk+1
− fnk

| dµ =
∞∑

k=1

∫

X
|fnk+1

− fnk
| dµ

=

∞∑

k=1

ρ(fnk+1
, fnk

) ≤
∞∑

k=1

1

2k
= 1.

It follows that

∞∑

k=1

|fnk+1
− fnk

| is in L1 and therefore finite a.e. Let

g =
∞∑

k=1

(fnk+1
− fnk

) = lim
m→∞

m∑

k=1

(fnk+1
− fnk

)

= lim
m→∞

(fnm+1 − fn1) = lim
m→∞

fnm+1 − fn1 .

Let

f = lim
m→∞

fnm+1 = fn1 + g.

It is clear that f ∈ L1, and that fnk
→ f [a.e.]. We show that

fnk
→ f [mean]. (13)
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Fix k ∈ IN. Then

|fnk
| =

∣∣∣∣∣

k−1∑

m=1

(fnm+1 − fnm) + fn1

∣∣∣∣∣

≤
k−1∑

m=1

|fnm+1 − fnm | + |fn1 |

≤
∞∑

m=1

|fnm+1 − fnm | + |fn1 |.

Thus all the functions |fnk
| are dominated by a single integrable function, so the same is true of

the functions |fnk
− f |. Since |fnk

− f | → 0 [a.e.], we infer from the Lebesgue dominated conver-
gence theorem that

lim
k→∞

ρ(fnk
, f) = lim

k→∞

∫

X
|fnk

− f | dµ = 0,

and we have proved (13).
We have shown that every Cauchy sequence has a convergent subsequence. But this is equiv-

alent to the completeness of the metric space (see the comments following Definition 9.36).
Thus L1 is complete. �

Example 9.41: The space K is complete.

Proof. (This space is defined in Example 9.13 and we use the notation Aε introduced there.)
We first observe that, if {Hn} is a decreasing sequence of nonempty closed sets in [0, 1] × [0, 1]
and H =

⋂∞
n=1Hn, then Hn → H in K. (Verify this.) Now let {An} be a Cauchy sequence
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in K. For each n ∈ IN, let Hn be the closure of the set
⋃∞

k=nAk. Then {Hn} is a decreasing se-
quence of closed sets, H =

⋂∞
n=1Hn is a nonempty closed set, and Hn → H.

Let ε > 0. There exists N ∈ IN such that ρ(An, Am) < ε if n,m ≥ N . Thus, for n,m ≥ N ,
(An)ε ⊃ Am, so

(An)ε ⊃
∞⋃

k=n

Ak.

Since (An)ε is closed,

(An)ε ⊃
∞⋃

k=n

Ak = Hn ⊃ H, if n ≥ N.

On the other hand, since Hn → H, there exists M ∈ IN such that Hn ⊂ Hε if n ≥ M . But
An ⊂ Hn, so An ⊂ Hε if n ≥ N . It follows that if n ≥ N and n ≥M then

(An)ε ⊃ H and Hε ⊃ An,

that is, ρ(An, H) < ε. Thus An → H, and K is complete. �

9.6.2 Completion of a metric space

In Chapter 2 we saw that to each measure space (X,M, µ) corresponds a complete measure
space, the completion of (X,M, µ). Something similar is true for metric spaces, although the
terminology has different meaning in the two contexts. Consider, for example, the subspace Q
of IR. A Cauchy sequence in Q might not converge in Q, but it will converge in IR. We need
all of IR to be sure that each Cauchy sequence in Q converges, and one can then show that IR
is complete. Here we are dealing with familiar objects, Q and IR, but how does one obtain a
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completion of an arbitrary metric space? We begin with a precise formulation of the problem.
Suppose that (X, ρ) and (Y, σ) are metric spaces, and h : X → Y is an isometry of X and

h(X). We say that h embeds (X, ρ) in (Y, σ). For example, h(x) = (x, 0) embeds IR1 in IR2.

Theorem 9.42: Every metric space (X, ρ) can be embedded, as a dense subset, in a complete
metric space (X, ρ). The space (X, ρ) is unique up to isometry.

We outline a proof of Theorem 9.42 in Exercise 9:6.7.

Exercises

9:6.1 Prove Theorem 9.37. Show that, if we do not assume that the radii approach zero, then the inter-
section may be empty. [Hint: For the counterexample, find a metric on IN so that some sequence
of closed balls B[n, rn], n = 1, 2, 3, . . . is descending, but has an empty intersection.]

9:6.2 Verify that the spaces c, s, and ℓ∞ are complete. Is the subspace c0 of c complete?

9:6.3 Let (X, ρ) and (Y, σ) be metric spaces, and let f be a continuous function mapping X onto Y .

(a) If X is separable, must Y be separable?

(b) If X is complete, must Y be complete?

(c) Is separability a topological property? Is completeness?

(d) Do the answers to (a) and/or (b) change if f is an isometry?

9:6.4♦ Prove that if a Cauchy sequence in a metric space has a convergent subsequence then the full
sequence itself converges to the same limit.

9:6.5 Show that C′[a, b] (Example 9.11) is complete.
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9:6.6♦ Show that the space of Example 9.12 is complete. [Hint: Use Exercise 9:4.6 and Theorem 9.38.]

9:6.7 Provide the details in the following outline of a proof for Theorem 9.42.

(a) Construction of (X, ρ): Let C denote the set of Cauchy sequences in X. If {xn} and {yn}
are in C, write

{xn} ∼ {yn}
if ρ(xn, yn) → 0. Then ∼ is an equivalence relation in C. Let X consist of the equivalence
classes relative to ∼. We next define a metric ρ on X. If {xn}, {yn} ∈ C, then {ρ(xn, yn)} is
a Cauchy sequence of real numbers that converges, since IR is complete. We define

ρ({xn}, {yn}) = lim
n→∞

ρ(xn, yn).

The value of ρ is independent of the choice of representatives from an equivalence class, so
ρ(x, y) is well defined for x, y ∈ X. Show that (X, ρ) is complete.

(b) Embedding: For x ∈ X, let h(x) be the equivalence class in X containing {x, x, x, . . . }. Then
h is an isometry of X onto a subspace of X.

(c) Dense: Let x ∈ X, and let {xn} ∈ x. Then {h(xn)} → x.

From parts (a), (b), and (c) we see that (X, ρ) is a completion of (X, ρ). It remains to verify unique-
ness.

(d) Uniqueness: We must show that, if (X, ρ) is a completion of (X, ρ) via an isometry h and
(Y , σ) is another completion via g, then (X, ρ) and (Y , σ) are isometric. The function g ◦ h−1

is an isometry between h(X) and g(X). We extend g ◦ h−1 to an isometry f between X and
Y . Let x ∈ X, and choose a sequence {h(xn)} in h(X) converging to x. Then

{g(xn)} = {(g ◦ h−1 ◦ h)(xn)}
is a Cauchy sequence in Y . Since Y is complete, this sequence converges to a limit f(x).
This defines a function f . It is an isometry of X onto Y .
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9.7 Contraction Maps

Let (X, ρ) be a metric space, and let A : X → X. If there exists a number α ∈ (0, 1) such that

ρ(A(x), A(y)) ≤ αρ(x, y) for all x, y ∈ X,

we say that A is a contraction map. It follows immediately from the definition that a contrac-
tion map is continuous. Our purpose is to obtain a very simple theorem about contraction maps
on complete metric spaces and to show ways in which this theorem can be applied to various
problems in analysis. For simplicity of notation, we shall write Ax for A(x), A2x for A(A(x)),
and, in general, An+1x for A(An(x)).

If x ∈ X and Ax = x, we say that x is a fixed point of A. Often the solution of a differential
or integral equation can be phrased in the language of fixed points, so it is particularly useful to
know when a fixed point exists and if it is unique. The theorem we prove is due to S. Banach.
The techniques here evolved from the method of successive approximations used by Émile Pi-
card (1856–1941) to solve differential equations. In the next section we shall use the contraction
mapping theorem of Banach to solve such equations.

Theorem 9.43 (Banach) A contraction map A defined on a complete metric space (X, ρ) has
a unique fixed point.

Proof. Let x0 ∈ X. Let x1 = Ax0, x2 = Ax1 = A2x0, and, in general,

xn = Axn−1 = Anx0 (n = 1, 2, 3, . . . ).
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We first show that the sequence {xn} is a Cauchy sequence. Let n ≤ m. Then

ρ(xn, xm) = ρ(Anx0, A
mx0) ≤ αnρ(x0, xm−n)

≤ αn[ρ(x0, x1) + ρ(x1, x2) + · · · + ρ(xm−n−1, xm−n)]

≤ αnρ(x0, x1)[1 + α+ · · · + αm−n−1]

≤ αnρ(x0, x1)
1

1 − α
.

Since α < 1, this last term can be made arbitrarily small by making n sufficiently large. It fol-
lows that {xn} is a Cauchy sequence.

Since X is complete, there exists x ∈ X such that xn → x. From the continuity of A, we
infer that

Ax = A( lim
n→∞

xn) = lim
n→∞

Axn = lim
n→∞

xn+1 = x.

This shows that x is a fixed point of A. To prove that x is unique, observe that if Ax = x and
Ay = y then

ρ(Ax,Ay) ≤ αρ(x, y) = αρ(Ax,Ay).

Since α < 1, this implies that ρ(Ax,Ay) = 0, so ρ(x, y) = 0 and x = y. �

Observe that the proof of Theorem 9.43 provides a practical method for finding the solution
of an equation of the form Ax = x. This method is often called the method of successive ap-
proximations. One can choose x0 to be any point in X. Then the sequence {Anx0} converges to
the unique solution of the equation Ax = x.

There is an interesting and useful extension of this theorem. On occasion, a mapping is not
itself contractive, but some power of it is contractive. One expects that this should be enough.
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Theorem 9.44: A map A defined on a complete metric space (X, ρ) for which one of the pow-
ers of A is a contraction has a unique fixed point.

Proof. Let us suppose that Am is a contraction. By Theorem 9.43, there is a unique fixed
point of Am, say Am(x) = x. But then A(x) is also a fixed point of Am, since (Am)(A(x)) =
A((Am)(x)) = A(x). Because fixed points are unique, this means that x = A(x) which is exactly
the conclusion that we wanted. �

Exercises

9:7.1 Show that if f : IR→ IR satisfies the Lipschitz condition

|f(x) − f(y)| ≤M |x− y|
for all x, y ∈ IR, and if M < 1, then f is a contraction map on IR.

9:7.2 Show that one cannot drop the requirement that X is complete in Theorem 9.43.

9:7.3 Give an example of a complete metric space (X, ρ) and a mapping A : X → X such that ρ(Ax,Ay) <
ρ(x, y) for all x, y ∈ X, but A has no fixed point.

9:7.4 Show that the mapping A : IR2 → IR2 defined by A(x1, x2) = (x1, x2/2) has infinitely many fixed
points. Is it a contraction? Show that

ρ(A(x), A(y)) ≤ ρ(x, y) (x, y ∈ IR2).

9:7.5 Let T be the mapping from C[0, 1] to itself defined by

T (f)(t) =

∫ t

0

f(s) ds.

Is this a contraction? Is any power of T a contraction? Show that there is a fixed point.
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9.8 Applications

In this section we collect some concrete applications of the contraction mapping theorem. In
each case, one solves a problem by constructing a mapping associated with the problem, check-
ing that it is a contraction, and then applying Theorem 9.43 to obtain the existence of a fixed
point, which is precisely the solution to the problem posed.

Example 9.45: (Systems of linear equations) Consider a system of linear equations

xi =
n∑

j=1

aijxj + bi, (i = 1, 2, . . . , n). (14)

To solve this system of equations, we can try to use the map defined as follows: If x = (x1, . . . , xn),
let y = Ax, where y = (y1, . . . , yn) with

yi =
n∑

j=1

aijxj + bi.

Thus A : IRn → IRn. We are not obliged to use the Euclidean metric on IRn. Whether A is a
contraction map depends on the that metric we choose to use. We consider two cases.
(a) Use the ρ∞ metric:

ρ(x, y) = max
1≤i≤n

|xi − yi|.
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In this case, with y = Ax and y∗ = Ax∗, we have

ρ(Ax,Ax∗) = ρ(y, y∗) = max
i

|yi − y∗i |

= max
i

|
∑

j

aij(xj − x∗j )| ≤ max
i

∑

j

|aij ||xj − x∗j |

≤ (max
i

∑

j

|aij |)(max
j

|xj − x∗j |)

≤ max
i

∑

j

|aij |ρ(x, x∗).

Thus A will be a contraction map if
∑

j

|aij | ≤ α < 1 for all i = 1, . . . , n.

(b) Use the ρ1 metric:

ρ(x, y) =
n∑

i=1

|xi − yi|.

Here we calculate

ρ(y, y∗) =
∑

i

|yi − y∗i | =
∑

i

|
∑

j

aij(xj − x∗j )|

≤
∑

i

∑

j

|aij |(xj − x∗j )| ≤ (max
j

∑

i

|aij |)ρ(x, x∗),
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so the condition is
∑

i

|aij | ≤ α < 1 for all j = 1, . . . , n.

Thus, in either case (a) or (b), we have a contraction map and hence a unique solution.

Example 9.46: (Infinite systems of linear equations) The preceding ideas can be ap-
plied to infinite systems of linear equations. In the late nineteenth century, a number of au-
thors considered such systems arising, for example, in studies of algebraic equations and celes-
tial mechanics. Curiously, the first person to encounter an infinite system of linear equations
was Joseph Fourier (1768–1830). In his classic 1822 study of the partial differential equations
associated with heat flow, he “solved” such a system by some simple, but unjustified, methods.
After that, the subject received no more attention for another half-century.

Suppose that we have a system of equations of the form

xi =
∞∑

j=1

aijxj + bi, i = 1, 2, 3, . . . . (15)

We seek a sequence x = {xi} that satisfies (15). To apply Theorem 9.43, we should first decide
what sequence space we wish to consider. Suppose that we want the sequence to be bounded,
so that x is a member of ℓ∞ (Example 9.6). We thus consider ℓ∞ as the domain of a map y =
Ax, where

yi =

∞∑

j=1

aijxj + bi. (16)
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Since we wish y to be a member of ℓ∞, we impose the requirement that b ∈ ℓ∞, too; that is,

There exist B <∞ such that |bi| ≤ B for all i ∈ IN. (17)

Our work with Example 9.45 (a) suggests the limitation

∞∑

j=1

|aij | ≤ α < 1 for i = 1, 2, . . . . (18)

Suppose, then, that the system (15) satisfies (17) and (18) and that A is defined by (16).
We wish to show that A is a contraction map on ℓ∞. It will follow by Theorem 9.43 that the
system (15) has a unique solution in ℓ∞.

We first verify that A maps ℓ∞ into ℓ∞. For x = {x1, x2, . . . }, an element of the space ℓ∞,
write ‖x‖∞ = supj |xj |. From (16), (17), and (18) we find that

|yi| ≤
∞∑

j=1

|aij |‖x‖∞ + |bi| ≤ α‖x‖∞ +B. (19)

Since (19) is valid for all i ∈ IN, we see that

‖Ax‖∞ = ‖y‖∞ = sup
i

|yi| ≤ α sup
j

|xj | +B,

so Ax ∈ ℓ∞. Thus A maps ℓ∞ into ℓ∞.
We next show that A is a contraction map. Let x, x∗ ∈ ℓ∞, y = Ax, and y∗ = Ax∗. Then

y∗i − yi =

∞∑

j=1

aij(x
∗
j − xj).
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Using (18), we conclude that |y∗i − yi| ≤ α‖x∗ − x‖∞, so

‖Ax∗ −Ax‖∞ = sup
i

|y∗i − yi| ≤ α‖x∗ − x‖∞.

But this means that

ρ∞(Ax∗, Ax) ≤ αρ∞(x∗, x)

and we see that A is a contraction map on ℓ∞.

We summarize this discussion as a theorem.

Theorem 9.47: If the system of equations

xi =

∞∑

j=1

aijxj + bi, i = 1, 2, 3, . . .

satisfies the two conditions

1. There exist B <∞ such that |bi| ≤ B for i = 1, 2, . . . , and

2.
∑∞

j=1 |aij | ≤ α < 1 for i = 1, 2, . . . ,

then this system has a unique solution in ℓ∞.

We next show how Theorem 9.43 can be used to prove existence and uniqueness theorems
involving integral equations.

Example 9.48: (Fredholm equation) Consider the equation

f(x) = λ

∫ b

a
K(x, y)f(y) dy + φ(x), λ ∈ IR, (20)
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where φ is continuous on [a, b], and K is continuous on [a, b] × [a, b].
We wish to use Theorem 9.43 to prove that there exists a unique f ∈ C[a, b] satisfying (20).

To do so, we define A : C[a, b] → C[a, b] by Af = g, where

(Af)(x) = g(x) = λ

∫ b

a
K(x, y)f(y) dy + φ(x). (21)

It is clear that A : C[a, b] → C[a, b]. If A is a contraction map, then A has a unique fixed point
f , and (21) becomes (20); so f is the unique function in C[a, b] satisfying (20).

Let f1, f2 ∈ C[a, b], and let g1 = Af1 and g2 = Af2. Then

ρ(g1, g2) = max
x

|g1(x) − g2(x)|
≤ |λ|M max

x
|f1(x) − f2(x)|(b− a)

= |λ|M(b− a)ρ(f1, f2),

where

M = max{|K(x, y)| : a ≤ x ≤ b, a ≤ y ≤ b}.
It follows that A is a contraction map if |λ| ≤ M−1(b− a)−1. Thus the method of successive
approximations can be applied provided that |λ| is sufficiently small. We shall revisit the Fred-
holm operator in later chapters.2

Example 9.49: (Volterra equation) Now consider the integral equation

f(x) = λ

∫ x

a
K(x, y)f(y) dy + φ(x) (λ ∈ IR).

2For applications of these operators to various boundary-value problems associated with the Dirichelet and
Neumann problems, see F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar (1955).
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Here we define A : C[a, b] → C[a, b] by

(Af)(x) = λ

∫ x

a
K(x, y)f(y) dy + φ(x).

For f1, f2 ∈ C[a, b], we calculate (Exercise 9:8.3)

ρ(Anf1, A
nf2) ≤ |λ|nMn (b− a)n

n!
ρ(f1, f2).

Thus, for each λ ∈ IR, there exists N ∈ IN such that, if n ≥ N ,

|λ|nMn (b− a)n

n!
< 1.

Therefore, An is a contraction map. Theorem 9.44 shows that A has a unique fixed point f .
This function f provides the unique continuous solution to the integral equation. Observe that
in this case λ can be any real number.

9.8.1 Picard’s Theorem

As our final illustration of the contraction mapping principle, we prove a standard theorem in
differential equations. Let D be an open set in IR2, and let f : D → IR. We say that f satisfies
a Lipschitz condition in y on D, with Lipschitz constant M , if

|f(x, y2) − f(x, y1)| ≤M |y2 − y1|
whenever (x, y1) and (x, y2) are in D. Under such a condition the differential equation dy

dx =
f(x, y) can be proved to have a unique solution by interpreting the problem as a fixed-point
problem. Here we find conditions so that a differential equation has a unique local solution
“passing through” a given point. Later, in Section 9.12, we shall use a weaker hypothesis and
a compactness argument to prove a similar theorem.
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Theorem 9.50 (Picard) Let f be a continuous function on D and satisfying a Lipschitz con-
dition in y on D with Lipschitz constant M , and let (x0, y0) ∈ D. Then there exists δ > 0 such
that the differential equation

dy

dx
= f(x, y) (22)

has a unique solution y = φ(x), φ(x0) = y0, for the interval [x0 − δ, x0 + δ].

Proof. We can reformulate the problem in terms of an integral equation. We seek a function
φ that satisfies the equation

φ(x) = y0 +

∫ x

x0

f(t, φ(t)) dt (23)

for all x ∈ [x0 − δ, x0 + δ]. Since f is continuous on D, there exists a neighborhood N of (x0, y0)
and K > 0 such that N ⊂ D and |f | ≤ K on N . Choose δ > 0 such that δ < M−1 and so that
every point (x, y) with |x− x0| ≤ δ and |y − y0| ≤ Kδ belongs to N . We arrive at the picture in
Figure 9.2.

Let C1 consist of those members of C[x0 − δ, x0 + δ] that satisfy

|φ(x) − y0| ≤ Kδ

for all x ∈ [x0 − δ, x0 + δ]. Then C1 is a closed subspace of the space C[x0 − δ, x0 + δ] and is
therefore complete by Theorem 9.38.

Consider now the mapping A on C1 defined so that

(Aφ)(x) = ψ(x) = y0 +

∫ x

x0

f(t, φ(t)) dt
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-
x0−δ x0 x0+δ

6

y0−Kδ

y0

y0+Kδ

·
R ⊂ N

|f | ≤ K on R

Figure 9.2. Choice of δ in the proof of Picard’s Theorem.

for x0 − δ ≤ x ≤ x0 + δ. We show that A maps C1 into itself. Let x ∈ [x0 − δ, x0 + δ] and suppose
φ ∈ C1. Then

|ψ(x) − y0| =

∣∣∣∣
∫ x

x0

f(t, φ(t)) dt

∣∣∣∣ ≤
∫ x

x0

|f(t, φ(t))| dt

≤ K|x− x0| ≤ Kδ,

so ψ = Aφ ∈ C1 and A : C1 → C1.
We show that A is a contraction map on C1. To verify the contraction condition, let φ1, φ2 ∈

C1, and let ψ1 = Aφ1 and ψ2 = Aφ2. Then, for all x ∈ [x0 − δ, x0 + δ],

|ψ1(x) − ψ2(x)| ≤
∫ x

x0

|f(t, φ1(t)) − f(t, φ2(t))| dt (24)

≤ Mδmax
x

|φ1(x) − φ2(x)|.
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The last inequality is a consequence of the Lipschitz condition on f and the inequality |x−x0| ≤
δ. Now (24) is valid for all x in the interval [x0 − δ, x0 + δ], so

ρ(ψ1, ψ2) ≤Mδρ(φ1, φ2).

Since Mδ < 1, A is a contraction map, so the equation φ = Aφ has a unique solution in C1. In
other words, the equation (23) and the equivalent equation (22) have unique local solutions. �

Exercises

9:8.1 Consider the system of equations

x1 =
1

2
x2, x2 =

1

2
x3, x3 =

1

2
x4, . . . .

Show that for each c ∈ IR the sequence

(c, 2c, 4c, . . . )

is a solution to this system. Explain why this does not contradict Theorem 9.47.

9:8.2 Consider the system of equations (15). For each integer i, let

αi = sup
j

|aij |.

Prove that the system has a unique solution in the space ℓ1 provided that
∞∑

i=1

αi < 1 and
∞∑

i=1

|bi| <∞.

9:8.3 Fill in the detailed calculations in Example 9.49.
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9:8.4 Use Theorem 9.43 to prove the following form of the implicit function theorem.

Theorem Let D = [a, b] × IR, and let F : D → IR. Suppose that F is continuous on D
and ∂F/∂y exists on D. If there exist positive real numbers α and β such that

α ≤ ∂F

∂y
≤ β

on D, then there exists a unique function f ∈ C[a, b] such that

F (x, f(x)) = 0 for all x ∈ [a, b].

That is, the equation F (x, y) = 0 can be solved uniquely for y as a continuous function
of x on [a, b].

[Hint: Let (Ag)(x) = g(x) − cF (x, g(x)), c ∈ IR, c 6= 0. Note that a fixed point of A solves the
problem. Find c so that A becomes a contraction map.]

9.9 Compactness

In Section 9.8, we saw how certain theorems, valid for complete metric spaces, could be applied
to various parts of mathematics. In the present section, we consider another important property
of some metric spaces—compactness. We shall discuss applications of some theorems that are
valid for compact spaces in Sections 9.12 and 9.14.

There are actually a number of notions of compactness that agree in our setting of metric
spaces. We choose one of these notions as our definition and then show that the other notions
are equivalent to the one that we chose. In the more general setting of a topological space these
may not be equivalent.
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Let X be a metric space, and let K ⊂ X. A collection U of open sets is called an open cover
of K if

K ⊂
⋃

U∈U
U.

Definition 9.51: A metric space (X, ρ) is compact if every open cover of X has a finite sub-
cover. A subset K of X is compact if (K, ρ) is compact.

The defining property in 9.51 is often called the Heine-Borel property. Theorem 9.52 in-
volves other properties that we can also identify using familiar names.

Theorem 9.52: The following conditions on a metric space X are equivalent.

1. (Heine-Borel) X is compact.

2. (Bolzano–Weierstrass I) Every sequence {xn} in X has a cluster point; that is, there is
a point x0 ∈ X such that, for all ε > 0 and N ∈ IN, there exists n ≥ N such that
ρ(xn, x0) < ε.

3. (Sequential compactness) Every sequence in X has a convergent subsequence.

4. (Bolzano–Weierstrass II) Every infinite set in X has a limit point.

Proof. It suffices to verify the implications (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i) ⇒ (ii). Let X satisfy (1), and let {xn} be a sequence in X. For each N ∈ IN, let AN =

{xn : n ≥ N} and let UN = X \An. One verifies easily that each of the sets UN is open and that
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no finite collection of the sets UN covers X. Since X satisfies condition (1),
⋃∞

N=1 UN 6= X; that
is

∞⋂

N=1

AN 6= ∅.

Let x0 ∈ ⋂∞
N=1AN . It follows directly from the definition of the sets AN that x0 is a cluster

point of the sequence {xn}.
The implications (ii)⇒(iii) and (iii)⇒(iv) are immediate consequences of the relevant defini-

tions.
(iv)⇒(i). Suppose that X satisfies condition (iv). We show that for every ε > 0 there exists

n ∈ IN and open balls

B(x1, ε), . . . , B(xn, ε)

such that X =
⋃n

i=1B(xi, ε). If this were false, we could inductively choose a sequence {xn}
from X such that ρ(xn, xk) ≥ ε for all k < n. The set {xn} would have no limit point, contra-
dicting our assumption that X satisfies condition (iv).

The set {x1, x2, . . . , xn} is called an ε-net for X. It has the property that if x ∈ X there ex-
ists i such that ρ(xi, x) < ε. If for every k ∈ IN we choose a 1

k -net for X, we arrive at a count-
able dense subset for X, so X is separable.

Now let U be an open cover of X. It follows from Lindelöf’s theorem (Exercise 9:5.5) that
U can be reduced to a countable subcover U1, U2, . . . . We now show that this subcover can be
further reduced to a finite subcover. If this were not the case, then for each N ∈ IN there exists
xN ∈ X \⋃N

i=1 Ui. Since X satisfies condition (4), the set {x1, x2, . . . } has a limit point x0. But
X =

⋃∞
i=1 Ui, so there exists j ∈ IN such that x0 ∈ Uj . This implies that xi ∈ Uj for infinitely

many i ∈ IN. This is impossible because our choice of the points xN implies that xN ∈ X \ Uj
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when N ≥ j. This contradiction implies that the collection U1, U2, . . . can be reduced to a finite
subcover, completing the proof of (4) ⇒ (1). �

Theorem 9.52 applies to subsets of X, as well as to X itself. If one wishes to use conditions
(2), (3), or (4) to verify that a subset K of a space X is compact, one must verify that the clus-
ter point, limit of the convergent subsequence, or limit point is in K. Thus a compact subspace
of X must be closed. It is also clear that, if X is compact and K ⊂ X is closed, then K is com-
pact.

9.9.1 Continuous functions on compact metric spaces

Standard theorems about continuous functions on compact subsets of IRn carry over to general
metric spaces.

Definition 9.53: If f : (X, ρ) → (Y, σ) and for every ε > 0 there exists δ > 0 such that
σ(f(x), f(x′)) < ε whenever ρ(x, x′) < δ, we say f is uniformly continuous on X.

One proves, as for continuous functions defined on a compact subset of IRn, that continuous
functions on compact spaces are uniformly continuous.

Theorem 9.54: If X is compact and f :X→Y is continuous, then f is uniformly continuous.

The elementary theorem that asserts that a continuous real-valued function on a compact
interval I achieves absolute extrema on I takes the following form for general metric spaces.

Theorem 9.55: If f : X → Y is continuous and X is compact, then the set f(X) is compact in
Y .
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Proof. Let U be an open cover of f(X). Then the family

V =
{
V : There exists U ∈ U such that V = f−1(U)

}

is an open cover of X. Since X is compact, V has a finite subcover V1, V2, . . . , Vn. The sets

U1 = f(V1), . . . , Un = f(Vn)

form the required subcover of Y . �

Exercises

9:9.1 Prove that a subset of IRn is compact if and only if it is closed and bounded.

9:9.2 Let X be an arbitrary set furnished with the discrete metric. Characterize the compact subsets of
X.

9:9.3 Show that a compact subset of a metric space is closed and bounded, but that the converse is not
true in general. [Hint: Every subset of a discrete space is both closed and bounded.]

9:9.4 Show that {x ∈ ℓ1 : ρ(x, 0) = 1} is closed and bounded in ℓ1, but not compact.

9:9.5 Show that if A and B are compact subsets of a metric space then there exist a ∈ A and b ∈ B
such that ρ(a, b) = dist(A,B).

9:9.6 Show that closed balls in C[a, b], M [a, b] and ℓ∞ are not compact by using Theorem 9.52.

9:9.7 Show that the set I∞ = {x ∈ ℓ2 : |xn| ≤ n−1}, called the Hilbert cube, is compact and nowhere
dense in ℓ2.

9:9.8 Show that if f :X→Y is uniformly continuous and {xn} is a Cauchy sequence in X then {f(xn)}
is a Cauchy sequence in Y .
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9:9.9 Let X and Y be metric spaces with X compact. Prove that a continuous, one-one mapping of X
onto Y is necessarily a homeomorphism.

9:9.10 Let (X, ρ) be a compact metric space and suppose T : X → X has the property that ρ(T (x), T (y)) <
ρ(x, y) for all x, y ∈ X, x 6= y. Show that T has a unique fixed point. How does this compare with
Exercise 9:7.3? [Hint: Consider minx∈X ρ(x, T (x)).]

9:9.11 If K is a compact subset of a metric space (X, ρ) and x0 ∈ X \ K then show that there must
exist a point y ∈ K so that

dist(x0,K) = ρ(x0, y).

Give an example to show that it is not enough merely for K to be complete.

9.10 Totally Bounded Spaces

Observe that we have not stated that a closed and bounded set in a metric space is compact.
That statement is valid in IRn, but not in general. In a metric space a closed and bounded set
may have no special properties and need not be compact. Indeed every metric space is closed
and has an equivalent metric that makes it bounded (Exercise 9:4.7).

A characterization of compactness that reduces to “closed and bounded” in IRn is available.
The key is in the proof of the implication (4) ⇒ (1) in Theorem 9.52. There we showed that if
X is compact via condition (4) then, for every ε > 0, there is an ε–net, that is, a finite set

{x1, x2, . . . , xn} ⊂ X

such that the finite collection of balls {B(xi, ε)} covers X. When a space X has, for every ε >
0, an ε-net, we say that X is totally bounded. We express this formally.
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Definition 9.56: Let X be a metric space. We say that X is totally bounded if for every ε > 0
there is a finite set

{x1, x2, . . . , xn} ⊂ X

such that

B(x1, ε) ∪B(x2, ε) ∪ · · · ∪B(xn, ε) = X.

The proof of (4) ⇒ (1) in Theorem 9.52 shows that a compact space is totally bounded. It
is clear that a totally bounded space must be separable. One can also characterize total bound-
edness in terms of Cauchy sequences; we leave the straightforward proof as Exercise 9:10.1.

Theorem 9.57: A metric space X is totally bounded if and only if every sequence has a
Cauchy subsequence.

We can now show that, if one replaces “closed and bounded” as a characterization of com-
pactness in IRn by “complete and totally bounded,” we obtain a characterization of compact-
ness that is valid for arbitrary metric spaces.

Theorem 9.58: A metric space is compact if and only if it is complete and totally bounded.

Proof. Suppose that X is compact. Let {xn} be a Cauchy sequence in X. By condition (3)
of Theorem 9.52, {xn} has a convergent subsequence. But a Cauchy sequence with a convergent
subsequence is itself convergent; thus X is complete. That X is totally bounded follows imme-
diately from condition (3) of Theorem 9.52 and Theorem 9.57.
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Conversely, suppose that X is complete and totally bounded. If {xn} is an arbitrary se-
quence from X, then {xn} has a Cauchy subsequence, by Theorem 9.57. This subsequence con-
verges, since X is complete. Thus X is compact by Theorem 9.52 (3). �

Exercises

9:10.1 Prove Theorem 9.57.

9:10.2 Show that the space S of Example 9.9 is bounded but not totally bounded. [Hint: Let fn(x) =
n. Compute ρ(fn, fm), and verify that S has no 1

4 -net or that {fn} has no Cauchy subsequence.]

9:10.3 Show that the space of Example 9.12 with respect to ([0, 1],L, λ) is not totally bounded. [Hint:
Let

An =

[
0,

1

2n

]
∪
[

2

2n
,

3

2n

]
∪ · · · ∪

[
2n − 2

2n
,

2n − 1

2n

]
.

Verify that {An} has no Cauchy subsequence.]

9:10.4 Show that a closed ball in L1([0, 1],L, λ) is not totally bounded. [Hint: See Exercise 9:10.3.]

9:10.5 Show that the space 2IN from Example 9.4 is compact by verifying that it is complete and totally
bounded.

9:10.6 Show that closed balls in C[a, b], M [a, b], and ℓ∞ are not compact by using Theorem 9.58.

9:10.7 Prove that a totally bounded metric space must be separable.
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9.11 Compact Sets in C(X)

Let X be a compact metric space, and let f and g be continuous real-valued functions on X. In
view of Theorem 9.55, we can define

d(f, g) = max
x∈X

|f(x) − g(x)|.
It follows readily that d is a metric on the set of continuous real-valued functions on X. We
denote the resulting metric space by C(X). We have already encountered the particular case
C[a, b]. As in that case, one verifies easily that C(X) is complete.

Our purpose here is to obtain a useful characterization of the compact subsets of C(X).
This characterization involves two properties that a family of functions on X may or may not
possess. For the first property, let us ask what characterizes the bounded subsets of C(X), since
every compact set must also be bounded.

Definition 9.59: A family F of functions on a set X is said to be uniformly bounded on X if
there exists M > 0 such that |f(x)| ≤M for all x ∈ X and f ∈ F .

It is easy to see that, if X is a compact metric space and F consists of continuous functions
on X, then the family F is uniformly bounded if and only if F is a bounded subset of C(X).

9.11.1 Arzelà–Ascoli Theorem

The other relevant notion concerns the uniformity of the continuity behavior of continuous
functions in a compact subset of C(X). Let f ∈ C(X), let x0 ∈ X, and let ε > 0. Then there
exists δ > 0 such that, if ρ(x, x0) < δ, |f(x) − f(x0)| < ε. The number δ depends on x0, ε, and
f and should perhaps be written δ = δ(x0, ε, f). Since X is assumed compact, each f ∈ C(X) is
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uniformly continuous (see the discussion preceding Theorem 9.55), so δ is independent of x0 for
a given ε and f . If F ⊂ C(X) and we can choose δ so as also to be independent of f ∈ F , we
say that F is an equicontinuous family. The concept is due to Giulio Ascoli (1843–1896).

Definition 9.60: A family F of functions on a metric space (X, ρ) is equicontinuous if for ev-
ery ε > 0 there exists δ > 0 such that, if x, y ∈ X and ρ(x, y) < δ, then |f(x) − f(y)| < ε for all
f ∈ F .

For an easy example, note that a collection of functions that satisfies a uniform Lipschitz
condition is equicontinuous.

Example 9.61: Let X = [a, b], let M > 0, C > 0, and let

F = {f :X→ IR : |f(x) − f(y)| ≤M |x− y| for all x, y ∈ [a, b]} .
Then F is an equicontinuous family. If we require in addition that |f(x)| ≤ C for all x ∈ X and
f ∈ F , then F is also uniformly bounded. Under these two conditions, we see from the next
theorem, usually attributed to both Ascoli and Cesare Arzelà (1847–1912), that the closure of
F will be a compact subset of C[a, b].

Theorem 9.62 (Arzelà–Ascoli) Let (X, ρ) be a compact metric space, and let K be a closed
subset of C(X). Then K is compact if and only if K is uniformly bounded and equicontinuous.

Proof. Since K is assumed closed in the complete space C(X), K is complete. In view of
Theorem 9.58, it suffices to show that the stated conditions taken together are equivalent to
K being totally bounded.
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Suppose first that K is totally bounded in C(X). Then K is bounded in C(X) and is there-
fore a uniformly bounded family of functions. We show that K is equicontinuous. Let ε > 0,
and let f1, f2, . . . , fn be an (ε/3)-net in K. Let f ∈ K. There exists j ≤ n such that

max
z∈X

|f(z) − fj(z)| < 1
3ε. (25)

Then, for x, y ∈ X,

|f(x) − f(y)| ≤ |f(x) − fj(x)| + |fj(x) − fj(y)| + |fj(y) − f(y)|. (26)

Since X is compact, the functions fi are uniformly continuous on X. Thus there exists δ > 0
such that

ρ(x, y) < δ, 1 ≤ i ≤ n⇒ |fi(x) − fi(y)| < ε/3. (27)

It now follows from (25), (26), and (27) that |f(x) − f(y)| < ε for all x, y ∈ X with ρ(x, y) < δ
and all f ∈ K. This shows that K is equicontinuous.

To prove the converse, suppose that K is uniformly bounded and equicontinuous. We show
that K is totally bounded. Choose M ∈ IN such that |g(x)| ≤ M for all x ∈ X and g ∈ K. Let
ε > 0. Since K is equicontinuous, there exists δ > 0 such that

ρ(x, y) < δ, g ∈ K ⇒ |g(x) − g(y)| < ε/4. (28)

Since X is compact, there is a δ-net x1, x2, . . . , xn for X. Choose m ∈ IN such that 1/m < ε/4,
and partition the interval [−M,M ] into 2Mm congruent intervals:

−M = y0 < y1 < · · · < y2Mm = M.

Consider now all n-tuples

(yi1 , yi2 , . . . , yin)
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0 x1 x2 x3 . . . xn 1

−M

yin

yi3

yi1

yi2

M

·

·

·

·
f ∈ K

Figure 9.3. An illustration for X = [0, 1].

of the numbers yi, i ≤ 2Mm. There are finitely many such n-tuples. Some such n-tuples can
be approximated within ε/4 by a function f ∈ K on the set x1, x2, . . . , xn. We shall use these
n-tuples to obtain an ε-net for K. Figure 9.3 illustrates the situation for X = [0, 1].

To be precise, if for a particular n-tuple (yi1 , . . . , yin) there exists f ∈ K such that

|f(xj) − yij | < ε/4 for all j ≤ n, (29)

associate one such f with that n-tuple. Let N be the collection of functions in K associated
with such n-tuples. The set N is finite. We show that N is an ε-net for K.
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Let g ∈ K. There exists an n-tuple (yi1 , yi2 , . . . , yin) such that

|g(xj) − yij | < ε/4 for all j ≤ n. (30)

Let f be that function in N associated with (yi1 , yi2 , . . . , yin). For x ∈ X, there exists j ≤ n
such that ρ(x, xj) < δ. Using (28) and (29), we see that

|g(x) − f(x)| ≤ |g(x) − g(xj)| + |g(xj) − yij |
+ |yij − f(xj)| + |f(xj) − f(x)| < ε.

These inequalities imply that

max
x

|f(x) − g(x)| < ε.

We have shown that N is an ε-net, so K is totally bounded, as was to be proved. �

Exercises

9:11.1 Verify that C(X) is a complete metric space.

9:11.2 Let A be a bounded subspace of C[a, b]. Prove that the set of all functions of the form

F (x) =

∫ x

a

f (t) dt

for f ∈ A is an equicontinuous family.

9:11.3 Let σ be continuous and nondecreasing on [0,∞), with σ(0) = 0. A function f ∈ C[a, b] has
modulus of continuity σ if

|f(x) − f(y)| ≤ σ(|x− y|)
for all x, y ∈ [a, b]. Let C(σ) denote

{f : σ is a modulus of continuity for f}.
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(a) Show that every f ∈ C[a, b] has a modulus of continuity.

(b) Let σ be a modulus of continuity. Show that C(σ) is an equicontinuous family.

(c) Exhibit a modulus of continuity for the class of Lipschitz functions with constant M .

(d) Let σ be a modulus of continuity. Is it necessarily true that σ ∈ C(σ) on [a, b]? What if σ is
concave down?

(e) Prove that the set

K =
{
f ∈ C[0, 1] : |f(x) − f(y)| ≤

√
|x− y| and f(0) = 0

}

is a compact subset of C[0, 1]. Is
√
x ∈ K? What about x2?

9.12 An Application of the Arzelà–Ascoli Theorem

In Section 9.8, we saw how the contraction mapping principle can be used to prove an existence
and uniqueness theorem for solutions to the differential equation y′ = f(x, y). We now use the
Arzelà–Ascoli theorem to obtain an existence theorem under much weaker hypotheses on the
function f . Exercise 9:12.1 shows that this may be, however, without uniqueness.

Theorem 9.63 (Peano) Let f be continuous on an open subset D of IR2, and let (x0, y0) be a
point in D. Then the differential equation y′ = f(x, y) has a local solution passing through the
point (x0, y0).

Proof. We shall obtain an interval I containing x0 and a family K of approximate solutions
through (x0, y0) on I. We then show that the set K is compact in C(I), and use compactness
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Figure 9.4. The set W and its projection to I = [a, b].

to show the existence of an exact solution, that is, a differentiable function k defined on I such
that

k(x0) = y0 and k′(x) = f(x, k(x)) for all x ∈ I. (31)

Let R be a closed rectangle contained in D having sides parallel to the coordinate axes and
having (x0, y0) as center. Let M ≥ 1 be an upper bound for |f | on R. Let

W = {(x, y) ∈ R : |y − y0| ≤M |x− x0|} ,
and let I = [a, b] be the projection of W onto the x-axis, as in Figure 9.4.

We next obtain a family K of approximate solutions to (31). Since W is compact in IR2,
f is uniformly continuous on W . Thus, for every ε > 0, there exists δ ∈ (0, 1) such that, if
(x, y) ∈W and (x, y) ∈W with |x− x| < δ and |y − y| < δ, then |f(x, y) − f(x, y)| < ε.
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Choose points x1, x2, . . . , xn such that

x0 < x1 < x2 < · · · < xn = b and |xi − xi−1| < δ/M

for all i = 1, . . . , n. Define a function kε on [x0, b] as follows: kε(x0) = y0 and, on [x0, x1], kε is
linear with slope f(x0, y0); on [x1, x2], take kε to be linear with slope f(x1, kε(x1)); continuing
in this way, we extend the definition of kε to all of [x0, b].

We have arrived at a function kε defined on [x0, b] whose graph is a polygonal arc through
the point (x0, y0) and is contained in W . Since the slopes of the line segments composing the
graph of kε are determined by values of the function f in W , we see that

|kε(x) − kε(x)| ≤M |x− x| (32)

for all x, x ∈ [x0, b]. Now let x ∈ [x0, b], x 6= xi, i = 0, 1, . . . , n. Then there exists j ∈ {1, 2, . . . , n}
such that xj−1 < x < xj . Noting that

|xj − xj−1| < δ/M

and using (32), we see that

|kε(x) − kε(xj−1)| ≤M |x− xj−1| < δ.

This implies that

|f(xj−1, kε(xj−1)) − f(x, kε(x))| < ε.

But k′ε(x) = f(xj−1, kε(xj−1)), so

|k′ε(x) − f(x, kε(x))| < ε. (33)

The inequality (33) is valid for all x ∈ [x0, b] except at points x in the finite set {x0, . . . , xn},
at which kε need not be differentiable. By (33), we see that the functions kε are approximate
solutions to (31).
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We have constructed a family K of functions, one function corresponding to every ε > 0.
The family K is uniformly bounded on [x0, b], since the graph of each of the functions kε is con-
tained in W . It follows from (32) that K is an equicontinuous family, since (32) does not de-
pend on ε. The Arzelà–Ascoli theorem now implies that K is compact in C[x0, b].

We can now complete the proof of the theorem. For all x ∈ [x0, b], we have

kε(x) = y0 +

∫ x

x0

k′ε (t) dt (34)

= y0 +

∫ x

x0

(f(t, kε(t)) + (k′ε(t) − f(t, kε(t)))) dt.

The fact that k′ε may fail to exist on the set {x0, x1, . . . , xn} does not affect the integral.
Thus the sequence {k(1/n)} contains a subsequence {k1/ni)} that converges uniformly to

some function k that is continuous on [x0, b]. Since f is uniformly continuous on W , the func-
tions f(t, k(1/ni)(t)) converge uniformly to the function f(t, k(t)) on [x0, b]. Noting (33), we now
infer from (34) that

k(x) = y0 +

∫ x

x0

f(t, k(t)) dt

for all x ∈ [x0, b]. It follows that k is a solution to (31) on [x0, b].
In a similar manner, we obtain a solution k to (31) on [a, x0]. The function y given by

y(x) =

{
k(x) for x ∈ [x0, b];

k(x) for x ∈ [a, x0],

satisfies (31) on all of I = [a, b], as required. �
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Exercises

9:12.1 Show that the hypotheses of Theorem 9.63 are not sufficient to guarantee the uniqueness of solu-
tions to the equation y′ = f(x, y) by taking, for example, the equation y′ = 3y2/3, y(0) = 0. Does
this example conflict with the uniqueness assertion of Theorem 9.50?

9.13 The Stone–Weierstrass Theorem

In this section we prove one of the most famous and enduring of the modern theorems of anal-
ysis. The clever blend of compactness arguments with algebraic ones both in the statement and
in the proof of the theorem makes this a typical example of the methods and viewpoint that
analysts had developed in the twentieth century.

The starting point is the approximation theorem of Karl Weierstrass asserting that the poly-
nomials form a dense subset of the metric space C[a, b]. This theorem has numerous applica-
tions and equally numerous proofs. It was Marshall Stone (1903–1989) who first viewed this
theorem in a different light. The special feature that the polynomials have is an algebraic one:
linear combinations and products of polynomials are themselves polynomials. The metric space
C[a, b] forms an algebra, that is a linear space in which a product is also defined. The polyno-
mials form a subalgebra. To this we just add some analytic arguments and the theorem takes
on a more powerful form. The setting is generalized to the space C(X), where X is a compact
metric space. (A compact topological space would do as well here, for those readers with the
appropriate background.)

Theorem 9.64 (Stone–Weierstrass) Let X be a compact metric space, and let A be a closed
subalgebra of C(X) such that 1 ∈ A and A separates points of X. Then A = C(X).
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Proof. A word about the language: “1 ∈ A” means that the function identically equal to 1 is
in the subalgebra A and that “A separates points of X” means that, for distinct x, y ∈ X, some
element f ∈ A exists for which f(x) 6= f(y). A subalgebra is just a subset closed under linear
combinations and products.

Our proof takes as a starting point an idea due to Lebesgue: we use the fact that the func-
tion h(t) = |t| on [−1, 1] can itself be approximated uniformly by a polynomial on [−1, 1]. We
take this for granted (see Exercise 9:13.1 or Section 15.6).

The first step is to show that, if |f(x)| ≤ 1 for all x ∈ X and f ∈ A, then |f | ∈ A. Using
Lebesgue’s idea let ε > 0 and choose a polynomial so that

|a0 + a1t . . . ant
n − |t|| < ε (t ∈ [−1, 1]).

Then, certainly,

|a0 + a1f(x) . . . an(f(x))n − |f(x)|| < ε (x ∈ X).

But a0 + a1f(x) . . . an(f(x))n belongs to A since A is an algebra. As such a choice is possible
for every ε, and the function |f | is in the closure of A, that is A itself. From this we see, in fact,
that f ∈ A implies that |f | ∈ A. Choose c positive so that c|f(x)| ≤ 1; then cf ∈ A and so also
|cf | ∈ A, and hence |f | = c−1|cf | ∈ A as required.

For the second step, we claim that if f , g are members of A then so too are both max{f, g}
and min{f, g}. This is immediate since

max{f, g} = 1
2(f + g) + 1

2 |f − g|
and

min{f, g} = 1
2(f + g) − 1

2 |f − g|,
and both (f + g) and |f − g| belong to A. By induction then, it follows that if f1, f2, . . . fn ∈ A
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then max{f1, f2, . . . fn} and min{f1, f2, . . . fn} are in A.
Now, finally, fix f ∈ C(X), and let ε > 0. The proof is completed if we can show that there

is a function F in A so that everywhere in X the inequality |F (z) − f(z)| < ε must hold.
Consider any two distinct points x, y ∈ X. Let gx be the function on X that assumes the

constant value f(x) (this belongs to A by hypothesis), and choose some other hxy ∈ A, so that
hxy(x) 6= hxy(y) (again possible by hypothesis); by subtracting a suitable function in A we can
suppose that hxy(x) = 0. We can find a constant a so that the function fxy = gx + ahxy satisfies
fxy(x) = f(x) and fxy(y) = f(y). Clearly, fxy is also in A. Thus far we have shown only that
for any two given points x, y ∈ X we can find a function fxy in A that agrees with our function
f at the two given points. Two compactness arguments are needed to complete the proof.

Hold x fixed. For each y ∈ X, there is an open ball By containing y so that

|fxy(z) − fxy(y)| < ε/2 and |f(y) − f(z)| < ε/2

for all z ∈ By. This just uses the continuity of the functions at the point y. In particular, since
fxy(y) = f(y), we have

fxy(z) − f(z) ≤ |fxy(z) − fxy(y)| + |f(y) − f(z)| < ε

for all z ∈ By. As X is compact, we can reduce the open covering {By : y ∈ X} to a finite
subcovering, say By1 ,By2 ,By3 . . . Bym . Define

Fx = min{fxy1 , fxy2 , . . . fxym}
and observe that Fx is in A, that Fx(x) = f(x), and everywhere in X the inequality Fx(z) <
f(z) + ε must hold. Thus far, to keep track of how far we have come, we know that for any
given point x ∈ X we can find a function Fx in A that agrees with our function f at the point
x and remains below f + ε everywhere. One more compactness argument is needed to complete
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the proof.
For each x ∈ X, there is an open ball Ax containing x so that

|Fx(z) − Fx(x)| < ε/2 and |f(x) − f(z)| < ε/2

for all z ∈ Ax. This just uses the continuity of the functions at the point x. In particular, since
Fx(x) = f(x), we have

Fx(z) − f(z) ≥ −|Fx(z) − Fx(x)| − |f(x) − f(z)| > −ε
for all z ∈ Ax. Since X is compact, the open covering

{Ay : y ∈ X}
can be reduced to a finite subcovering say, Ay1 ,Ay2 ,Ay3 . . . Ayp .

Define

F = max{Fx1 , Fx2 , . . . , Fxp},
and observe that F is in A and that everywhere in X the inequality |F (z) − f(z)| < ε must
hold, as required to complete the proof. �

9.13.1 The Weierstrass approximation theorem

The classical Weierstrass approximation theorem follows from this as a corollary.

Corollary 9.65: Every continuous function on a compact subset K of IRn can be uniformly
approximated on K by a polynomial in the coordinates.

Proof. The polynomials in the coordinates form a subalgebra and can be considered as con-
tinuous functions on K and hence as elements of C(K). Polynomials separate points and con-
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tain the function identically 1, and so the theorem applies. �

Many classes of functions form dense subalgebras in appropriate function spaces; Exercise 9:13.2
gives another instance. We shall return to these ideas in Section 15.6, but from an entirely dif-
ferent perspective.

Exercises

9:13.1 Show that the function h(t) = |t| can be approximated uniformly by a polynomial on [−1, 1].
[Hint: The function g(t) =

√
t+ a2 can be approximated uniformly by a Taylor polynomial p on

[0, 1]. If |g(t) − p(t)| < ε/2 for all t ∈ [0, 1], then

|
√
x2 + a2 − p(x2)| < ε/2 (x ∈ [−1, 1]).

Use a = ε/2, and then

||x| − p(x2)| ≤ ||x| −
√
x2 + a2| + |

√
x2 + a2 − p(x2)| < ε.]

9:13.2 Show that every continuous, 2π–periodic function on IR can be uniformly approximated by a
trigonometric polynomial

1
2a0 +

n∑

j=1

(aj cos jt+ bj sin jt) .

[Hint: Let T = [−π, π], but considered as the unit circle (with −π and π identified) in IR2. Then
every continuous, 2π–periodic function on IR can be considered an element of C(T ).]

9:13.3 Let X be the set of complex numbers {z : |z| ≤ 1}, and let C(X,C) be the metric space of con-
tinuous complex-valued functions on X with the sup metric. Show that the complex polynomials
are not dense in C(X,C).
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9:13.4 Give a complex version of the Stone–Weierstrass theorem. (In view of Exercise 9:13.3 the hy-
potheses must be strengthened; the additional assumption is that the subalgebra is closed also
under complex conjugation.)

9.14 The Isoperimetric Problem

In this section we present another application of a compactness argument to verify that the cir-
cle is the solution of the isoperimetric problem.

Consider the family G of open sets in the plane that are bounded by a simple closed curve
of length 1. Which of these sets has the largest area? This problem is called the isoperimetric
problem, the length of the bounding curve being called the perimeter of the set. Some simple
experimentation may lead one to believe that the answer is an open disk, bounded by a circle.
J. Steiner was the first to “prove” this, in several different ways. We use quotation marks be-
cause Steiner’s arguments are subject to criticism. Here is one of his arguments; it is simple and
appealing, but not a proof!

First, observe that if a set A ∈ G is a solution then A must be convex. Otherwise, one
could replace an arc of the bounding curve for A with a line segment to arrive at a set B with a
smaller perimeter and larger area, as in Figure 9.5.

Next we note that if a chord of a convex set A ∈ G bisects the perimeter it must also bisect
the area. If not, there is a set B ∈ G with the same perimeter, but larger area. As a third el-
ementary observation, we note that, among all triangles with two given sides, the triangle for
which these sides are perpendicular encloses the largest area.

We can now complete Steiner’s argument. Suppose that A is a convex set bounded by the
curve C of length 1. A simple continuity argument shows that there exists a chord L that bi-
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Figure 9.5. A solution to the isoperimetric problem must be convex.

sects the length of C. Our second observation shows that if A solves the isoperimetric problem,
then L also bisects the area of A. Let p be any point of C other than the endpoints of L, and
consider the triangle T whose vertices are p and the endpoints of L. Then T must be a right
triangle (Exercise 9:14.1). Thus every such triangle must be a right triangle. It follows from el-
ementary geometry that C must be a circle: all inscribed angles determined by a diameter are
right angles.

The flaw in Steiner’s argument is easy to detect. His argument shows that if C is not a
circle then there exists a convex curve C1 of the same perimeter, but bounding a set A ∈ G
of larger area than that of the set bounded by C. But this is not to say that C does the job.
There may be no solution to the problem. Steiner’s argument would work equally well to solve
a similar problem: among all sets bounded by simple closed curves of length less than 1, which
bounds the largest area? Steiner’s argument would simply show that if C is not a circle it does
not solve the problem. But there is no solution.

To solve the isoperimetric problem, we show that there is a solution. Steiner’s argument
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then shows that the solution must be bounded by a circle. Our proof of existence will be based
on the fact that a continuous real-valued function on a compact space achieves a maximum.
The continuous function will be the “area” function λ = λ2. The space will be the space of
convex sets.

Let (K, ρ) be the metric space consisting of compact subsets of the square [0, 1] × [0, 1] and
furnished with the Hausdorff metric (see Example 9.13). In Section 9.6, we saw how to prove
that K is complete. We now show that it is compact.

Theorem 9.66: The space K is compact.

Proof. Since K is complete, it suffices, by Theorem 9.58, to show that K is totally bounded.
Let ε > 0. Choose n ∈ IN such that 2−n

√
2 < ε and partition the square [0, 1] × [0, 1] into

4n nonoverlapping closed squares, each of side length 2−n. Let S denote the family of these
squares, and let T denote the family of nonempty finite unions of members of S. Thus T has

24n−1

members. We show that T is an ε-net for K.
Let K ∈ K. Let SK denote those members of S that K intersects, and let

T =
⋃

S∈SK

S.

Then T ∈ T . Now K ⊂ T , so K ⊂ Tε. To see that T ⊂ Kε, we need only observe that the
diameter of each member of S is

√
2/2n < ε and that K and T intersect exactly the same mem-

bers of S. Thus ρ(K,T ) < ε, and K is totally bounded, as was to be shown. �
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The space (K, ρ) is compact, but the context of the isoperimetric problem requires us to
deal with a certain subspace of K: the space of those sets in K with nonempty interior that
are convex and bounded by a convex curve of length 1. Our next objective is to show that this
space is closed in K and therefore compact. We need some elementary lemmas whose proofs we
leave as exercises.

Lemma 9.67: Let K∗ = {K ∈ K : K is convex}. Then K∗ is closed in K and therefore com-
pact.

For K ∈ K∗, let λ(K) be the Lebesgue measure of K. If K has interior, let α(K) be the
length of the boundary curve C of K. That λ is defined on K∗ follows immediately from the
fact that Lebesgue measure is defined for all closed sets. In connection with the function α, we
note that the curve C can be decomposed into the union of the graphs of two functions, one
concave up and the other concave down. Such functions have one-sided derivatives everywhere,
and these derivatives are monotonic. It follows that C has finite length. We shall not prove any
of these statements.

Lemma 9.68: Let ε > 0, let K ∈ K∗, and let Kε be the union of all closed disks of radius ε
centered at points of K. If K has a nonempty interior, then

α(Kε) = α(K) + 2πε

and

λ(Kε) = λ(K) + εα(K) + πε2.

It follows readily from Lemma 9.68 that, if K ∈ K∗ and K has interior points, then α and λ
are continuous at K. Exercises 9:14.2 and 9:14.3 show that λ is not continuous on all of K and
that α is not continuous on all of K∗.
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Now let K∗∗ consist of those members of K∗ such that α(K) = 1 and λ(K) ≥ 1/(4π). The
set K∗∗ is not empty, since any disk K inside the square [0, 1]×[0, 1] and having radius 1/(2π) is
a member of K∗∗. It follows from Lemma 9.68 that K∗∗ is closed in the compact space K∗ and
is therefore compact. (See Exercise 9:14.5.) It now follows from Theorem 9.55 that the function
λ achieves a maximum on K∗∗. Steiner’s argument shows that this maximum can be achieved
only for K a disk. Thus a disk of radius 1/(2π) provides a solution to the isoperimetric prob-
lem.

We mention that elementary proofs that the disk provides a solution to the isoperimetric
problem are available.3

Exercises

9:14.1 Refer to Steiner’s argument. Prove that T must be a right triangle.

9:14.2 Show that λ is upper semicontinuous, but not continuous, on K. [Hint: An arbitrary K ∈ K can
be approximated by finite sets.]

9:14.3 Show that α is not continuous on all of K∗. [Hint: A line segment can be approached by simple
closed curves.]

9:14.4 (The problem of Dido.) Dido, the mythical founder and queen of Carthage, was given an ox and
told she would be given as much land as she could surround with its hide. She cut the skin into
strips and used the straight seashore together with the strips to enclose a much larger tract of land
than had been anticipated.

3 See, for example, I. M. Yaglom and V. G. Boltyanski, Convex Figures, Holt, Rinehart and Winston (1961).
This reference also provides a proof of Lemma 9.68, as well as a discussion of the isoperimetric problem and
related topics.
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(a) Given a line segment L of length ℓ, which convex set bounded by L and a curve of length
s > ℓ has the largest area?

(b) Given a line segment L of length ℓ, which convex set bounded by a subsegment of L and a
curve of length s < ℓ has the largest area?

9:14.5 Prove that the set K∗∗ defined after the statement of Lemma 9.68 is closed in K∗. [Hint: Ob-
serve that if A,B ∈ K∗ and A ⊂ B, then λ(A) ≤ λ(B) and α(A) ≤ α(B). Use Lemma 9.68.]

9.15 More on Convergence

Most of the notions of convergence that we have encountered can be expressed within the set-
ting of a metric space; most, but not all. The more general notion of a topological space cap-
tures those ideas of convergence that cannot be expressed by a metric. This section contains a
discussion that leads to and introduces the concept of a topological space. We shall not, how-
ever, assume any familiarity with topological ideas in the sequel, and this section may easily be
omitted.

We have already noticed how the structure of a metric space provides a unified framework
for studying many familiar forms of convergence. Consider, for example, the chart in Table 9.1.
Each of the spaces can be viewed as a function space. Sequence spaces also allow this interpre-
tation, since a sequence can be viewed as a function on IN. In each example, the connection
between convergence in the metric and the familiar notion of convergence is clear. A sequence
{fn} converges with respect to the given metric ρ, that is, ρ(fn, f) → 0, if and only if the se-
quence converges in the familiar sense.

Let us look at pointwise convergence a bit more closely. We might wish to obtain a metric
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Example Space Metric ρ(f, g) Familiar Name

9.7 M [a, b] sup
a≤x≤b

|f(x) − g(x)| Uniform convergence

9.8 L1(X)

∫

X

|f − g| dµ Mean convergence

9.9 S

∫ 1

0

|f − g|

1 + |f − g|
dµ Convergence in measure

9.2 s

∞∑

i=1

|fi − gi|

1 + |fi − gi|
Pointwise convergence

Table 9.1. Convergence in function spaces.

ρ on the set F of real-valued functions on [a, b] such that ρ(fn, f) → 0 if and only if {fn} con-
verges pointwise to f . What must be true about the metric ρ?

Suppose that ρ is such a metric. For x0 ∈ [a, b], let

U(x0) = {f ∈ F : |f(x0)| < 1} .
First note that U(x0) must be open in F . To see this, we verify that Ũ(x0) is closed. Let {fk}
be a sequence of functions in Ũ(x0) such that ρ(fk, f) → 0 for some f ∈ F . Then fk → f
pointwise, so |f(x0)| ≥ 1. We thus have f ∈ Ũ(x0). This shows that Ũ(x0) is closed, so U(x0) is
open. It follows that U(x0) is a neighborhood of the function f ≡ 0, so there exists n ∈ IN such
that B(0, 1/n) ⊂ U(x0).
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Now let

An = {x ∈ [a, b] : B (0, 1/n) ⊂ U(x)} .
Since [a, b] is uncountable, there exists n such that the set An is infinite. Let X = {x1, x2, . . . }
be a countable subset of An. Consider now the sequence {fk}, where fk = χ

{xk}
. It is clear

that, for every x ∈ [a, b], fk(x) → 0, so fk → 0 pointwise. But fk ∈ B̃(0, 1/n) for all n ∈ IN, so
ρ(fk, 0) ≥ 1/n for all k ∈ IN. Thus {fk} does not converge to zero with respect to the metric ρ.
This shows that no metric can describe pointwise convergence on F .

Let us try to obtain a different scheme for describing pointwise convergence on [a, b] by
defining what is meant by a topology.

Definition 9.69: A topology for a set X is a family T of subsets of X satisfying the following
conditions:

1. X ∈ T , ∅ ∈ T .

2. If U1 ∈ T and U2 ∈ T , then U1 ∩ U2 ∈ T .

3. If Uα ∈ T for all α ∈ A, then
⋃

α∈A Uα ∈ T .

In (3), the set A is an arbitrary index set; it need not be countable. A topological space is a pair
(X, T ) with X a set and T a topology on X.

For example, the open sets in a metric space X form a topology for X merely because they
satisfy these properties: they are closed under finite intersections and arbitrary unions. In gen-
eral, one calls the members of T open sets and the complements of open sets closed sets.
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Let us return to our set F of real-valued functions on [a, b]. For x ∈ [a, b] and G open in IR,
G 6= ∅, let

U(x,G) = {f ∈ F : f(x) ∈ G} .
We obtain a topology T for F as follows: First, we consider all sets of the form

V = U(x1, G1) ∩ U(x2, G2) ∩ · · · ∩ U(xn, Gn). (35)

We denote the family of sets of the form (35) by B. The family B forms a basis for T . This
means that T consists of all sets that are unions of sets of B. One verifies easily that T satis-
fies the conditions of Definition 9.69.

Observe that if U ∈ T and f ∈ U there exists a set V ∈ B such that f ∈ V ⊂ U , since U is a
union of sets in B. Let V ∈ B

V = U(x1, G1) ∩ U(x2, G2) ∩ · · · ∩ U(xn, Gn).

Then f ∈ V if and only if f(xi) ∈ Gi for all i = 1, . . . , n. It follows that a sequence {fn} from
F converges pointwise to f ∈ F if and only if, for all V ∈ B that contain f , there exists N ∈ IN
such that fn ∈ V for all n ≥ N (Exercise 9:15.2).

Let us summarize the preceding discussion. We have seen that no metric can describe point-
wise convergence for sequences from F . But a more general notion than metric space, that of
topological space, can.

Let us look deeper into the situation. Let (X, ρ) be a metric space. Starting with the notion
of metric convergence, we can define closed sets: a set A is closed if and only if x ∈ A whenever
x is a limit of a convergent sequence from A. We can then define a set to be open if its comple-
ment is closed. Thus we can obtain the metric topology by taking sequential convergence as a
primitive notion. Can we do the same for topological spaces?
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Consider once again the space F . Let

A = {f ∈ F : f ≥ 0 except on a countable set} .
If {fn} is a sequence from A, and fn → f pointwise, then f ∈ A. Thus A is closed under point-
wise convergence. But A is not a closed set, since

Ã = {f ∈ F : f(x) < 0 on an uncountable set}
is not a member of T . To see this, let f(x) ≡ −1. Then f ∈ Ã. Choose V ∈ B such that f ∈ V ,
say,

V = U(x1, G1) ∩ U(x2, G2) ∩ · · · ∩ U(xn, Gn).

Define g ∈ F by

g(x) =

{
−1, if x = x1, . . . , xn;
1, otherwise.

Then g ∈ V ∩ A. It follows that no open set containing f is contained in Ã, so Ã is not open
and A is not closed.

What the preceding discussion shows is that, in the general setting of a topological space,
one cannot take sequential convergence as a primitive notion and obtain the topology from con-
vergence. It turns out that a notion of convergence more general than sequential convergence
can be taken as primitive. It is beyond our purposes to develop such a notion. We mention only
that it can be made to include certain convergencelike concepts that we have already encoun-
tered. For example “contraction by inclusion,” Section 8.6, fits into the framework of general-
ized convergence. Recall that no sequence had enough members to describe convergence ade-
quately in that setting [Exercise 8:6.3 (c)].
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Exercises

9:15.1 Show that T as determined by the basis of sets of the form (35) is a topology on F .

9:15.2 Show that fn → f pointwise if and only if, for every V ∈ B, f ∈ V , there exists N ∈ IN such that
fn ∈ V for all n ≥ N .

9:15.3 Let X be a countable set, and let F denote the real-valued functions on X. Provide a metric for
F such that ρ(fn, f) → 0 if and only if fn → f pointwise in X. Determine where the argument we
gave to show that no such metric basis exists when X = [a, b] breaks down when X is countable.

9:15.4 Refer to our discussion of the family F of real-valued functions on [a, b]. The family of sets B ⊂
T forms a basis for T . This means that each U ∈ T is a union of sets from B. If we denote by
B(f) those members of B that contain f , we find that B(f) is uncountable. Show that, if V is any
collection of sets in B satisfying the conditions (i) 0 ∈ V for all V ∈ V and (ii) if 0 ∈ U ∈ T , there
exists V ∈ V such that 0 ∈ V ⊂ U , then V must be uncountable. Use this to show that there is no
metric ρ on F for which a set S is open relative to ρ if and only if S ∈ T .

9.16 Additional Problems for Chapter 9

9:16.1 Let f be defined on a subset E of a metric space X and have values in a complete metric space
Y . Prove that if f is continuous on E then f can be extended to a continuous function defined on
a set H of type Gδ such that H ⊃ E. (For example, any real-valued function defined and continu-
ous on Q can be extended to a function continuous on some set H of type Gδ that contains Q.)

9:16.2 Let E be a subset of a metric space X. If every continuous function on E is uniformly contin-
uous on E, then show that E is closed but not necessarily compact. [Hint: If x is a limit point
of E, but x /∈ E, consider the function f(x) = [dist(x,E)]−1. Regarding compactness, consider
E = X = IN.]
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9:16.3 Let (X,M, µ) be a complete measure space with µ(X) = 1. Define an equivalence relation on M
by saying that A ≡ B if µ(A △ B) = 0, and let M(µ) be the family of equivalence classes. Let
Pn = (An, Bn) be a sequence of partitions of X, that is, the sets An, Bn ∈ M, An ∩ Bn = ∅, and
µ(An ∪Bn) = 1. Define

|Pn+1 − Pn| = µ(An+1 △An) + µ(Bn+1 △Bn).

(a) Show that, with the metric ρ(A,B) = µ(A△B), M(µ) is a complete metric space.

(b) Show that if |Pn+1 − Pn| ≤ 2−n then there is a partition P = (A,B) so that |Pn − P | → 0.

(c) If, in addition, µ(An)µ(Bn) > 0 for all n, can you conclude that µ(A)µ(B) > 0?

9:16.4♦ (Scattered sets) A set E in a metric space X is called dense-in-itself if E has no isolated points.
A set S ⊂ X is called scattered if the only subset of E that is dense-in-itself is the empty set.

(a) Prove that a set each of whose points is isolated is scattered, but that its closure need not
be. [Hint: Consider the midpoints of the intervals contiguous to the Cantor set.]

(b) Prove that if X is dense-in-itself every scattered subset S of X is nowhere dense. Thus X \ S
is dense-in-itself.

(c) Prove that the union of two scattered sets is scattered.

(d) Prove that every metric space X can be expressed in the form X = P ∪ S, where P is perfect
and S is scattered. [Hint: Let P be the union of all sets in X that are dense-in-themselves.]

(e) Prove that the boundary of a scattered set is nowhere dense.

(f) Prove that a necessary and sufficient condition that S ⊂ X be scattered is that, for every
perfect set P ⊂ X, S ∩ P is nowhere dense in P .

(g) Suppose that X is separable and S ⊂ X is scattered. Prove that S is denumerable. Show
that the statement is false without the assumption that X is separable.
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W (S) (W ◦ W )(S)

Figure 9.6. Illustration for Exercise 9:16.6 (c).

9:16.5 (Cf. Corollary 3.15) Let µ be a finite, metric outer measure on a complete, separable metric
space X. Show that, for every µ–measurable set E ⊂ X,

µ(E) = sup{µ(K) : K ⊂ E, K compact}.
[Hint: It is enough to show that

µ(X) = sup{µ(K) : K ⊂ X, K compact}.
For each n, pick a sequence of closed balls Bin covering X with diameters smaller than 2−n. Choose
j(n) so that

µ


X \

⋃

i≤j(n)

Bin


 < ε2−n−1,

and set K =
⋂

n

⋃
i≤j(n)Bin. Show that K is totally bounded.]

9:16.6 (Collage theorem) The purpose of this exercise is to use the theory of contraction maps to lead
to the collage theorem. This theorem figures in the technique of “fractal image compression” that
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is used to encode and store graphic images in computers.4 Let w1, w2, . . . , wn be contraction maps
on the square S = [0, 1] × [0, 1]. For example, for n = 2m, each wi might map S onto the ith
square in a “tiling” of S by 2m smaller squares. Let (K, h) denote the space of nonempty compact
subsets of S, with h the Hausdorff metric (see Example 9.13 and Theorem 9.66). Let W : K → K
be defined by W (K) =

⋃n
i=1 wi(K). Let α be the maximum of the contraction factors of the maps

wi, i = 1, 2, . . . , n.

(a) Prove that W is a contraction map with factor α on K. Thus W has a unique fixed point in
K. This means there exists a unique nonempty compact subset A of S such that W (A) = A.
The set A is called the attractor of the iterated function system (IFS) {w1, . . . , wn}.

(b) Verify that for the system involving tilings above A = S. Thus S is a collage of n smaller
copies of itself.

(c) Let w1(x, y) =
(

1
3x,

1
3y
)
, and choose w2, w3,and w4 as appropriate modifications of w1 so

that W (S) is a union of squares located in the corners of S. Iteration of W leads to the limit
set A = C × C, where C is the Cantor ternary set. See Figure 9.6 for illustrations of the first
two stages of the iteration. Verify analytically that W (A) = A. Observe that, if one replaces
the 1

3 in w1 by 1
2 and defines appropriate modified functions w2, w3, and w4, one obtains the

tiling system of part (b).

The collage theorem below is useful in solving the following problem: Given K ∈ K, find an IFS
that has K as its attractor.

(d) Prove the collage theorem:

4An interesting recent discussion of the technique can be found in M. F. Barnsley, “Fractal image compres-
sion,” Notices Amer. Math. Soc. 43 (6) June 1996, 657–662. That discussion also includes some pictures that
illustrate how faithfully the method reproduces an original image.
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Theorem (Collage theorem) Let (w1, . . . , wn) be an IFS for S with contraction
factor α, let A be its attractor, and let K ∈ K. Then

h(K,A) ≤ (1 − α)−1h(K,W (K)).

[Hint: The proof is easy. Prove the analogous result for any contraction mapping on a com-
plete metric space.]

This theorem tells us that, if K is near W (K), then K is also near A. The problem thus reduces
to finding the maps wi, i = 1, . . . , n, such that, for an original “picture” K, h(K,W (K)) is small.
(The Barnsley article cited in the footnote discusses how this can be done.) Once one has W so
that K is its attractor, we have

K = W (K) =
n⋃

i=1

wi(K).

Thus K is a collage. The technique and variants have been used in a variety of ways, including
pattern recognition (e.g., comparison of fingerprints).
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Chapter 10

BAIRE CATEGORY

In this chapter we study the Baire category theorem in complete (or topologically complete)
metric spaces. This theorem offers one of the most basic and useful methods for proving exis-
tence theorems. Our emphasis is often on applications to illustrate this.

We have seen category notions already in the setting of the real line, which is where Baire
originated his ideas. In our first section we introduce the ideas from a new perspective, that of
the Banach–Mazur game. In Section 10.3 we show that the Banach–Mazur game can be used to
characterize category notions and to obtain proofs of category assertions. Sections 10.4 and 10.5
study the concept of a Baire 1 function and give some applications.

Although the setting is mainly that of a complete metric space we see in Section 10.6 that
category arguments can be conducted in more general metric spaces, those that are topologi-
cally complete. Finally, we conclude with some applications to function spaces.

677
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10.1 The Banach-Mazur Game on the Real Line

We introduce the fundamental theorem of our chapter via a game between two players (A) and
(B), played for the moment on the real line.

Player (A) is given a subset A of I0 = [0, 1], and player (B) is given the complementary set
B = Ã = [0, 1]\A. Player (A) selects a closed interval I1 ⊂ I0; then (B) chooses a closed interval
I2 ⊂ I1. The players alternate moves, a move consisting of selecting a closed interval inside the
previously chosen interval. The players determine a nested sequences of closed intervals, (A)
choosing those with odd index, (B) those with even index. If

A ∩
∞⋂

n=1

In 6= ∅,

then player (A) wins; otherwise, (B) wins. The goal of player (A) is to make sure that the in-
tersection contains a point of A; the goal of (B) is for the intersection to be empty or to contain
only points of B.

One expects that player (A) should win if his set A is “large,” while player (B) should win
if his set is “large.” It is not, however, immediately clear what large and small might mean for
this game.

It is easy to see that, if the set A given to (A) contains an interval J , then (A) can win
by choosing I1 ⊂ J . Let us consider a more interesting example. Let A consist of the irra-
tional numbers in [0, 1]. Player (A) can win by following the strategy that we now describe. Let
q0, q1, q2, . . . be an enumeration of Q ∩ [0, 1]. Let I1 be any closed interval such that q0 /∈ I1.
Inductively, suppose that I1, I2, . . . , I2n have been chosen according to the rules of the game. It
is now time for (A) to choose I2n+1. The set {q0, q1, q2, . . . , qn} is finite, so there exists a closed
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interval I2n+1 ⊂ I2n such that

I2n+1 ∩ {q0, q1, q2, . . . , qn}

is empty. Player (A) chooses such an interval. Since, for each n ∈ IN, qn /∈ I2n+1, the set
⋂∞

n=1 In
contains no rational numbers, but, as a nested sequence of closed intervals,

⋂∞
n=1 In 6= ∅. Thus

A ∩
∞⋂

n=1

In 6= ∅,

and (A) wins.
Using informal language, we can say that player (A) has a strategy to win: no matter how

(B) plays, (A) can “answer” each move (B) makes in such a way that

A ∩
∞⋂

n=1

In 6= ∅.

Player (A) has an advantage. The set A is larger than the set B. But in what sense is it larger?
It is not the fact that λ(A) = 1 while λ(B) = 0 that matters here. It is something else. It is the
fact that, given an interval I2n, player (A) can choose I2n+1 inside I2n in such a way that I2n+1

misses the set {q0, q1, q2, . . . , qn}.
Let us elaborate a bit. Suppose that for each n ∈ IN we replace {qn} with a set Qn such

that, given any interval J ⊂ [0, 1] and any n ∈ IN, there exists an interval I ⊂ J such that

I ∩ (Q1 ∪Q2 ∪ · · · ∪Qn) = ∅.

Then the same “strategy” will prevail: we see that the set
⋂∞

n=1 In will be nonempty and will
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miss the set
⋃∞

n=1Qn. Thus, if

B =
∞⋃

n=1

Qn,

player (A) has a winning strategy. It is in this sense that the set B is “small.” The set A is
“large” because the set B is “small.”

Let us make the preceding discussion precise. Let (X, ρ) be a metric space. A set S ⊂ X is
called nowhere dense if, given any open ball B(x, ε) in X, there exists an open ball B(y, δ) ⊂
B(x, ε) such that S ∩B(y, δ) = ∅. In other words, S fails to be dense in any open ball. It is easy
to check that S is nowhere dense if and only if S has empty interior. It is likewise easy to verify
(Exercise 10:2.1) that a finite union of nowhere dense sets in X is also nowhere dense.

Thus, if B =
⋃∞

n=1Qn in the game described, and each of the sets Qn is nowhere dense,
player (A) can use the strategy that we indicated. It will then follow that

⋂∞
n=1 In contains no

points of B. For (A) to win, however,
⋂∞

n=1 In must contain a point in A; that is,
⋂∞

n=1 In must
be nonempty. (For our game on [0,1], that

⋂∞
n=1 In is nonempty follows from a version of the

Cantor intersection theorem.) The statement that
⋂∞

n=1 In 6= ∅ implies that
⋃∞

n=1Qn is not all
of [0,1]. Thus [0,1] cannot be expressed as a countable union of nowhere dense sets.

10.2 The Baire Category Theorem

The motivational discussion of the preceding section provides the essence of a proof of our main
theorem.
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Theorem 10.1 (Baire category) Let (X, ρ) be a complete metric space, and let S be a count-
able union of nowhere dense sets in X. Then the complement of S, the set S̃ = X \ S is dense
in X.

Proof. Let S =
⋃∞

n=1 Sn, where each of the sets Sn is nowhere dense, and let B0 be a nonempty
open ball in X. We show that this ball contains points that are in the complement of S, i.e.,
that S̃ ∩ B0 6= ∅. Choose, inductively, a nested sequence of balls Bn = Bn(xn, rn) with rn < 1/n
such that

Bn+1 ⊂ Bn \ Sn+1.

To see that this is possible, note first that Bn \ Sn+1 6= ∅, since Sn+1, and therefore Sn+1 is
nowhere dense. Thus we can choose

xn+1 ∈ Bn \ Sn+1.

Since Sn+1 is closed,

dist(xn+1, Sn+1) > 0,

so we can choose Bn+1 as required. The sequence {xn} is a Cauchy sequence since, for n,m ≥
N ,

ρ(xn, xm) ≤ ρ(xn, xN ) + ρ(xN , xm) < 2N−1.

Because X is complete, there exists x ∈ X such that xn → x. But xn+1 ∈ Bn for all n, so

x ∈
∞⋂

n=1

Bn ⊂ B0 ∩ S̃,

as was to be proved. �
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We shall make frequent use of the Baire category theorem. In particular, we devote Sec-
tions 10.4 and 10.7 to specific applications. See also the exercises for this section.

10.2.1 Terminology for applications of the Baire theorem

The following terminology is standard:

• A set A ⊂ X is called first category if A is a countable union of nowhere dense sets.

• A set that is not of the first category is called a set of the second category.

• The complement of a first-category set is called a residual set.

For complete metric spaces, first category sets are the “small” sets and residual sets are the
“large” sets in the sense of category. Second-category sets are merely “not small.” For spaces
that are not complete, a residual set can be empty (e.g., the entire space Q is of the first cat-
egory). On the other hand, consider the subspace IN of IR. As a subset of IR, IN is of the first
category, since {n} is nowhere dense in IR for each n ∈ IN. But as a space in itself, IN cannot be
expressed as a countable union of nowhere dense sets, since each set {n} is dense in B(n, 1

2). In
fact, the only residual set in IN is IN itself.

Let us illustrate some of the concepts of this section.

Theorem 10.2: The space c of convergent sequences is nowhere dense in the space ℓ∞ of all
bounded sequences.

Proof. It suffices to show that c is closed in ℓ∞ and that ℓ∞ \ c is dense in ℓ∞ (See Exer-
cise 10:2.4). That c is closed follows from Exercise 9:2.7. To show that the complement of c is
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dense, let B(x, ε) be an open ball in ℓ∞. If x 6∈ c, there is nothing further to prove, so assume
that x ∈ c. Let x = {xk} with limk→∞ xk = α. There exists N ∈ IN such that |xk − α| < ε/2 if
k ≥ N .

Choose y = {yk} in ℓ∞ such that yk = xk if k < N and

yk =

{
α+ ε/2, if k ≥ N , k odd;
α− ε/2, if k ≥ N , k even.

Then ρ(x, y) = supk |xk − yk| < ε, so y ∈ B(x, ε). Since

lim sup yk = α+ 1
2ε and lim inf yk = α− 1

2ε,

it follows that y 6∈ c. This shows that ℓ∞ \ c is dense in ℓ∞ and hence c is nowhere dense. �

10.2.2 Typical properties

Recall that when a property is valid for all points in a measure space, except for a set of mea-
sure zero, we say that the property holds almost everywhere, abbreviated a.e. Let us introduce
similar language when dealing with a complete metric space. If a property is valid for all points
in a complete metric space except for a set of the first category, we shall say that the property
holds typically. Other terms in common usage are generically and residually.

Thus, in connection with Example 10.2, we can say that, typically, elements of ℓ∞ are diver-
gent sequences or that the typical element in ℓ∞ is divergent. To use such language, one must
have a specific complete metric space in mind, just as in the setting of measure spaces the term
“almost everywhere” pertains to a specific measure.

Example 10.3: The statement “the typical real number is irrational” is correct when we as-
sume the usual metric on IR. It would be false relative to the metric ρ(x, y) = 1 for all x 6= y
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in IR. With this latter metric, a property is typical if and only if it holds for all real numbers.
Thus this kind of remark should be made with some restraint.

Theorem 10.4: The typical function f in C[a, b] is nowhere monotonic; that is, it is mono-
tonic on no open subinterval of [a, b].

Proof. Let I denote an open subinterval of [a, b], and let

A(I) = {f ∈ C[a, b] : f is nondecreasing on I} .
We show that A(I) is nowhere dense in C[a, b] by showing that A(I) is closed and has a dense
complement in C[a, b].

Since a uniform limit of a sequence of functions that are nondecreasing on an open interval
is also nondecreasing on that interval, A(I) is closed. Let B(f, ε) be an open ball in C[a, b]. As
in Example 10.2, if f 6∈ A(I), there is nothing to prove, so assume that f is nondecreasing on I.
Using the continuity of f , choose x1 < x2 in I such that f(x2)−f(x1) < ε/3. Choose g ∈ B(f, ε)
such that g(x1) = f(x1) and g(x2) = f(x2) − ε/3. For example, g can be chosen to equal f
except on a small neighborhood of x2. Then

g ∈ Ã(I) ∩B(f, ε),

so Ã(I) is dense. Thus A(I) is nowhere dense.
Now let {Ik} be an enumeration of those open subintervals of [a, b] having rational end-

points. If f ∈ C[a, b] is nondecreasing on some interval I ⊂ [a, b], then there exists k ∈ IN such
that f is nondecreasing on Ik. Thus f ∈ ⋃∞

k=1A(Ik). But this set is first category. Similarly, we
show that

{f ∈ C[a, b] : f is nonincreasing on some open subinterval of [a, b]}
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is of the first category in C[a, b]. Since a union of two first category sets is itself of the first cate-
gory, we have shown that the set of functions that are monotonic on some open interval in [a, b]
is a first-category subset of C[a, b]. We infer that the typical f ∈ C[a, b] is nowhere monotonic.
�

Exercises

10:2.1 Show that in a metric space X a finite union of nowhere dense sets is nowhere dense.

10:2.2 Recall that a set in a metric space X is said to be of type Fσ if it is a countable union of closed
sets. It is of type Gδ if it is a countable intersection of open sets.

(a) Show that A is of type Fσ if and only if the complement Ã is of type Gδ.

(b) Show that a dense set of type Gδ in a complete metric space is residual.

(c) Show that every residual subset of a complete metric space contains a dense set of type Gδ.

10:2.3 Give an example of a set A ⊂ IR such that A is residual in IR and λ(A) = 0.

10:2.4 Show that a closed set A in a metric space X is nowhere dense if and only if the complement Ã
is dense.

10:2.5 Show that c0 is nowhere dense in c and that C[a, b] is nowhere dense in M [a, b].

10:2.6 Let P denote the polynomials on [a, b], and let Pn ⊂ P denote the polynomials of degree at most
n. Show that Pn is nowhere dense in C[a, b]; thus P is a first-category subset of C[a, b].

10:2.7 Prove that in a complete metric space X, a countable union of first-category sets is of the first
category, and a countable intersection of residual sets is residual.
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10:2.8 Show that a closed interval cannot be the union of a countable number of pairwise disjoint closed
sets unless all but one of these sets is empty.

10:2.9 Let f have derivatives of all orders on I = [0, 1]. Prove that if, for every x ∈ I, there exists
n = n(x) such that f (n)(x) = 0 then f is a polynomial on I.

10:2.10 Let {fn} be a sequence of continuous functions on I = [a, b]. Prove that if, for every x ∈ I,
there exists M(x) ∈ IR such that |fn(x)| ≤ M(x) then there exists M ∈ IR and an interval
(c, d) ⊂ [a, b] such that |fn(x)| ≤M for all n ∈ IN and x ∈ (c, d). Thus the family {fn} is uniformly
bounded in some open interval.

10:2.11 Prove that if the oscillation ω(f, x) (see Section 5.5) is positive for all x ∈ [a, b] then there exists
ε > 0 and an interval (c, d) ⊂ [a, b] such that ω(f, x) ≥ ε for all x ∈ (c, d).

10:2.12 Show that for the metric space of Example 9.12, with respect to the measure space ([0, 1],L, λ),
the typical A ∈ L has the property that, for every open interval I ⊂ [0, 1], λ(A ∩ I) > 0 and

λ(Ã ∩ I) > 0.

10:2.13 Show that in Example 9.13 the typical K ∈ K has no isolated points. [Hint: Let Kn be the set
of all sets K for which there exists an isolated point x ∈ K such that dist(x,K \ {x}) > 1/n. Show
that Kn is nowhere dense in K.]

10:2.14 Let K consist of the nonempty compact subsets of [0,1] furnished with the Hausdorff metric
(see Example 9.13).

(a) Show that the typical K ∈ K is a Cantor set.

(b) Show that the typical K ∈ K contains only irrational numbers.

(c) Show that the typical K ∈ K has Lebesgue measure zero.

(d) Show that the typical K ∈ K has Hausdorff dimension zero (see Section 3.8).

(e) Show that the typical K ∈ K is porous (see Exercise 7:8.12).
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10.3 The Banach–Mazur Game

Let us return to our game of Section 10.2 for a moment. It was invented by Stanislaw Mazur
(1905–1981) around 1928. We have seen that player (A) can win if his set A is residual in
some interval. By the same reasoning, player (B), who plays by the same rules but starts the
game after player (A), will win if A is first category. Mazur conjectured that (B) has a win-
ning strategy only if A is of the first category. This conjecture was proved to be true by Banach
(who never did publish the proof). The game is accordingly called the Banach–Mazur game. To
present a proof that (B) has a winning strategy if and only if A is of the first category involves
a precise statement of what one means by a “winning strategy.”

Let X be an arbitrary metric space. We suppose that there is given a class E of subsets of
X that the players of the game are required to use. Each member of E must have a nonempty
interior, and every open set in X contains some member of E .

The players are given two sets A ⊂ X and B = X \ A. Then the game ≪ A,B ≫ is played
according to the following rules: two players (A) and (B) alternately choose sets

U1 ⊃ V1 ⊃ U2 ⊃ V2 ⊃ U3 ⊃ V3 ⊃ . . . Un ⊃ Vn . . . (1)

from the class E . Player (A) starts the game and chooses U1 ∈ E , then player (B) chooses a
subset V1 ∈ E , and so on, with player (A) choosing the Ui and player (B) choosing the Vi.
Player (A) is declared the winner if

∞⋂

i=1

Vi ∩A 6= ∅
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and player (B) is the winner otherwise, that is, if
∞⋂

i=1

Vi ⊂ B.

Player (A) evidently hopes that his set A is “large” enough that he can arrange for this; player
(B) would have the same hope for the set B.

The ideas sketched in Section 10.2 suggest that if A is first category then player (B) has a
method of winning no matter how player (A) chooses his sets {Ui}. What is most interesting
here and useful, too, is that this is the only situation in which player (B) can be assured a win.
But to explore this we need some terminology from the theory of games.

Any nested sequence as in (1) of sets from E is called a play of the game. A strategy for
player (B) is a sequence of functions β = {βn}, where

V = βn(U1, V1, U2, V2, . . . Vn−1, Un)

is defined for any nested sequence (U1, V1, U2, V2, . . . Vn−1, Un) of sets from E , and V is a mem-
ber of E contained in Un. A play of the game (1) is said to be consistent with the strategy β if
at each stage

Vn = βn(U1, V1, U2, V2, . . . Vn−1, Un).

Thus a strategy β = {βn} is just a well-defined method for choosing the next play in the game
for player (B). We say this is a winning strategy for player (B) if he is assured a win using it.
Thus, if β is a winning strategy, then every play of the game consistent with the strategy β re-
sults in a win for player (B). The game is said to be determined in favor of (B) if there is a win-
ning strategy for (B).

It was Mazur who conjectured the following theorem and Banach who found a proof. The
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version given here is more general in that it is set in full generality (rather than the narrow case
where the players play intervals of real numbers). The proof we present is due to Oxtoby.1 The
proof for the real line is rather easier.2 Remember that a set S is residual in a metric space if
there is a sequence of dense open sets Gk so that S ⊃ ⋂∞

k=1Gk. (The theorem is stated in a
metric space, but is valid in any topological space.)

Theorem 10.5 (Banach–Mazur) Let X be an arbitrary metric space. Then the game

≪ A,B ≫
is determined in favor of player (B) if and only if the set B is residual in X.

Proof. The first part of the proof is just to exhibit the “strategy” suggested in Section 10.2.
Write B ⊃ ⋂∞

i=1Gi, where each Gi is dense and open. Then if the sequence

U1, V1, U2, V2, . . . Vn−1, Un

has been played, we instruct player (B) to play a set

Vn ⊂ Un ∩Gn

from E , which can be done since Gn is open and dense.
We should perhaps make this a little more explicit. Let E0 be a well-ordered subclass of E

such that each member of E contains a member of E0. If X is a separable metric space, then we
can choose E0 countable and so we have an ordinary sequence; in general, we can just well order
E . Then our strategy can be explicitly stated by requiring that

βn(U1, V1, U2, V2, . . . Vn−1, Un)

1 In Contributions to a Theory of Games, Vol. III, Ann. of Math. Stud., 39 (1957), pp. 159–163.
2See J. C. Oxtoby, Measure and Category, Graduate Texts in Mathematics, Springer (1980), p. 28.
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be the first member of E0 that is contained in the set Un ∩Gn. It is easy to see that any play of
game consistent with β has

∞⋂

i=1

Vi ⊂ B,

and so we have devised a winning strategy.
Conversely, we suppose that there does exist a winning strategy β = {βn} for player (B).

Let us call (just for the purposes of the proof) any nested sequence of sets in E
U1 ⊃ V1 ⊃ U2 ⊃ V2 ⊃ U3 ⊃ V3 ⊃ . . . Un ⊃ Vn (2)

such that

Vi = βi(U1, V1, U2, V2, . . . , Ui) (1 ≤ i ≤ n)

a β-chain of order n. The interior of the set Vn will be called the interior of the chain. A β-
chain of order n+ k is a continuation of a β-chain of order n if the first 2n sets of the chains are
the same. The class of all β-chains is ordered by this relation of continuation.

We wish to show that B contains the intersection of some sequence of dense open sets {Gn}.
We construct the sequence inductively.

Among all β-chains of order 1, let F1 denote a maximal family with the property that the
interiors of any two members of F1 are disjoint. Let G1 be the union of the interiors of the
members of F1. Certainly, G1 is open; it is also dense since F1 is maximal.

Proceeding by induction, we suppose that, among all β-chains of order n, we have chosen
a family Fn with the property that the interiors of any two members of Fn are disjoint and so
that the set Gn, defined as the union of the interiors of the members of Fn, is open and dense.
We shall describe how to select Fn+1. Among all β-chains of order n + 1 that are continuations
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of members of the family Fn, we let Fn+1 be a maximal family with the property that the in-
teriors of any two members of Fn+1 are disjoint. Such a maximal family must exist by Zorn’s
lemma (Section 1.11). If Gn+1 denotes the union of the interiors of the members of Fn+1, then
we see that Gn+1 is open; it is also dense, since Fn+1 is maximal.

This defines our sequence of families {Fn} and associated dense, open sets {Gn}. Recall
that each member of Fn+1 is a β-chain of order n + 1 that is a continuation of some member
of Fn. We show now that

B ⊃
∞⋂

n=1

Gn (3)

and the proof is complete. Let x be a point in this intersection. There is a unique sequence
{Cn} of β-chains so that Cn ∈ Fn and such that x is in the interior of the chain Cn for each
n. This sequence of β-chains is linearly ordered by continuation and defines an infinite nested
sequence of sets belonging to E whose intersection contains x. This sequence is a play consistent
with the strategy β and so must win for player (B) by our assumptions. Accordingly, x ∈ B.
This applies to every point in the set

⋂∞
n=1Gn, and so the inclusion (3) has been established.

This proves that B is residual and the theorem is proved. �

10.3.1 The typical continuous function is nowhere monotonic

We repeat Theorem 10.4 with a proof now using a game argument, but designed so that essen-
tially it follows the same arithmetic. (The direct proof given in Section 10.2 also established
that somewhere monotonic functions formed a first-category set of type Fσ; the methods here
do not provide this refinement.)
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Theorem 10.6: The typical f ∈ C[a, b] is nowhere monotonic; that is, it is monotonic on no
open subinterval of [a, b].

Proof. Let B denote the set of functions f ∈ C[a, b] that are monotonic on no open subin-
terval of [a, b]. We play a Banach–Mazur game in which the players must choose closed balls
B(f, r) in C[a, b], where the function f is continuous and piecewise linear and where r > 0.
We show that player (B) has a winning strategy in this game, and we can conclude, by Theo-
rem 10.5, that B is residual in C[a, b].

Suppose that at the nth stage the players have already played the sets

U1 ⊃ V1 ⊃ U2 ⊃ V2 ⊃ U3 ⊃ V3 ⊃ · · · ⊃ Un

according to the rules of the game. [Thus Un = B(gn, δn) for some piecewise linear gn.] How
may we advise player (B) to make his next move? He is merely to play a closed ball B(fn, εn)
centered at a continuous, piecewise linear function fn and with radius εn by the following de-
vice (commented for convenience):

1. Partition the interval into points

a = x0 < x1 < · · · < xk = b

so that the points are closer together than n−1 and so that gn varies by no more than
δn/3 on each interval [xi, xi+1]. (This makes sure that the partitions are getting finer as
the game progresses. Note that the uniform continuity of the function gn allows this.)

2. Choose a piecewise linear function fn so that, at each of the points of the partition fn(xi) =
gn(xi) and at the further subdivided points,

fn(xi + 1
3(xi+1 − xi)) = gn(xi) − 1

3δn
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and

fn(xi + 2
3(xi+1 − xi)) = gn(xi) + 1

3δn,

and make fn linear elsewhere. (This way fn is close to gn and rises and falls inside every
interval of the partition.)

3. Make sure that εn < δn/9 and εn < n−1. [This keeps B(fn, εn) inside B(gn, δn) and also
ensures that no function this close to gn can be monotonic on large intervals, larger than
n−1, for example.]

By these criteria, we see that the closed ball B(fn, εn) is contained in B(gn, δn). Also, we see
that any function h ∈ B(fn, εn) is not monotonic on any interval of the partition {[xi, xi+1]}.
Thus the intersection of these sets cannot contain a function that is monotonic on any interval.
Hence (B) wins by following this strategy. �

Exercises

10:3.1 In the game described for Example 10.6, a picture would be better than all these words. Give a
presentation of and justification for the winning strategy that uses a minimum of words and for-
mulas.

10:3.2 Suppose that we were to play the Banach–Mazur game on Q ∩ [0, 1], rather than on [0,1]. Devise
a strategy for (B) that will allow (B) to win regardless of the set A given to (A).

10:3.3 In the proof of Theorem 10.5 the definition of Fn+1 required an appeal to Zorn’s lemma. Show
that if E0 is a sequence then this can be done without such an appeal. [Hint: Let E1 be that sub-
sequence of E0 consisting of those sets that are contained in the last term of some chain belonging
to Fn. Each member of E1 determines a β-chain of order n + 1 of which it is the (2n + 1)th term.
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Arrange these chains in a sequence. Taking these in order, select those whose interior is disjoint to
the interiors of the chains already selected.]

10:3.4 Use the Banach–Mazur game to prove the following theorem, valid in any metric space.

Theorem (Banach category theorem) For any set A of second category in X
there exists a nonempty open set G such that A is second category at every point of G.

(A set A is first category at a point x if there is some neighborhood U of x so that U ∩ A is first
category. Otherwise, A is second category at x.)

10:3.5 Explain how a winning strategy for player (A) should be defined. [Hint: Player (A) needs to be
told what set to play first.]

10:3.6 Show that there are sets A ⊂ IR and B = IR\A so that the game ≪ A,B ≫ is not determined for
either player (A) or for player (B). [Hint: Let A and B intersect every perfect set. (This requires
the axiom of choice.)]

10:3.7 Prove the following theorem.

Theorem (Oxtoby) Let X be a complete metric space. The game ≪ A,B ≫ is de-
termined in favor of player (A) if (and only if) the set B is first category at some point
of X.

[The “if” part should certainly be attempted. For the “only if,” perhaps see the article of Oxtoby
(1957) cited earlier in this section.]
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10.4 The First Classes of Baire and Borel

In Exercise 4:6.2 we discussed a bit of the Borel and Baire classifications of real-valued func-
tions defined on an interval of IR. In this section we consider the important case of real-valued
functions in the first classes of Borel and Baire whose domain is a metric space. Such classifica-
tions carry over also to mappings between metric spaces.3

Let (X, ρ) be a metric space, and let f : X → IR. The function f is said to be in the first
class of Baire or a Baire-1 function, if f is the pointwise limit of a sequence of continuous
functions. We denote this class by B1.

If for every α ∈ IR the sets

{x : f(x) < α} and {x : f(x) > α}
are of type Fσ in X, we say that f is in the first class of Borel or a Borel-1 function. We de-
note this class by Bor1. It is clear that f ∈ Bor1 if and only if f−1(G) is of type Fσ in X for
every open set G ⊂ IR and, equivalently, if and only if f−1(F ) is of type Gδ for every closed set
F ⊂ IR.

We shall show in Theorem 10.13 that Bor1 and B1 are identical for real-valued functions
defined on a metric space. This is not the case in a general topological space.

Example 10.7: Let X = IR, and let A be a finite subset of IR, and let f = χ
A

. For every
α ∈ IR, the sets

{x : f(x) < α} and {x : f(x) > α}
are finite or have finite complements and are therefore of type Fσ. It follows that f ∈ Bor1. (It

3See C. Kuratowski, Topology, Academic Press (1966).
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is also true that the function f is in B1; this is left as Exercise 10:4.1.)

Example 10.8: The function χ
Q

is not Borel-1 on IR, because

IR \ Q =
{
x : χ

Q
< 1

2

}

is not of type Fσ. To see this, observe first that a closed subset of IR \Q is nowhere dense in IR.
If

IR \ Q =

∞⋃

k=1

Fk

with each of the sets Fk closed, then we would have

IR = Q ∪
∞⋃

k=1

Fk.

But this would imply that IR is a countable union of nowhere dense sets. This is impossible,
since IR is complete.

Neither B1 nor Bor1 is closed under pointwise limits. Let

Q = {q1, q2, q3, . . . }
be an enumeration of the rationals. For n ∈ IN, let

fn(x) =

{
1, if x = q1, q2, . . . , qn;
0, otherwise.

From Example 10.7 we see that fn ∈ B1 and fn ∈ Bor1, for all n ∈ IN. Since

lim
n→∞

fn(x) = χ
Q

(x)
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for all x ∈ IR, we see from Example 10.7 that B1 and Bor1 fail to be closed under pointwise
limits.

Both B1 and Bor1 are, however, closed under uniform limits. We now verify this for Bor1.
We shall prove presently that B1 = Bor1, so B1 is also closed under uniform limits.

Theorem 10.9: Let X be a metric space. Then the class Bor1 on X is closed under uniform
limits.

Proof. Let {fn} be a sequence of functions in Bor1 converging uniformly to f . Let {mn} be
an increasing sequence of positive integers such that

|f(x) − fmn+k(x)| < 1
n

for all x ∈ X and k = 0, 1, 2, . . . . Let α ∈ IR. We show that {x : f(x) ≥ α} is of type Gδ. Now

{x : f(x) ≥ α} =
∞⋂

n=1

∞⋂

k=1

{
x : fmn+k(x) ≥ α− 1

n

}
. (4)

We leave verification of (4) as Exercise 10:4.2. Each of the functions fmn+k is in Bor1 by hy-
pothesis. Thus each of the sets {

x : fmn+k(x) ≥ α− 1
n

}

is of type Gδ. Thus

{x : f(x) ≥ α}
is also of type Gδ. One shows similarly that the set

{x : f(x) ≤ α}
is of type Gδ. �
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10.4.1 The identity of B1 and Bor1

Our next objective is to show that the classes B1 and Bor1 on a metric space X coincide. We
do this via a sequence of lemmas. We begin with a simple lemma and leave its proof as an exer-
cise.

Lemma 10.10: Let X be a metric space, and let F , F1, and F2 be subsets of X. Then:

1. If F is closed, then F is of type Gδ.

2. If F is open, then F is of type Fσ.

3. If F1 and F2 are closed, then F1 \ F2 is both of type Gδ and of type Fσ.

Lemma 10.11: Let X be a metric space, and let A1, A2, . . . , An be sets of type Fσ. Let
A = A1 ∪ · · · ∪An. Then there exist sets B1, B2, . . . , Bn such that

1. Bi is of type Fσ for all i = 1, . . . , n,

2. Bi ⊂ Ai for all i = 1, . . . , n,

3. the sets Bi are pairwise disjoint, and

4. A = B1 ∪ · · · ∪Bn.

Proof. Each of the sets Ai is a countable union of closed sets. We can therefore express A in
the form A =

⋃∞
k=1 Fk, where each Fk is closed and contained in one of the sets Ai. Let

E1 = F1, Ek = Fk \ (F1 ∪ · · · ∪ Fk−1).
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Then each of the sets Ek is a difference of closed sets and is therefore of type Fσ, by Lemma 10.10.
Furthermore, the sets Ek are pairwise disjoint, and A =

⋃∞
k=1Ek. For each i = 1, . . . , n, let

Ni = {k ∈ IN : Ek ⊂ Ai} and Bi =
⋃

k∈Ni

Ek.

One verifies routinely that the sets Bi satisfy conditions (1) through (4). �

Our next lemma shows that a Borel-1 simple function is also a Baire-1 function.

Lemma 10.12: Let X be a metric space, and let f : X → IR. Suppose that f has finite range
c1 < c2 < · · · < cn and that each of the sets

Ek = {x : f(x) = ck} , k = 1, . . . , n,

is of type Fσ. Then f ∈ B1.

Proof. For each k = 1, . . . , n, let

Ek =
∞⋃

i=1

Fki, (5)

where the sets Fki are closed. For each m ∈ IN, let

Sm =
n⋃

k=1

m⋃

i=1

Fki.

The set Sm is closed. It consists of the first m sets appearing in the representation (5) for each
of the sets Ek, k = 1, . . . , n.
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Now we define functions sm on Sm by

sm(x) = ck if x ∈
m⋃

i=1

Fki.

Each function sm is continuous on Sm. By the Tietze extension theorem, for each m ∈ IN
there exists a continuous extension sm of sm to all of X. If x ∈ X, then there exists k such that
f(x) = ck; thus x ∈ Ek. It follows that there exists m ∈ IN such that x ∈ ⋃m

i=1 Fki and that
sm(x) = ck. Since the sequence {Sm} is an expanding sequence of sets, sj(x) = ck for all j ≥ m.
Thus, for j ≥ m,

f(x) = sj(x) = sj(x) = ck,

so limj→∞ sj(x) = f(x). This is true for all x ∈ X, from which we infer that f is the pointwise
limit of the sequence {sj} of continuous functions. This shows that f ∈ B1. �

Theorem 10.13: Let X be a metric space, and let f :X→ IR. A necessary and sufficient condi-
tion that f be in the first class of Baire is that f be in the first class of Borel.

Proof. Suppose that f ∈ B1. Let {fn} be a sequence of continuous functions on X such that

f(x) = lim
n→∞

fn(x) for all x ∈ X.

Let α ∈ IR. We show that {x : f(x) < α} is of type Fσ. The proof that {x : f(x) > α} is also of
type Fσ is similar.

Consider the set

S =
∞⋃

k=1

∞⋃

m=1

∞⋂

n=m

{
x : fn(x) ≤ α− 1

k

}
.
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One verifies routinely that S = {x : f(x) < α} (Exercise 10:4.5). Since each fn is continuous,
the sets {

x : fn(x) ≤ α− 1

k

}

are closed in X. An intersection of closed sets is closed, so the set
∞⋂

n=m

{
x : fn(x) ≤ α− 1

k

}

is also closed. Thus S is a countable union of closed sets and is therefore of type Fσ, as was to
be proved.

To prove the converse, suppose first that f is a bounded Borel-1 function, say |f(x)| < M
for all x ∈ X. Let n ∈ IN. Choose numbers c0, c1, . . . , cn such that

−M = c0 < c1 < · · · < cn = M

and ck+1 − ck = 2M/n. Let

A0 = {x : f(x) < c1} and An = {x : f(x) > cn−1}
and for, k = 1, . . . , n− 1, let

Ak = {x : ck−1 < f(x) < ck+1} .
Then X = A0 ∪ · · · ∪ An. Each of these sets is of type Fσ, but the sets need not be pairwise
disjoint. We now apply Lemma 10.11 to obtain sets B0, . . . , Bn of type Fσ and pairwise disjoint
such that X = B1 ∪ · · · ∪Bn and Bk ⊂ Ak for all k = 0, 1, . . . , n.

For each n ∈ IN, define a function fn by fn(x) = ck if x ∈ Bk and k = 0, 1, . . . , n. According
to Lemma 10.12, each of these functions is a Baire-1 function. We show that fn → f [unif] and
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then apply Exercise 4:6.2 (g). (Exercise 4:6.2 deals with functions defined on intervals in IR, but
the same proof works in general.)

Let x ∈ X. Then there exists k such that x ∈ Bk ⊂ Ak. Since fn(x) = ck and ck−1 < f(x) <
ck+1, we have

|fn(x) − f(x)| < 2M

n
.

This is true for all x ∈ X; thus fn → f [unif], so f ∈ B1. This proves that a bounded function
f ∈ Bor1 is in B1.

It remains to verify the conclusion Bor1 ⊂ B1 without the assumption that f is bounded.
We leave the verification as Exercise 10:4.8. �

Exercises

10:4.1 Prove that χ
A

∈ B1, where A ⊂ IR is a finite set.

10:4.2 Verify the identity (4).

10:4.3 One can define the classes B1 and Bor1 for mappings between metric spaces in the obvious man-
ner. Give an example to show that one cannot in general conclude that B1 = Bor1. [Hint: Let
X = [0, 1], and let Y = {0, 1}. Show that B1 consists of the two functions f0 ≡ 0 and f1 ≡ 1.]

10:4.4 Prove Lemma 10.10.

10:4.5 Verify that S = {x : f(x) < α} in the proof of Theorem 10.13.

10:4.6♦ Verify that the classes B1 and Bor1 are closed under the usual arithmetic operations and under
composition with continuous functions.
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10:4.7 Show that, if f1 and f2 are Baire-1 or Borel-1 functions on a metric space X, then so are the
functions

g(x) = min{f1(x), f2(x)} and h(x) = max{f1(x), f2(x)}.
10:4.8 Complete the proof of Theorem 10.13. [Hint: Work with the function g = arctan f .]

10.5 Properties of Baire-1 Functions

One reason that the class B1 is important is that it includes a number of classes of functions
that arise naturally in analysis. For functions on IR, for example, the class B1 contains the class
△′ of derivatives, as well as the class Cap of approximately continuous functions and the class of
semicontinuous functions (see Exercises 10:5.1 and 10:5.2). Each of these classes contains dis-
continuous members. Our next theorem shows that functions in these classes can be discontinu-
ous only on first-category sets; we have already seen this theorem (Theorem 1.19) for functions
on IR.

Theorem 10.14: Let f be a Baire-1 function on the complete metric space X. Then f is
continuous on a residual subset of X.

It is convenient to prove Theorem 10.14 by using the notion of oscillation of a function at a
point. (See Section 5.5.) Here we need that notion for functions on metric spaces. Let (X, ρ) be
a metric space, let A be a nonempty subset of X, and let f :X→ IR. The extended real number

ω(A) = sup {|f(x) − f(y)| : x, y ∈ A}
is called the oscillation of f on A. For x0 ∈ X, we define the oscillation of f at x0 by

ω(x0) = lim
δ→0

ω(B(x0, δ)).
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Using these definitions, f is continuous at x0 if and only if ω(x0) = 0.

Lemma 10.15: Let f :X→IR, and let ε > 0. Let

Wε = {x : ω(x) < ε} .
Then Wε is an open set. Thus the set of points of continuity of X is of type Gδ.

Proof. Let x0 ∈ Wε, so ω(x0) < ε. Thus there exists δ > 0 such that |f(x) − f(y)| < ε
whenever x, y ∈ B(x0, δ). Let z ∈ B(x0, δ/2). If z1, z2 ∈ B(z, δ/2), then z1, z2 ∈ B(x0, δ). Thus

|f(z1) − f(z2)| < ε.

This shows that ω(B(z, δ/2)) < ε. It follows that ω(z) < ε and that Wε is open.
To verify the second conclusion of Lemma 10.15, we need only observe that the set

{x : ω(x) = 0} =
∞⋂

n=1

W(1/n)

consists precisely of those points at which f is continuous. �

Proof. (Proof of Theorem 10.14) Let {fn} be a sequence of continuous functions on X such
that

lim
n→∞

fn(x) = f(x)

for all x ∈ X. Let B0 be an open ball in X. It suffices to show that B0 contains a point of con-
tinuity of f .

We show first that for every ε > 0 there exists an open ball B1 = B(x1, δ1) with B1 ⊂ B0

such that ω(B1) ≤ ε.
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For m,n ∈ IN, let

Anm =
{
x ∈ B0 : |fn(x) − fn+m(x)| ≤ ε

3

}
.

Since each of the functions fn is continuous, each of the sets Anm is closed; thus the set

Dn =
∞⋂

m=1

Anm

is also closed. Now B0 =
⋃∞

n=1Dn. To see this, let x0 ∈ B0. Since {fn(x0)} converges, we have
for sufficiently large n and all m that

|fn(x0) − fn+m(x0)| ≤ ε

3
,

so x0 ∈ Dn. Thus B0 ⊂ Dn. The reverse conclusion is obvious. Thus, by the Baire category
theorem, there exists n ∈ IN for which Dn is dense in some ball B(z, δ). Since Dn is closed,
Dn ⊃ B(z, δ).

For x ∈ B(z, δ), we have |fn(x) − fn+m(x)| ≤ ε/3 for all m ∈ IN. Letting m → ∞, we see
that

|fn(x) − f(x)| ≤ ε

3
. (6)

Now choose δ1 < δ such that the oscillation of fn on B(z, δ1) is less than ε/3. This is possi-
ble since fn is continuous. We show that for x1 = z the ball B1 = B(x1, δ1) has the required
property.

Let x, y ∈ B1. Then |fn(x) − fn(y)| < ε/3, as we have just shown. By (6),

|fn(x) − f(x)| ≤ ε

3
and |fn(y) − f(y)| ≤ ε

3
.
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Thus

|f(x) − f(y)| ≤ |f(x) − fn(x)| + |fn(x) − fn(y)| + |fn(y) − f(y)| < ε.

To this point we have established that for every ε > 0 every open ball B0 contains a ball
B1 on which the oscillation of f is less than ε. We can obviously choose B1 to be closed. Pro-
ceeding inductively, we can obtain a nested sequence {Bk} of balls, with Bk+1 ⊂ Bk for every
k and such that the oscillation of f on Bk is less than 1/k. We may choose these balls in such
a way that their radii approach zero. Since X is complete, it follows from Theorem 9.37 that⋂∞

k=1Bk consists of a single point x0. Since, for every k ∈ IN, x0 ∈ Bk, we have ω(x0) < 1/k, so
ω(x0) = 0. Thus f is continuous at x0.

Since B0 was an arbitrary ball in X, we have shown that the set E of points of continuity of
f is dense. By Lemma 10.15, E is of type Gδ. But a dense set of type Gδ in a complete metric
space is residual. �

Corollary 10.16: Let F be a closed nonempty subset of a complete metric space X, and let f
be a Baire-1 function on X. Then f |F has a point of continuity.

Proof. The space F is complete, since F is closed in a complete space. It is clear that f |F is
a Baire-1 function on F . The conclusion follows from Theorem 10.14. �

In Exercise 5:5.5, we indicated some examples of differentiable functions f whose deriva-
tives are badly discontinuous. Part (f) of that exercise shows how to construct f so that f ′ is
bounded but discontinuous a.e. Thus f ′ can be discontinuous on a set that is large in measure.
Theorem 10.14 shows, however, that f ′ must be continuous on a set that is large in category:
the set of points of discontinuity must be a first-category set. We shall discuss continuity of a
derivative a bit more in Section 10.7.
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A converse of Corollary 10.16 is also true, but more difficult to prove.4 The function f is in
B1 if and only if, for every closed set F , f |F has a point of continuity.

Example 10.17: We consider functions from IR to IR.

1. Let f = χ
K

, where K is a Cantor set. Then f ∈ B1. (Use Theorem 10.13 or the converse
of Corollary 10.16 to verify this.)

2. Let

g(x) =

{
1, if x is a two-sided limit point of K;
0, elsewhere.

Then g /∈ B1 since g|K has no points of continuity. (Note that f and g agree except on a
countable set, yet f ∈ B1 and g /∈ B1.)

3. Let h be continuous except on a countable set. Then h ∈ B1. This is proved most eas-
ily by using the converse to Corollary 10.16. If F has an isolated point x0, then h|F is
continuous at x0. If F is perfect, then F is uncountable and therefore contains a point
of continuity of f . Clearly, f |F is continuous at this point. One can also verify that f is
a Baire-1 function using Theorem 10.13. See Exercise 10:5.3. In particular, functions of
bounded variation are members of B1.

4For a proof when X = [a, b], see I. Natanson, Theory of Functions of a Real Variable, vol. II, Ungar (1955). A
proof in a more general setting can be found in C. Kuratowski, Topology, Academic Press (1966).
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10.5.1 Weak convergence of measures

In Section 3.2 we obtained an outer measure µ∗ as a limit of a sequence {µ∗n} of outer measures.
We next use Theorem 10.14 to outline a proof that a convergent sequence of finite measures on
a common σ-algebra converges to a measure. We leave verification of details as Exercise 10:5.4.

Theorem 10.18: Let {µn} be a sequence of finite measures on a σ-algebra M of subsets of a
set X. If, for all E ∈ M, limn→∞ µn(E) exists, then the set function σ defined by

σ(E) = lim
n→∞

µn(E)

is a measure on M.

Proof. We first obtain a measure µ such that, for all n ∈ IN, µn is continuous on the metric
space of µ-equivalent sets in M with the metric ρ(A,B) = µ(A△B). Thus σ is a Baire-1 func-
tion in this complete metric space. We then apply Theorem 10.14. Define a measure µ on M
by

µ(E) =
∞∑

n=1

µn(E)

2n(1 + µn(X))
. (7)

Let (M, ρ) be the metric space of Example 9.12, with ρ(A,B) = µ(A△B). Then each of the
functions µn is continuous on (M, ρ). Now (M, ρ) is complete by Exercise 9:6.6. Thus the Baire-
1 function σ has a point of continuity A ∈ M.

To show that σ is a measure, note first that σ is additive. Let ∅ denote the equivalence class
of zero-measure sets. Then σ is continuous at ∅. If {En} is a sequence of pairwise disjoint mea-
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surable sets and E =
⋃∞

n=1En, then

lim
n→∞

σ(
∞⋃

k=n

Ek) = 0.

It follows that σ is countably additive. The other requirements for σ to be a measure are obvi-
ously met. �

Exercises

10:5.1 A function f :X→ IR is called lower semicontinuous at x0 ∈ X if

lim
x→x0

inf f(x) ≥ f(x0).

If f is lower semicontinuous at every point of X, we say that f is lower semicontinuous.

(a) Show that every lower semicontinuous function is a Baire-1 function.

(b) Show that a lower semicontinuous function on an interval [a, b] achieves a minimum value.

(c) Show that a pointwise limit of an increasing sequence of continuous functions on [a, b] is
lower semicontinuous.

(d) Define upper semicontinuity of a function at x0 and show that f is continuous at x0 if and
only if f is upper semicontinuous at x0 and lower semicontinuous at x0.

(e) Prove that a bounded lower semicontinuous function f on [a, b] is a derivative if and only if f
is approximately continuous. Compare this result with Theorem 7.38 and Exercise 7:7.5.

10:5.2 Prove that an approximately continuous function f : IR→ IR is in B1. [Hint: For f bounded, use
an appropriate theorem from Chapter 7. Then use Exercise 10:4.6 for the general case.]
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10:5.3 Refer to Example 10.17 (iii). Verify that f ∈ B1 by using Theorem 10.13. [Hint: {x : f(x) > α} is
a union of an open set and a countable set.]

10:5.4 Complete the details in the proof of Theorem 10.18.

10.6 Topologically Complete Spaces

Consider the interval X = (0,∞). This space is not complete when furnished with the usual
metric ρ(x, y) = |x − y|. Suppose that we wished to make every Cauchy sequence in X con-
verge. We can do that in two ways. We could add points to X appropriately, as we did in The-
orem 9.42. This results in the completion (X, ρ) of (X, ρ). Or we could simply strip the title of
“Cauchy sequence” from every offending (nonconverging) Cauchy sequence. We do this by ob-
taining another metric σ for X so that (X, ρ) and (X,σ) are topologically equivalent and (X,σ)
is complete. We wish to satisfy the condition that ρ(xn, x) → 0 if and only if σ(xn, x) → 0; that
is, the two spaces (X, ρ) and (X,σ) have exactly the same convergent sequences with exactly
the same limits. We also wish to accomplish the following: if {xn} is a nonconvergent Cauchy
sequence with respect to ρ, it will simply not be a Cauchy sequence with respect to σ.

Here is one way to accomplish this. For x, y ∈ (0,∞), let

σ(x, y) = |x− y| +

∣∣∣∣
1

x
− 1

y

∣∣∣∣ .

Then σ is a metric on (0,∞), and ρ(xn, x) → 0 if and only if σ(xn, x) → 0. Thus ρ and σ
are equivalent metrics: (X, ρ)and (X,σ) are topologically equivalent. Suppose that {xn} is a
Cauchy sequence with respect to σ. Then both {xn} and { 1

xn
} are Cauchy sequences, and one
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verifies easily that there exists x > 0 such that

ρ(xn, x) → 0 and ρ

(
1

xn
,

1

x

)
→ 0.

It follows that σ(xn, x) → 0, so {xn} is σ-convergent. Thus (X,σ) is complete. Offending se-
quences, such as the sequence {1/n}, are simply not σ-Cauchy!

How did we come up with the metric σ? Consider the curve Y with equation y = 1/x (x >
0) in IR2. Furnish Y with the ℓ1 metric

γ

((
x1,

1

x1

)
,

(
x2,

1

x2

))
= |x1 − x2| +

∣∣∣∣
1

x1
− 1

x2

∣∣∣∣ .

Then Y is a closed subspace of IR2 and is therefore complete. The function f : X → Y defined
by f(x) = (x, 1/x) is a homeomorphism of X onto Y . We can define σ by

σ(x1, x2) = γ(f(x1), f(x2)).

This simple idea can be extended to a number of metric spaces. For example, it can be ap-
plied to X = IR \ Q. The reader may wish to use this space X as a model while reading the
proof of the main theorem of this section, the theorem of Alexandroff, which is presented as
Theorem 10.19.

To state Alexandroff’s theorem as it was proved in 1924, we need a bit of terminology. The
metric space (X, ρ) is topologically complete if it is homeomorphic via h to some complete met-
ric space (Y, γ). In that case,

σ(x, y) = γ(h(x), h(y))

is a metric on X that is topologically equivalent to ρ, and (X,σ) is complete. Thus (X, ρ) is
topologically complete if X can be remetrized with a topologically equivalent metric (i.e., one
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which gives rise to the same open sets as ρ) so as to be complete. In such spaces the Baire cate-
gory theorem is valid (Exercise 10:6.1).

10.6.1 Alexandroff’s Theorem

We already know that a closed subset of a complete metric space is complete without any change
in metric. Alexandroff’s theorem, together with the converse that follows, gives an indication of
the importance of sets of type Gδ.

Theorem 10.19 (Alexandroff) Let X be a nonempty set of type Gδ contained in a complete
metric space (Y, ρ). Then X can be remetrized so as to be complete.

Proof. Since X is of type Gδ, there exists a sequence {Gi} of open sets in Y such that X =⋂∞
i=1Gi. If X = Y , there is nothing to prove, so assume that X 6= Y . In that case, we may

assume that for every i ∈ IN the complementary set Fi = G̃i is nonempty. For every i ∈ IN,
define a function di by

di(x) = dist(x, Fi) = inf {ρ(x, y) : y ∈ Fi} .
Then di is real valued and continuous on Y and di(x) > 0 for all x ∈ X.

Consider now the function σ on X ×X defined by

σ(x, y) = ρ(x, y) +
∞∑

i=1

1

2i
min

(
1,

∣∣∣∣
1

di(x)
− 1

di(y)

∣∣∣∣
)
.

(The reader may observe that this definition of σ is just an adaptation to our present setting of
the metric that we obtained for X = (0,∞).)
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We show that σ is a metric on X, that σ and ρ are equivalent metrics on X, and that (X,σ)
is complete. That σ is a metric is clear, the triangle inequality being satisfied by each term of
the series defining σ.

We first verify that σ and ρ are equivalent metrics on X. We do this by showing that ρ(xn, x) →
0 if and only if σ(xn, x) → 0. Since ρ(x, y) ≤ σ(x, y) for all x, y ∈ X, ρ(xn, x) → 0 when-
ever σ(xn, x) → 0. To prove the converse, let ε > 0, and let x ∈ X. Choose N ∈ IN such that
2−N < ε/3. Now choose δ such that 0 < δ < ε/3 and

∣∣∣∣
1

di(x)
− 1

di(y)

∣∣∣∣ <
ε

3
(8)

whenever ρ(x, y) < δ and i = 1, . . . , N . This is possible since di is positive on X and continuous
everywhere. If ρ(x, y) < δ, then it follows from (8) and the definitions of σ and N that

σ(x, y) <
ε

3
+

N∑

i=1

1

2i

∣∣∣∣
1

di(x)
− 1

di(y)

∣∣∣∣+
1

2N
< ε.

Therefore, σ(x, xn) → 0 whenever ρ(x, xn) → 0. This proves that ρ and σ are equivalent metrics
on X.

It remains to verify that (X,σ) is complete. Let {xn} be a Cauchy sequence in X relative to
σ. Let i ∈ IN. Then there exists N ∈ IN such that

σ(xN , xm) <
1

2i
for all m ≥ N.

Thus, if m ≥ N ,

1 > 2iσ(xN , xm) ≥ min

(
1,

∣∣∣∣
1

di(xN )
− 1

di(xm)

∣∣∣∣
)
,

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



714 Baire Category Chapter 10

so ∣∣∣∣
1

di(xN )
− 1

di(xm)

∣∣∣∣ < 1.

It follows that the sequence {
1

di(xn)

}
(9)

is bounded for all i ∈ IN, so that dist(xn, Fi) is bounded away from zero. Observe that this
means the sequence {xn} does not get close to the set Fi in the ρ metric.

Now ρ(x, y) ≤ σ(x, y) for all x, y ∈ X. Thus the sequence {xn} is a Cauchy sequence with
respect to ρ (as well as with respect to σ). Since Y is complete, there exists y ∈ Y such that
limn→∞ ρ(xn, y) = 0. The point y cannot belong to any set Fi because the points {xn} are
bounded away from Fi in the ρ metric. Thus, for all i ∈ IN, y ∈ Gi, so that y ∈ X. Since
the two metrics σ and ρ are equivalent on X, limσ(xn, y) = 0 and, hence, (X,σ) is complete.
�

Example 10.20: Let I denote the set of irrational numbers furnished with the usual metric
inherited as a subset of the reals IR. Certainly I is not a complete metric space. But Theo-
rem 10.19 shows that it is topologically complete.

10.6.2 Mazurkiewicz’s theorem

A converse of Theorem 10.19, first proved by Stefan Mazurkiewicz (1888–1945) in 1916, is also
available.
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Theorem 10.21: Let (Z, ρ) be a metric space, and let X ⊂ Z. If X is homeomorphic to a
complete space (Y, γ), then X is of type Gδ in Z.

Proof. Let h be a homeomorphism of X onto Y . For each x ∈ X and n ∈ IN there exists
δ(x, n) such that 0 < δ(x, n) < 1/n and

γ(h(x), h(x′)) <
1

n

for all x′ ∈ X ∩B(x, δ(x, n)). Let

Gn =
⋃

x∈X

B
(
x, 1

2δ(x, n)
)
.

Then Gn is open in Z. We show that

X =
∞⋂

n=1

Gn. (10)

It is clear that X ⊂ ⋂∞
n=1Gn. To prove the reverse inclusion, let z ∈ ⋂∞

n=1Gn. For each
n ∈ IN there exists xn ∈ X such that

ρ(z, xn) < 1
2δ(xn, n).

Since δ(xn, n) < 1/n, it is clear that ρ(z, xn) → 0, so xn → z.
Now, if m > n, then

ρ(xn, xm) ≤ ρ(xn, z) + ρ(z, xm)

< 1
2δ(xn, n) + 1

2δ(xm,m)

≤ max{δ(xn, n), δ(xm,m)}.
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Therefore,

γ(h(xn), h(xm)) <
1

n

for all m > n. Let yn = h(xn). Then {yn} is a Cauchy sequence in (Y, γ). Since (Y, γ) is com-
plete, {yn} converges to a point y ∈ Y . Let x = h−1(y). Then x ∈ X, and xn → x since h−1 is
continuous. We have arrived at the situation xn → z and xn → x. Thus x = z, so z ∈ X.

We have shown that
⋂∞

n=1Gn ⊂ X, completing the verification of (10). This completes the
proof that X is of type Gδ in Z. �

Exercises

10:6.1 Show that the Baire category theorem is valid in every topologically complete space.

10:6.2 Let K be the Cantor set, and let T consist of the two-sided limit points of K. Is T complete? Is
T topologically complete?

10.7 Applications to Function Spaces

In Section 10.2 we saw a number of applications of the Baire category theorem. (See Exam-
ple 10.4 and several of the exercises.) One way in which the Baire category theorem is often
used is to prove the existence of objects that might be difficult to imagine or to construct. In
this section we provide three examples that illustrate this point. Our objects will be functions.
We shall view these functions as members of a complete or topologically complete metric space,
and shall show that “most” members of that space exhibit properties that are difficult to envi-
sion.
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10.7.1 Continuous Nowhere Differentiable Functions

Some nineteenth century mathematicians were aware of the existence of continuous functions
that had no point of differentiability. Constructions of such functions involved summations
of infinite series whose successive terms contributed increasingly to the nondifferentiability of
their sum. Perhaps the first such construction was given by Weierstrass around 1875. Use of
the Baire category theorem to prove the existence of such functions had to wait until 1931, at
which time S. Banach and S. Mazurkiewicz, in separate papers in the journal Studia Mathemat-
ica, provided such proofs. Their proofs have now become part of the standard material in a first
course in real analysis. We shall use a somewhat different approach that provides some addi-
tional insights into the way a typical f ∈ C[a, b] is nowhere differentiable.

Our approach is based on a simple idea. Suppose that f ∈ C[a, b], and all derived numbers
of f at x0 ∈ (a, b) are less than M . Let L be the line with slope M through (x0, f(x0)). Then
there exists an open interval I ⊂ (a, b) such that, over I, the graph of f lies below L to the
right of x0 and lies above L to the left of x0. Intuitively, the line L “crosses” the graph of f at
(x0, f(x0)). A similar argument shows that, if all derived numbers exceed M , some line crosses
the graph of f at (x0, f(x0)). It follows that if no line crosses the graph of f at x0, then both
+∞ and −∞ are derived numbers of f at x0, and thus f is not differentiable at x0. Our first
objective is to make precise and then prove that the typical f in C[a, b] “crosses no lines.”

We need some terminology. We say f is nondecreasing at x ∈ [a, b] if there exists δ > 0 such
that

f(t) ≤ f(x) for all t ∈ (x− δ, x) ∩ [a, b]

and

f(t) ≥ f(x) for all t ∈ (x, x+ δ) ∩ [a, b].
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The function f is nonincreasing at x if −f is nondecreasing at x, and f is monotonic at x if
f is either nondecreasing or nonincreasing at x. Loosely speaking, f is monotonic at x if the
graph of f “crosses” a horizontal line at (x, f(x)). (There are degenerate possibilities; e.g., f
might be constant on one or both sides of x.)

Now let γ ∈ IR, and define a function f−γ by f−γ(x) = f(x) − γx. If there exists γ ∈ IR and
x ∈ [a, b] such that f−γ is monotonic at x, we say that f is of monotonic type at x. If f is not of
monotonic type at any x ∈ [a, b] we say that f is of nonmonotonic type.

It might not be easy to visualize the graph of a function that is of nonmonotonic type. Intu-
itively, the graph of f cannot cross any lines. As we mentioned before, if f is of nonmonotonic
type, then f has ∞ and −∞ as derived numbers at every point and is therefore nowhere differ-
entiable. We prove existence of such functions by use of the Baire category theorem.

Theorem 10.22: The functions of nonmonotonic type form a dense subset of type Gδ in
C[a, b].

Proof. Let

A = {f ∈ C[a, b] : there exists γ ∈ IR and x ∈ [a, b]

such that f−γ is nondecreasing at x}.
For each n ∈ IN, let An denote those functions f ∈ C[a, b] for which there exists γ ∈ [−n, n] and
x ∈ [a, b] such that

f−γ(t) ≤ f−γ(x) when t ∈ [a, b] ∩
(
x− 1

n , x
)

and

f−γ(t) ≥ f−γ(x) when t ∈ [a, b] ∩
(
x, x+ 1

n

)
.
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Then A =
⋃∞

n=1An. We show that for n ∈ IN the set An is closed and its complement, the set

Ãn, is dense; thus An is nowhere dense.
To verify that An is closed, let {fk} be a sequence of functions in An such that fk → f [unif].

Then f ∈ C[a, b], and we must show that f ∈ An. For each k ∈ IN, there exists γk ∈ [−n, n] and
xk ∈ [a, b] such that

f−γk
(t) ≤ f−γk

(xk) when t ∈ [a, b] ∩
(
xk − 1

n , xk

)

and

f−γk
(t) ≥ f−γk

(xk) when t ∈ [a, b] ∩
(
xk, xk + 1

n

)
.

There exists an increasing sequence {ki} from IN such that {γki} converges to some γ ∈ [−n, n]
and {xki} converges to some x ∈ [a, b]. It is easy to verify that

f−γ(t) ≤ f−γ(x) when t ∈ [a, b] ∩
(
x− 1

n , x
)

and

f−γ(t) ≥ f−γ(x) when t ∈ [a, b] ∩
(
x, x+ 1

n

)
.

Thus f ∈ An, and An is closed in C[a, b].
To show that An is nowhere dense, we verify that every ball in C[a, b] contains points of the

complementary set, Ãn. Let U be an open ball in C[a, b]. It is easy to visualize (though tedious
to verify analytically) that we can choose an appropriate sawtooth function, with many steep

teeth, such that f ∈ U , but f ∈ Ãn. Intuitively, the line segments that make up the graph of f
have such steep slopes and there are so many segments that no line whose slope is bounded by
−n and n can cross the graph of f as required for f to be in An.

Thus An is nowhere dense, and A is first category and of type Fσ in C[a, b]. The same is
true of the set B = {f ∈ C[a, b] : −f ∈ A}. It follows that the set C[a, b] \ (A ∪B) is a residual
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set of type Gδ. This set consists of the functions of nonmonotonic type. �

Corollary 10.23: The typical f ∈ C[a, b] has both ∞ and −∞ as derived numbers at every
point and is therefore nowhere differentiable.

Let us obtain a bit more insight into the behavior of the typical f ∈ C[a, b]. We need one
more term. A function is called nonangular at x if D−f(x) ≤ D+f(x) and D+f(x) ≤ D−f(x).
Inspection of an appropriate diagram suggests the geometric content of the term “nonangular.”
A function that is nonangular at each point of [a, b] is called nonangular.

It is easy to verify that, for f ∈ C[a, b], f is nonangular if and only if for every x ∈ (a, b)
there exists γ such that γ is simultaneously a left-derived number and a right-derived number
at x.

Suppose now that f is both nonangular and of nonmonotonic type at a point x0 ∈ (a, b).
Let γ ∈ IR. If the set

{x : f−γ(x) = f−γ(x0)}
has x0 as a limit point, then γ is clearly a derived number for f . If not, then, since f is of non-
monotonic type at x0, f−γ(t) < f−γ(x0) [or f−γ(t) > f−γ(x0)] for all t in some deleted neighbor-
hood of x0. But this implies that γ is a derived number for f at x0, because f is nonangular at
x0. If γ = ±∞, then, once again, we can show that γ is a derived number for f at x0. Thus we
have established the following result.

Theorem 10.24: Let f ∈ C[a, b]. If f is both nonangular and of nonmonotonic type at a point
x0 ∈ (a, b), then every extended real number γ is a derived number for f at x0.
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Functions of nonmonotonic type must be very badly behaved, but nonangular functions
need not be. For example, every differentiable function is nonangular. As Corollary 10.23 shows,
however, the class of differentiable functions is only a first-category subset of C[a, b]. Our next
result shows that the set of nonangular functions is large in C[a, b].

Theorem 10.25: The set of nonangular functions forms a dense set of type Gδ in C[a, b].

The proof is similar to the proof of Theorem 10.22. We leave it as Exercise 10:7.5. Theo-
rems 10.22, 10.24, and 10.25 give us the following theorem. This was first proved by V. Jarńık
in 1933.

Theorem 10.26: A typical continuous function has every extended real number as a derived
number at every point.

To have a sense of the graph of a typical f ∈ C[a, b] near a point x, refer to the Denjoy–
Young–Saks theorem (Exercise 7:8.5). When a function f−γ assumes a local extremum at x0, x0

is in one of the sets A2 or A3 of that theorem. Otherwise, x0 is in the set A4 [see Exercise 7:8.5 (a)]
or in an exceptional set where all derived numbers are achieved from one side, and ±∞ is the
only derived number from the other side.

We end this discussion with a remark. Jarńık’s theorem shows that a typical f ∈ C[a, b]
does not have a finite or infinite derivative at any point. Nor does f have a one-sided finite
derivative at any point. S. Saks proved in 1932, however, that the typical f does have infinite
one-sided derivatives on an uncountable set. Does there exist a continuous f that has no one-
sided derivative, finite or infinite, at any point? The answer is yes! A construction was given
by A. Besicovitch in 1925. The theorem of Saks shows that the Baire category theorem cannot
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be applied to C[a, b] to prove this result. It has, however, been applied to an appropriate closed
subspace of C[a, b] in which “Besicovitch functions” form a residual subspace. This was accom-
plished by J. Maly in 1984.

10.7.2 Differentiable, Nowhere Monotonic Functions

Over 100 years ago, du Bois-Reymond expressed the view that a nowhere monotonic function
cannot be differentiable. Dini, on the other hand, believed the existence of such functions to be
highly probable. Example 10.4 shows that there are continuous nowhere monotonic functions,
and Exercise 7:5.3 shows us that a nowhere monotonic function can be absolutely continuous.
But in order for a differentiable function in C[a, b] to be nowhere monotonic, it must be true
that both sets {

x : f ′(x) > 0
}

and
{
x : f ′(x) < 0

}

are dense in [a, b]. Such functions may be difficult to visualize.
In 1887, Köpcke provided a construction of such a function. In discussing Köpcke’s work,

Denjoy5 wrote in 1915:

In 1887, Köpcke gave in Math. Annalen an example of a function possessing at each
point (or so he thought) a derivative which vanished and took both signs in every
interval in its domain. [He] returned to this subject on several occasions [references],
correcting each time the errors contained in the previous proofs. This question of
differentiable, nowhere monotonic functions has also provoked many other works
[references].

5A. Denjoy, “Sur les fonctions dérivées sommables,” Bull. Soc. Math. France 43 (1915) pp. 161–248.
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The various constructions Denjoy referenced were quite complicated. At this point in Den-
joy’s paper, he had already given three separate constructions of his own. He was about to give
a Köpcke-type construction, but, before doing so, he alerted the reader to the “clarity and sim-
plicity” of his own construction made possible by borrowing ideas from “Borel and Lebesgue on
measure of sets.” To Denjoy, his constructions were simple and clear. We would probably find
them horrendous.

Hobson modified Pereno’s modification of Köpcke’s construction in his book.6This was pub-
lished about 40 years after Köpcke’s first correction, 30 years after Pereno’s modification, and
12 years after Denjoy’s “simple and clear” development. It required ten pages!

Today a number of proofs are available. Some are constructive, but simpler than those early
proofs. We shall provide a simple proof based on the Baire category theorem. It was advanced
by C. Weil7 in 1976 and required two pages. To present Weil’s proof, we need to know that a
uniform limit of bounded derivatives is a derivative. Since Weil’s proof uses several ideas devel-
oped in the last two sections, we provide the necessary details.

Let M△′ denote the space of bounded derivatives on [0,1] with

ρ(f, g) = sup
x∈[a,b]

|f(x) − g(x)|.

Then M△′ is a closed subspace of M [0, 1] and is therefore complete. Now let

M△′
0 =

{
f ∈M△′ : f = 0 on a dense set

}
.

We first show that M△′
0 is closed under addition and is complete.

6E. Hobson, Theory of Functions of a Real Variable, II, Dover, New York, (1957) (reprinting of original book
published in 1927).

7C. E. Weil, “On nowhere monotonic functions,” Proc. Amer. Math. Soc., 56 (1976), 388–389.
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Let f, g ∈M△′
0. Since f, g ∈ B1, it follows that the sets

{x : f(x) = 0} and {x : g(x) = 0}
are of type Gδ. But the intersection of two dense sets of type Gδ is also dense, so the set

{x : f(x) + g(x) = 0}
is dense. Thus f + g ∈M△′

0. Similarly, if {fn} is a sequence from this subspace M△′
0 and

fn → f [unif], then f ∈M△′
0. To see this, let

An = {x : fn(x) = 0} ,
and let A =

⋂∞
n=1An. Each of the sets is dense and of type Gδ, so the same is true of A. But

A ⊂ {x : f(x) = 0} .
It follows that f ∈M△′

0. Thus M△′
0 is closed in M△′ and therefore complete.

Refer now to Example 5.2. There we constructed a strictly increasing differentiable function
h such that h′ ∈M△′

0. Thus M△′
0 6= ∅. Let I be an interval in [0,1], and let

P =
{
p ∈M△′

0 : p ≥ 0 on I
}
.

Then P is closed in M△′
0. We show that P is nowhere dense in M△′

0.

Let B(f, ε) be an open ball in M△′
0. If f /∈ P , we have shown that P̃∩B(f, ε) 6= ∅. If f ∈ P ,

let x0 be a point of continuity of f in the interval I. The existence of such a point follows from
Theorem 10.14. It is clear that f(x0) = 0, since {x : f(x) = 0} is dense in [0,1]. Choose an open
interval J ⊂ I such that f(x) < ε/2 on J . Now choose g ∈M△′

0 such that −g ∈ P and

sup
x∈[0,1]

(−g(x)) = sup
x∈J

(−g(x)) = ε.

(We can, for example, take −g to be an appropriate modification of the function h′ of Exam-
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ple 5.2.) Then f + g ∈M△′
0 and

ρ(f, f + g) = ρ(g, 0) = ε.

On J we have 0 ≤ f(x) < ε/2. In addition, there exists x1 ∈ J such that −g(x1) > ε/2, so
g(x1) < −ε/2. Thus f(x1) + g(x1) < 0. It follows that

f + g ∈ B(f, 2ε) \ P
and that P is nowhere dense in M△′

0.
In a similar way, we show that

N =
{
f ∈M△′

0 : f ≤ 0 on I
}

is closed and nowhere dense in M△′
0.

We have shown that, given any open interval I ⊂ [0, 1], the set

A(I) =
{
f ∈M△′

0 : ∃x1, x2 ∈ I so that f(x1) > 0 and f(x2) < 0
}

is a dense open subset of M△′
0. Let {Ik} be an enumeration of the open intervals in [0,1] with

rational endpoints. Let Ak = A(Ik). Then A =
⋂∞

k=1Ak is a dense subset of type Gδ in M△′
0.

If f ∈ A, then both sets

{x : f(x) > 0} and {x : f(x) < 0}
are dense in [0,1]. Thus f is a bounded derivative that takes both signs in every open interval
contained in [0,1].

Let F (x) =
∫ x
0 f dλ. Then F ′ = f on [0,1]. Thus F is a nowhere monotonic differentiable

function on [0,1]. We have proved the following theorem:
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Theorem 10.27: Let △0 denote the set of differentiable functions F on [0, 1] such that F (0) =
0 and F ′ ∈M△′

0. For F,G ∈ △0, let

ρ(F,G) = sup
x∈[0,1]

|F ′(x) −G′(x)|.

Then (△0, ρ) is a complete metric space in which the typical member is a differentiable nowhere
monotonic function.

Observe that if F is differentiable and nowhere monotonic then F ′ can be continuous at a
point x0 only if F ′(x0) = 0. The set of points of continuity of F ′ must be large in the category
sense: it must be a dense Gδ. But it can be small in measure (see Exercise 5:5.5). One can, in
fact, show that the typical derivative f in M△′ is discontinuous a.e. (see Exercise 10:8.7).

10.7.3 The Space of Automorphisms

Let H denote the family of strictly increasing continuous functions on [0,1] that leave the end-
points fixed. Since a uniform limit of functions on H need not be strictly increasing, H is not
closed in C[0, 1]. Thus H is not complete with respect to the metric

ρ(f, g) = max
x

|f(x) − g(x)|.
It would appear that our usual methods would fail in a study of this space. We show that H is
of type Gδ and therefore topologically complete. Consequently, Baire category arguments can
still be applied.

Let I be a closed nondegenerate interval in [0,1], and let

A(I) =
{
h ∈ H : h is constant on I

}
.
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Then A(I) is a closed subspace of C[a, b]. Let {In} be an enumeration of the closed nondegener-
ate subintervals of [0,1] with rational endpoints. The set

A =
∞⋃

n=1

A(In)

is of type Fσ in C[a, b] and therefore also of type Fσ in the closed set H. The set H \A is there-
fore of type Gδ in the complete space H. Now H consists of the nondecreasing continuous func-
tions on [0,1] that leave the endpoints fixed, and A consists of those members of H that are
not strictly increasing. Thus H \ A consists of the strictly increasing members of H; that is,
H \A = H.

Definition 10.28: A homeomorphism h of an interval [a, b] onto [a, b] that satisfies h(a) = a
and h(b) = b is called an automorphism of [a, b].

Our discussion above shows that the set H of automorphisms of [0,1] is of type Gδ in the
complete space H and is therefore topologically complete.

Exercise 10:7.12 provides a simple example of an automorphism of [0, 1] that maps a given
Cantor set onto a set of measure zero. As an illustration of the way in which Theorem 10.19
can be applied, we next show that a given first-category subset A of [0,1] can also be mapped
onto a zero measure set by an automorphism. We do this by applying the Baire category theo-
rem to the topologically complete space H of automorphisms of [0,1]. The reader may wish to
try to construct such an automorphism if A is a first-category set of measure 1.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



728 Baire Category Chapter 10

Theorem 10.29: Let A be a first-category subset of [0, 1]. Let

H1 = {h ∈ H : λ(h(A)) = 0} .
Then H \H1 is first category in H; that is, H1 is residual in the topologically complete space H.

Proof. Let A =
⋃∞

n=1An with each set An nowhere dense in [0,1]. For n, k ∈ IN, let

Hnk =
{
h ∈ H : λ(h(An)) < 1/k

}
.

We show that each of the sets Hnk is open and dense in H. It will then follow that
⋂∞

n,k=1Hnk

is residual in H.
If h ∈ ⋂∞

n,k=1Hnk, then λ(h(An)) = 0 for all n ∈ IN, so

λ(h(A)) ≤ λ

(
∞⋃

n=1

h(An)

)
= 0;

that is,
∞⋂

n,k=1

Hnk ⊂ H1,

and H1 is residual in H, as was to be proved.
To show that Hnk is open, let h ∈ Hnk and let G be an open set in IR such that

h(An) ⊂ G

and λ(G) < 1/k. The set h(An) is closed, as is the set G̃. Thus

dist(h(An), G̃) > 0.

Let

δ < dist(h(An), G̃).

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 10.7. Applications to Function Spaces 729

If ρ(g, h) < δ, then g(An) ⊂ G, so g ∈ Hnk. This shows that Hnk is open in H.
It remains to show that Hnk is dense in H. Let g ∈ H, and let ε > 0. By perturbing g a bit,

we shall arrive at a function in Hnk ∩B(g, ε). This will show that Hnk is dense in H.
Let I1, . . . , IN be nonoverlapping closed intervals, each of length less than ε, with

[0, 1] = I1 ∪ · · · ∪ IN .
Since g is a homeomorphism and An is nowhere dense in [0,1], the set g(An) is also nowhere
dense in [0,1]. Thus there exist closed intervals J1, . . . , JN such that, for each i = 1, 2, . . . , N ,

Ji ⊂ Ii
o \ g(An).

Let hi be an automorphism of Ii such that

λ(hi(Ji)) > λ(Ii) −
1

kN
.

See Figure 10.1. Define h on [0,1] by h(x) = hi(x) if x ∈ Ii. Then h ∈ H and

h(g(An)) ⊂ [0, 1] \ (h(J1) ∪ · · · ∪ h(JN )).

Thus

λ(h(g(An))) <
1

k
,

and h ◦ g ∈ Hnk. Since h maps each of the intervals Ii onto itself, and each such interval has
length less than ε,

|h(g(x)) − g(x)| < ε

for all x ∈ [0, 1]. That is, ρ(h ◦ g, g) < ε, so h ◦ g ∈ B(g, ε).
We have shown that

h ◦ g ∈ Hnk ∩B(g, ε).
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-

6

Ii

hi(Ii) = Ii

Ji

hi(Ji)

< 1
2KN

< 1
2KN

·

·

·

Figure 10.1. Construction of the automorphism hi of Ii.

It follows that Hnk is dense in H, completing the proof of the theorem. �

In Exercise 8:3.2 we constructed a strictly increasing singular function on [0,1]. Theorem 10.29
provides an immediate proof of the existence of such functions. To see this, let A be a measur-
able, first-category subset of [0,1] with λ(A) = 1 and let B = [0, 1] \ A be the complement of A.
B has measure zero. For each h ∈ H1, λ(h(A)) = 0 and consequently λ(h(B))) = 1. Thus each
h ∈ H1 maps the zero measure set B onto a set of full measure. It follows that every h ∈ H1 is
a strictly increasing, continuous, singular function.

When dealing with topologically complete spaces, we shall use terms such as “residual” or
“typical” in the same way as we use them for complete spaces.
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Exercises

10:7.1 Prove in detail that a function f ∈ C[a, b] of nonmonotonic type has both ∞ and −∞ as derived
numbers at every x ∈ [a, b].

10:7.2 Is f(x) = |x| nonangular? What about g(x) = x sinx−1, (g(0) = 0)?

10:7.3 Show that a differentiable function is nonangular. Can a differentiable function be of nonmono-
tonic type?

10:7.4 Prove that there exist continuous nowhere monotonic functions that are not of nonmonotonic
type.

10:7.5 Prove Theorem 10.25. [Hint: Consider the sets Apqn of all functions f ∈ C[a, b] so that there
exists x ∈ [a+ 1/n, b− 1/n] such that

f(t) − f(x) ≤ p(t− x)

for 0 < t− x < 1/n and

f(t) − f(x) ≥ q(t− x)

for 0 < x− t < 1/n.]

10:7.6 In his famous centennial lecture at the International Congress of Mathematicians in Paris in
1900, Hilbert posed a number of important problems for mathematicians of the twentieth century
to attack. The thirteenth problem8 involves the representation of continuous functions of several
variables in terms of continuous functions of one variable via a finite number of sums and composi-
tions.

In 1957, A. N. Kolmogorov showed that every continuous real-valued function defined on the n-
dimensional cube In admits such a representation. His constructions were very complicated. Among

8An interesting discussion concerning Hilbert’s problem and related topics can be found in D. Sprecher, “On
functional complexity and superpositions of functions,” Real Analysis Exchange 9 (1983-84), no. 2, 417–431.
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other things, he constructed continuous functions on In that are one to one almost everywhere.
From the Baire category theorem, we can deduce that there are many such functions with this
property.

(a) Prove that the typical f ∈ C[a, b] is one to one a.e. That is, there exists A ⊂ [a, b] such that
λ([a, b] \ A) = 0 and f is one to one on A. [Hint: Let K be a Cantor set. Show first that the
typical f ∈ C[a, b] is one to one on K.]

(b) Extend part (a) to the space of all continuous real-valued functions defined on a closed square
[a, b] × [a, b].

(c) A curve in IR2 is a continuous function f : [0, 1] → IR2. Make precise the following statement
and determine whether or not it is true: The typical curve in IR2 is one to one on [0, 1].

10:7.7 Let B ⊂ M [a, b] consist of the bounded Borel measurable functions on [a, b]. Then B is complete
(why?). Prove that the typical f ∈ B is one to one on [a, b].

10:7.8 Let X be a closed subspace of M [a, b], and let R be a residual subset of X. Show that for every
h ∈ X there exists f, g ∈ R such that h = f + g. [Hint: Let A = {h− f : f ∈ R}. Show that A ∩R
is residual in X. Choose g ∈ A ∩R.]

10:7.9 Use Exercise 10:7.8 to verify the following statements:

(a) Every f ∈ C[a, b] is a sum of two continuous functions that are one to one a.e. (see Exer-
cise 10:7.6).

(b) Every f ∈ C[a, b] is a sum of two continuous nowhere differentiable functions.

(c) Every f ∈ B (Exercise 10:7.7) is a sum of two one to one functions in B.

10:7.10 Show that there exists a set Z ⊂ IR such that λ(Z) = 0 and such that, for every x ∈ IR, there
exists z1, z2 ∈ Z such that x = z1 + z2. [Hint: Prove and then apply an analog of Exercise 10:7.8
for IR in place of M [a, b].]
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10:7.11 Prove that the typical derivative in M△′ is discontinuous on a dense set. [Hint: Show that the
set

A(I) = {f ∈M△′ : f continuous on I}
is nowhere dense in M△′. For a stronger result see Exercise 10:8.7.]

10:7.12 Let K be a nowhere dense closed subset of [0,1]. Let

h(x) =
λ([0, x] ∩ K̃)

λ(K̃)
.

Prove that h is an automorphism of [0,1] and that λ(h(K)) = 0.

10:7.13 [Riemann integrability under changes of variable] Let f be a bounded function on [a, b],
let H be the family of automorphisms of [0,1], let R be the family of Riemann integrable functions
on [a, b], and let D be the set of points of discontinuity of f .

(a) Prove that f ◦ h ∈ R for all h ∈ H if and only if D is countable.

(b) Prove that f ◦ h ∈ R for some h ∈ H if and only if D is first category.

(c) Prove that f ◦ h ∈ R for the identity function h if and only if λ(D) = 0.

Thus the three types of “small” sets that we have encountered all figure into questions concerning
Riemann integrability of a function under homeomorphic changes of variable.

10:7.14 Let S denote the space of Lebesgue–Stieltjes measures µ on the unit interval X = [0, 1] that
satisfy (i) µ(X) = 1, (ii) µ(G) > 0, if G is nonempty and open, and (iii) µ is nonatomic. Make
precise the statement that the typical µ ∈ S is singular with respect to λ. Prove your statement.
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10.8 Additional Problems for Chapter 10

10:8.1 (Refer to Exercise 3:13.6.) Show that the typical f ∈ C[0, 1] gives rise to the zero measure when
Method II is applied to τ([a, b]) = |f(b) − f(a)|.

10:8.2 (a) In Exercise 4:4.2, show that the function f is not in the first Baire class and that the func-
tion g has the Darboux property, but its graph is not a connected subset of IR2. [Exercise 10:8.6
below recalls the definition of a connected set in a metric space.]

(b) Show that if a function h : [0, 1] → IR has the Darboux property and is also in the first class
of Baire then the graph of h must be a connected subset of IR2. [Hint: If not, there exist
disjoint nonempty open subsets G1 and G2 of IR2 such that G1∩G2 = ∅ and G1∪G2 contains
the graph of h. Let

A1 = {x : (x, f(x)) ∈ G1} and A2 = {x : (x, f(x)) ∈ G2} .
Let K be the boundary of A1. Show that K is perfect and that both A1 and A2 are dense in
K. Obtain a contradiction by considering a point of continuity of h|K.]

10:8.3 [Liouville numbers] A real number z is called a Liouville number if z is irrational and has the
property that for each n there exist integers p and q such that∣∣∣∣z −

p

q

∣∣∣∣ <
1

qn
.

Prove the following statements about the set L of Liouville numbers.

(a) L = Q̃ ∩
∞⋂

n=1

Gn, where Gn =

∞⋃

q=2

∞⋃

p=−∞

(
p

q
− 1

qn
,
p

q
+

1

qn

)
.

(b) L is a dense set of type Gδ, so L is large in the sense of category.

(c) λ(L) = 0, so L is small in the sense of measure.
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(d) L has Hausdorff dimension zero.

10:8.4 [Level sets of continuous functions] Let A consist of those continuous functions f on [0,1]
for which each level set contains no more than one point at which f achieves a relative extremum.
[A level set for f is a set of the form {x : f(x) = α}, where α ∈ IR.] Show that A is a dense set of
type Gδ in C[0, 1]. One can actually show that, for the typical f ∈ C[0, 1],

(a) the top and bottom level sets are singletons,

(b) for a countable dense set of levels, the level set consists of a Cantor set with one added iso-
lated point, and

(c) all other level sets are Cantor sets.

A similar pattern of intersections of the graph of f with nonvertical lines occurs in all directions,
except for a countable dense set of directions. For each of those exceptional directions, the inter-
section pattern is the same, except that there will be a single line that intersects the graph of f in
a set that contains two isolated points instead of one.

Thus, the typical f ∈ C[a, b] exhibits some “pathological” behavior, but the graphs of such func-
tions all “look alike.” The only way in which one such function differs from another is in which
lines and directions are exceptional. The Baire category theorem was useful in describing the in-
tersection patterns of the graph of a typical f ∈ C[a, b] with the family of lines. No function that
exhibits the stated intersection pattern has yet been constructed!

10:8.5 Let C∗ = {f ∈ C[0, 1] : f([0, 1]) ⊂ [0, 1]} and for f ∈ C∗, let Fix(f) be the set of fixed points of f ;
that is, x ∈ Fix(f) if and only if f(x) = x.

(a) Prove that C∗ is complete, but is not compact.

(b) Show that, for the typical f ∈ C∗, Fix(f) is a Cantor set.
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10:8.6 [Continua] Let us first recall the definition of a connected set in a metric space. A continuum is
then a compact, connected set.

Definition A metric space X is connected if it cannot be expressed as a disjoint union
of two nonempty open sets. A subset S of X is connected if S is a connected metric
space.

Definition A compact connected set in a metric space is called a continuum. (The
plural is continua.)

The only nonempty compact, connected subsets of IR are singleton sets and closed intervals. For
IR2, the situation is more complicated, and rather strange compact connected subsets of IR2 exist.
To obtain a bit of insight, work the several parts of this problem, read the paragraphs that follow,
and, if so inclined, the references we provide. In particular, part (e) shows that in the sense of cat-
egory, most compact connected sets in the plane are “strange.”

(a) Prove that the only connected sets in IR are intervals (possibly degenerate), IR, and the
empty set.

(b) Show that the set
{

(x, y) ∈ IR2 : y = sin 1/x, 0 < x ≤ 1
}
∪ {(0, y) : −1 ≤ y ≤ 1}

is a continuum.

Can you visualize a nonempty continuum in IR2 that consists of more than one point, but con-
tains no arcs? (An arc is a homeomorphic image of [0,1]). The purpose of the following parts is to
use the Baire category theorem to demonstrate that the typical continuum in IR2 contains no arcs.

Let K be the metric space of nonempty compact subsets of the unit square U = [0, 1] × [0, 1]
furnished with the Hausdorff metric (Example 9.13). This space is complete (Example 9.41) and,
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in fact, compact (Theorem 9.66). Let

C = {C ∈ K : C is connected} .

(c) Prove that C is a compact metric space. [Hint: Prove that C is closed in K.]

A set S ⊂ U is called snakelike if for each ε > 0 there exists a finite collection G1, . . . , Gn of
open sets with diameters less than ε such that S ⊂ ⋃n

j=1Gj and Gi ∩Gj = ∅ unless |i− j| ≤ 1.

(d) Prove that an arc in U is snakelike.

A continuum is indecomposable if it cannot be expressed as a union of two proper subcontinua.
(These subcontinua will not be disjoint). A continuum is hereditarily indecomposable if each of its
subcontinua is indecomposable. Do you think there exists a hereditarily indecomposable contin-
uum in U containing more than one point? Read on.

Let N denote the set of all continua in U that contain more than one point, S denote the snake-
like continua in U , and H the hereditarily indecomposable continua in U . Let P = N ∩ S ∩H.
The elements of P are called pseudo arcs. Observe that a member of P is a continuum containing
more than one point, but not containing an arc (since an arc can be decomposed).

(e) Prove that P is not empty. [Hint: See J. G. Hocking and G. S. Young, Topology, Addison-
Wesley, (1961), p. 142. Part (e) is not easy to conceive, but the argument in the reference is
not difficult.]

(f) Prove that P is dense in C. [Hint: First show that each C ∈ C can be approximated by a
polygonal arc L, which in turn can be approximated by an element of P. You do not have to
understand the details of the construction in (e) to do this.]

(g) Conclude that P is a dense Gδ in C and therefore residual. Thus the typical continuum in U
is a pseudo arc and, in particular, contains no arcs.
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Figure 10.2. The boundary of an open, simply connected set.

Understanding pseudo arcs and related types of continua is of importance in many parts of
mathematics. For example, the Riemann mapping theorem in complex analysis states that any
open, simply connected, proper subset W of the complex plane can be mapped conformally onto
the unit disk. On encountering this theorem, students will first visualize W as the inside of a sim-
ple closed curve C and then perhaps more generally as such a domain with some arcs that have an
endpoint on C removed from the interior. See the Figure 10.2.

But what if the boundary of W is something like a “closed pseudo arc”? The student might not
appreciate that the proof of the Riemann Mapping Theorem must allow such a possibility. And,
also, it must allow other strange possibilities, for example, that W is only one of many simply con-
nected regions that have C as a common boundary.

Such continua have received new interest in recent years.9 A reason is that many dynamical
systems, even smooth ones, have attractors most (in the sense of category) of whose connected
components are hereditarily indecomposable and therefore contain no arcs.

9 An interesting discussion of recent work in this area, together with a new construction of a “strange attrac-
tor,” can be found in Kennedy and Yorke, Bull. Amer. Math. Soc. (2) 32 (1995), no. 3, 309–316.
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10:8.7 [Continuity of the typical bounded derivative] In Exercise 5:5.5 we constructed a bounded
derivative on [0,1] that is discontinuous a.e. and alerted the reader that ‘most’ derivatives are dis-
continuous a.e. The purpose of the present exercise is to verify that statement.

Let M△′ denote the space of bounded derivatives on [0,1] with

ρ(f, g) = sup
x∈[0,1]

|f(x) − g(x)|.

Thus f ∈ M△′ if and only if f is bounded and there exists F : [0, 1] → IR such that F ′(x) = f(x)
for all x ∈ [0, 1]. For f ∈M△′, let Cf denote the set of points of continuity of f .

(a) Let 0 < δ ≤ 1 and let Aδ = {f ∈ M△′ : λ(Cf ) ≥ δ}. Show that Aδ is closed in M△′. [Hint:
Let fn be a sequence in Aδ converging to f . Let

C =
∞⋂

N=1

∞⋃

n=N

Cfn
.

Show C ⊂ Cf .]

(b) Let P be a Cantor set in [0,1]. Show that there exists f ∈ M△′ such that f(x) = 0 on P ,
max |f(x)| = 1 on each interval complementary to P , and Cf = [0, 1] \ P . [Hint: Construct f
to be approximately continuous and use Theorem 7.38.]

(c) Show that for each δ ∈ (0, 1) the set Aδ in part (a) is nowhere dense in M△′. [Hint: Choose
a ball B(g, ε) in M△′ with center g ∈ Aδ and use part (b) to obtain a function h such that
g + h ∈ B(g, ε) \Aδ.]

(d) Prove that the typical bounded derivative is discontinuous a.e.
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Chapter 11

ANALYTIC SETS

The Borel sets in a metric space are closed under the operations of complementation, countable
unions, and countable intersections. They are not, however, closed under continuous images.
To discuss the continuous images of Borel sets, we need a larger class – the analytic sets. We
shall see that the class of analytic sets in a complete, separable metric space can be described
as the class of sets obtainable as continuous images of some Borel set. We develop the basic
properties of analytic sets, showing how such sets can be approximated and separated by Borel
sets. The analytic sets are proved to be measurable for any metric outer measure on the space.
Many important examples of sets in functions spaces turn out to be analytic (or complements
of analytic sets), but not Borel sets. We complete the chapter with several instances.

In Chapter 1 we have reviewed the origins of the theory of analytic sets in a famous error
of Lebesgue. Here we develop the machinery for proving most of the assertions given in Sec-
tion 1.13. Everything is set in a complete, separable metric space. For most purposes of anal-
ysis, this is more than enough to be able to use these ideas. Topologists and descriptive set

740
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theorists would need more refined and subtle techniques. For those, the reader might consult
Kuratowski1 and Moschovakis.2

We conclude with an application of the theory to the study of differentiable functions by
presenting some material of Stefan Mazurkiewicz (1888–1945). Further applications can be
found in probability theory, the theory of capacities, the theory of Hausdorff measures (frac-
tals), and in many other aspects of real and functional analysis.

11.1 Products of Metric Spaces

The material in this chapter depends on some familiarity with metric spaces and mappings on
metric spaces. We begin with some preliminary material on products of metric spaces. The
reader with a good background in topology who happens to remember the product topology
can probably scan through most of this quickly.

Let (X, d) be a metric space. We first recall that the following provides an equivalent met-
ric:

ρ(x, y) =
d(x, y)

1 + d(x, y)
,

which is bounded by 1. This metric changes distances and diameters, but it preserves the open
sets and the convergence properties. In many applications this is what matters, and so when-
ever an unbounded metric is troublesome we can consider making this replacement.

We now review how to provide a metric on a product space. Let (Xi, di) be a sequence of

1C. Kuratowski, Topology, Academic Press (1966).
2Y. N. Moschovakis, Descriptive Set Theory, North-Holland (1980).
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metric spaces. By the set

X =
∞∏

i=1

Xi

we mean the set of all sequences x = (x1, x2, x3, . . . ) of elements xi ∈ Xi for i ∈ IN. We provide
X with a metric ρ by writing, for any pair of points x = (x1, x2, x3, . . . ), y = (y1, y2, y3, . . . ) in
X,

ρ(x, y) =

∞∑

i=1

1

2i

di(xi, yi)

1 + d(xi, yi)
.

(Compare this with Example 9.2.) This metric ρ makes X a metric space furnished with what
is known as the product topology . Convergence of a sequence of points in X amounts to “coordinate-
wise convergence.” More precisely, suppose that we are given a sequence of points

x(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 , . . . )

in the space X. Then x(n) converges to a point (c1, c2, c3, . . . ) ∈ X if and only if, in each coordi-

nate, we have the convergence of the sequence x
(n)
i to ci in the space Xi. (See Exercise 11:1.2.)

This fact makes checking statements in the space X quite simple: one merely checks separately
what is happening in each coordinate.

The following two facts are fundamental and easy enough to prove, since convergence need
only be checked coordinate by coordinate.

11.1: Let (Xi, di) be a sequence of complete metric spaces. Then the product space

X =
∞∏

i=1

Xi
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is also a complete metric space.

11.2: Let (Xi, di) be a sequence of separable metric spaces. Then the product space

X =
∞∏

i=1

Xi

is also a separable metric space.

Exercises

11:1.1 Let (Xi, di) be a sequence of metric spaces and X =
∏∞

i=1Xi be the product. Show that ρ as
defined is a metric on X and that it is bounded.

11:1.2 Show that a sequence of points

x(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 , . . . )

in the space X =
∏∞

i=1Xi converges to a point (c1, c2, c3, . . . ) ∈ X if and only if x
(n)
i → ci in the

space Xi for each i ∈ IN.

11:1.3 Prove 11.1: a product of a sequence of complete spaces is complete.

11:1.4 Prove 11.2: a product of a sequence of separable spaces is separable.

11:1.5 Prove that a product of a sequence of compact spaces is compact.

11:1.6 Show that the infinite product
∏∞

i=1[0, 1] of countably many copies of the unit interval is homeo-
morphic to the Hilbert cube

I∞ = {x ∈ ℓ2 : |xn| ≤ n−1}.
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11.2 Baire Space

The space of natural numbers IN is commonly given a metric that makes convergence trivial.
With the metric

ρ(m,n) = |m− n|,
a sequence {nk} evidently converges to a number c in IN if and only if the sequence has nk = c
for all sufficiently large k. We consider IN as a metric space furnished with this metric. Without
much trouble, one sees that IN is a complete, separable metric space.

The space ININ, sometimes called Baire space, is the product of countably many copies of IN.
To make this explicit, let Xi = IN for each i = 1, 2, 3 . . . and form the product space

∞∏

i=1

Xi

equipped with the product metric introduced in Section 11.1. This is again a complete, separa-
ble metric space. Thus ININ is the space of all sequences n = (n1, n2, n3, . . . ) of natural num-
bers, and the metric on this space is defined as

ρ(m,n) =
∞∑

i=1

|mi − ni|
2i (1 + |mi − ni|)

.

Convergence is merely coordinate-wise convergence which, as we have noted, just means that
each sequence of coordinates becomes constant at some stage.

The space ININ permits various manipulations that are convenient in the study of products
and projections. The exercises show how to exploit this structure. The basic idea is that ININ

contains many copies of itself and one can put together a product of a sequence of copies of ININ
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and obtain a space identical to the space ININ itself.
The Baire space ININ can be used to study the class of complete, separable metric spaces.

The following theorems show the intimate connections between these spaces.

Theorem 11.3: Every complete, separable metric space is a continuous image of ININ.

Proof. Let X be a complete, separable metric space. Since separable, it is possible to express
X as a union of a sequence of closed sets of small diameter, say

X =
∞⋃

i=1

E(i),

where each E(i) is closed and has diameter smaller than 2−3. Note that no claim is made that
the sets are disjoint; they are just closed sets of small diameter that cover the space.

We can continue this process on each E(i), expressing it as a union of even smaller sets. In-
ductively, for each k ∈ IN we define nonempty, closed sets

E(n1, n2, n3, . . . , nk)

with diameter smaller than 2−k−2 so that

X =
∞⋃

i=1

E(i)

and

E(n1, n2, n3, . . . , nk−1) =
∞⋃

i=1

E(n1, n2, n3, . . . , nk−1, i).
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For each n = (n1, n2, n3, . . . ) ∈ ININ, we observe that

∞⋂

k=1

E(n1, n2, n3, . . . , nk),

being a nested sequence of closed sets with diameters shrinking to zero in a complete space,
must contain a unique point. We call this g(n). Clearly, the function g is a mapping of ININ

onto X [although it is not one-one: a point may belong to different E(n1, n2, n3, . . . , nk)].
We have only to check that the mapping is continuous. For this we obtain a local Lipschitz

condition. If m,n ∈ ININ with ρ(m,n) smaller than 1
4 , we can choose a natural number k so

that

2−k−2 ≤ ρ(m,n) < 2−k−1,

where ρ is the metric in ININ. This means, directly from the definition of the metric ρ, that
mi = ni for all i ≤ k. Hence

ρX(g(m), g(n)) ≤ diameter(E(n1, n2, n3, . . . , nk)

< 2−k−2 ≤ ρ(m,n),

where ρX is the metric in our space X. This inequality shows that g is continuous. �

In the theorem just proved, we have shown that the space X can be written as the image
g(ININ) for some continuous function g. The function g need not be one-one nor, even if it is
one-one, need the inverse g−1 be continuous. That is, we do not have a homeomorphic copy. If
we wish a copy of ININ that is more faithful (i.e., the one-one image of a continuous function
such that g−1 is also continuous), we must look inside X for appropriate subsets. The next the-
orem follows from the methods of the proof above by making suitable refinements.
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Theorem 11.4: Every perfect, complete, separable metric space has a Borel subset that is a
homeomorphic image of ININ.

Proof. We refine the construction of the last proof. Choose disjoint, nonempty open sets
U(n1, n2, n3, . . . , nk) with diameters smaller than 2−k−2, but do not attempt to cover the whole
space. In the induction step, make sure that

U(n1, n2, n3, . . . , nk) ⊃
∞⋃

j=1

U(n1, n2, n3, . . . , nk, j).

Then, defining the mapping g exactly as before, we can check that g is a homeomorphism be-
tween ININ and the set

∞⋂

k=1

⋃

(n1,n2,n3,...,nk)

U(n1, n2, n3, . . . , nk).

Since this set is a countable intersection of open sets we have the required Borel set. �

Exercises

11:2.1 Characterize the compact subsets of IN.

11:2.2 Check that ININ is a complete, separable metric space using the metric as given.

11:2.3 Characterize the compact subsets of ININ.

11:2.4♦ Show that IN × ININ is homeomorphic to ININ itself.

11:2.5 Define Zj for each j = 1, 2, 3, . . . as the set of all points in ININ whose first coordinate is j. Show
that Zj is a clopen (i.e., closed and open) subset of ININ that is in fact homeomorphic to ININ it-
self.
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11:2.6 Define Xj = ININ for each j = 1, 2, 3, . . . and X =
∏∞

j=1Xj . Show that X is homeomorphic to

ININ itself.

11:2.7 Fill in the details in the proof of Theorem 11.4 and check that g is a homeomorphism.

11:2.8 If X = IR in Theorem 11.4, then the sets U(n1, n2, n3, . . . , nk) can be chosen at each stage so
that only a countable set of points in IR is not covered. Conclude that there is a countable set
Z ⊂ IR so that ININ is homeomorphic to IR \ Z.

(The next exercise shows that the countable set Z can be taken as the rationals. For this reason,
one can call the space ININ the space of irrationals.)

11:2.9 Show that the continued fraction mapping f from ININ to IR \ Q defined for n = (n1, n2, n3, . . . )
as

f(n) =
1

n1 + 1
n2+

1

n3+ 1
n4+...

is a homeomorphism.

11:2.10 Find a closed set B ⊂ ININ that maps continuously one-one onto to IR. [Hint: Map {1} × ININ

to IR \ Z for a countable set of reals Z = {z2, z3, z4, . . . } and then map (k, 1, 1, 1, 1, 1, . . . ) to zk for
k ≥ 2. This gives a closed subset of IN × ININ mapping to IR.]

11.3 Analytic Sets

We work throughout in complete, separable metric spaces. A space that is homeomorphic to a
complete, separable metric space is often called a Polish space because of the extensive analysis
of these spaces conducted by the Polish mathematicians of the 1920s and 1930s. The following
three definitions are equivalent. The first exhibits analytic sets as images of a standard space,
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the second as images of any complete, separable metric space and the third, returning to an
original idea of Suslin, as sets arising from projections. See also Theorem 11.19, where analytic
sets are described using the Suslin operation. Recall that by a projection mapping from a space
X × Y to X we mean the function pX(x, y) = x.

Definition 11.5: Let X be a complete, separable metric space. A set A ⊂ X is said to be ana-
lytic provided that

1. A is the continuous image of ININ, or

2. A is the continuous image of some complete, separable metric space, or

3. A is the projection of a closed subset C of X × ININ to X.

We check the equivalence of these three. For (iii)⇒(ii), note that X × ININ and C are both
complete, separable metric spaces. For (ii)⇒(i), assume that A = f(Y ) for some complete,
separable metric space Y and then invoke Theorem 11.3 to obtain Y as a continuous image of
ININ, say Y = g(ININ). Then A = f ◦ g(ININ). Finally, to obtain (i)⇒(iii), let A = f(ININ). Then
A is the projection of the closed set

{(n, f(n)) : n ∈ ININ}.
We now proceed immediately to obtain the basic properties of analytic sets. We show that

these sets are preserved under many basic operations. In all the statements that follow, all the
spaces X, Xi, and Y that appear are complete, separable metric spaces. Each assertion has
been left as an exercise with a hint that should be adequate.

11.6: If f : X → Y is continuous and A ⊂ X is analytic, then so too is the image f(A).
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11.7: If f : X → Y is continuous and A ⊂ Y is analytic, then so too is the inverse image
f−1(A).

11.8: If Ai ⊂ Xi are each analytic (i = 1, 2, 3, . . . ), then the product set
∏∞

i=1Ai is an analytic
subset of

∏∞
i=1Xi.

11.9: If Ai ⊂ X are each analytic (i = 1, 2, 3, . . . ) then so too are the intersection
⋂∞

i=1Ai and
the union

⋃∞
i=1Ai.

With regard to this last assertion, do not jump to the conclusion that the analytic sets form
a σ–algebra. While this class is closed under countable unions and intersections, it is definitely
not closed under complementation. In fact, the only sets that are both analytic and have an
analytic complement will turn out to be the Borel sets.

We mentioned in Section 3.12 that Cantor sets were not part of the mathematical reper-
toire until late in the nineteenth century. Nowadays, Cantor sets are commonplace, and it is
difficult to visualize an uncountable subset of IR that contains no Cantor set (see the construc-
tion in statement 3.50). Our next theorem indicates why such visualization might be difficult:
such a set cannot be analytic. To state this theorem, we need to say what we mean by a Cantor
set when we are dealing with a general metric space. The definition that the set be nonempty,
bounded, nowhere dense, and perfect suffices in IR, but not in general. For example, we would
not want to say that a line segment in IR2 is a Cantor set.

Definition 11.10: Let X be a metric space. A set K ⊂ X is called a Cantor set if K is topo-
logically equivalent to the classical Cantor ternary set.
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Theorem 11.11: Let U be an uncountable analytic subset of a complete, separable metric space
Y . Then U contains a Cantor set.

Proof. By Definition 11.5, there exists a complete, separable metric space X and a continu-
ous function f : X → Y such that f(X) = U . For each u ∈ U , choose a point xu ∈ X such
that f(xu) = u, and let XU = {xu : u ∈ U}. Since X is separable and XU is uncountable,
there exists a set D ⊂ XU such that D is nonempty and dense-in-itself (Exercise 9:16.4). We
now undertake a process on D that is reminiscent of the construction of the Cantor set. This
construction will give rise to a set A that f maps homeomorphically onto a subset of U .

Let x0 and x2 be distinct points in D. Since f is continuous and is one to one on D, there
exist closed balls B0 and B2, centered at x0 and x2, having diameters less than 1 and such that
f(B0) ∩ f(B2) = ∅. This completes the first step of our inductive process.

We know that D is dense-in-itself. Thus there exist distinct points x00 and x02 in D ∩ B0
o

and two closed balls B00 and B02 centered at x00 and x02 with diameters less than 1/2 such
that B00 ∪B02 ⊂ B0 and f(B00) ∩ f(B02) = ∅. We can follow the same procedure in B2, obtain-
ing closed balls B20 and B22 with the analogous properties.

Continuing inductively, we obtain a system {Bc1c2...ck
} of closed balls, one for each finite

sequence c1, . . . , ck of 0’s and 2’s, such that

1. For each k + 1-tuple (c1, c2, . . . , ck, ck+1) of 0’s and 2’s,

Bc1c2...ckck+1
⊂ Bc1c2...ck

.

2. For each k-tuple (c1, c2, . . . , ck), the diameter of Bc1c2...ck
is less than 1/k.

3. If (c1, c2, . . . , ck) 6= (d1, d2, . . . , dk), then

f(Bc1c2...ck
) ∩ f(Bd1d2...dk

) = ∅.
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Let

A =
∞⋂

k=1

⋃
Bc1c2...ck

,

where the union is taken over all k-tuples of 0’s and 2’s.
Now let C be the classical Cantor set. Define g : C → A by

g(c) = Bc1 ∩Bc1c2 ∩Bc1c2c3 ∩ . . . ,
where

c =
c1
3

+
c2
32

+
c3
33
. . . .

It follows readily from (i) and (ii) that g maps C homeomorphically onto A. (We leave verifica-
tion of this fact to Exercise 11:3.5.)

To complete the proof that U contains a Cantor set, we must show that f is one to one
on A, for in that case f(A) will be the one to one continuous image of the Cantor set A and,
hence, itself a Cantor set. To show this, let z1 and z2 be distinct points of A. There exist k ∈ IN
and distinct k-tuples (c1, c2, . . . , ck) and (d1, d2, . . . , dk) such that z1 ∈ Bc1c2...ck

and z2 ∈
Bd1d2...dk

. It follows from (iii) that f(z1) 6= f(z2). Thus f is one to one, and the set f(A) is a
Cantor set contained in U . �

Exercises

11:3.1 Prove assertion 11.6. [Hint: There is a map h : ININ → X so that h(ININ) = A. Consider f ◦ h.]

11:3.2 Prove assertion 11.7. [Hint: Let p
Y

be the projection onto Y from the space Y × ININ; that is,
p

Y
(y,n) = y for y ∈ Y and n ∈ ININ. Then there is a closed set C ⊂ Y × ININ so that p

Y
(C) = A.

Consider the set D = {(x,n) : (f(x),n) ∈ C} and p
X

(D).]
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11:3.3 Prove assertion 11.8. [Hint: There are continuous functions fi so fi(IN
IN) = Ai. Consider the

function f on (ININ)IN defined by

f(n1, n2, n3, . . . ) = (f1(n1), f2(n2), f3(n3) . . . ).

11:3.4 Prove assertion 11.9. [Hint: Extract the appropriate method from the proof of assertion 11.13 in
the next section.]

11:3.5 Show that the function g defined in Theorem 11.11 by

g(c) = Bc1
∩Bc1c2

∩Bc1csc3
∩ . . .

where c = c1/3 + c2/3
2 + c3/3

3 . . . , is a homeomorphism between the Cantor set and the set A
appearing in the proof of Theorem 11.11.

11:3.6 Prove that every complete metric space, separable or not, that is dense-in-itself contains a Can-
tor set. [Hint: Apply the reasoning of Theorem 11.11 to D = X, f(x) = x.]

11:3.7 Give an example of an uncountable complete space X that contains no Cantor set.

11:3.8 Show that there exists an uncountable separable metric space that contains no Cantor set.

11.4 Borel Sets

We now show that all Borel sets are analytic. In fact, the characterization can be made very
precise. We recall that analytic sets have been described as projections of closed sets; here we
see that the Borel sets are the one-one projections. We have seen that continuous images of an-
alytic sets are analytic; here we see that one-one continuous images of Borel sets are Borel sets.
Finally, the Borel sets are precisely those sets that are analytic and also are complements of
analytic sets. Definition 11.5 should be compared with the first three characterizations of the
following theorem.
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Theorem 11.12: Let X be a complete, separable metric space. The class of Borel subsets of X
may be described as:

1. The class of all sets that are one–one continuous images of ININ.

2. The class of all sets that are one–one continuous images of a Borel subset of a complete,
separable metric space.

3. The class of all sets that are one–one projections onto X of closed subsets of X × ININ.

4. The class of all analytic sets whose complements are also analytic.

The proof is obtained from a series of observations, which we prove individually.

11.4.1 Projections of closed sets

11.13: Let X be a complete, separable metric space. Every Borel set in X is the one-one pro-
jective image of a closed set in X × ININ.

Proof. Let B be the class of all subsets of X that are the one-one projective image of a closed
set in X × ININ. We show first that B contains the open sets. If G is open in X, then

E = {(x, t) : x ∈ X, t ∈ IR, dist(x,X \G) = 1/t}
is a closed subset of X×IR, and G is its one-one projection. We are almost done, but we require
a closed subset of X × ININ. For this we can use Exercise 11:2.10 to obtain a closed set B ⊂ ININ

and a continuous map g : B → IR that is one-one and onto. Then

C = {(x,n) : x ∈ X, n ∈ B, (x, g(n)) ∈ E}
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projects in a one-one manner to G as required.
We show next that B is closed under countable, disjoint unions. If {Ai} are each in B and

disjoint, then select closed sets

Cj ⊂ X × {j} × ININ

that project in a one-one manner to Aj . The set

F =
∞⋃

j=1

Cj

is a closed subset of X × IN × ININ, and it projects in a one-one manner to
⋃∞

j=1Aj . Since IN ×
ININ is homeomorphic to ININ (see Exercise 11:2.4) we are done.

For the final step, we show that B is closed under countable intersections. If {Ai} are each
in B, select closed sets Cj ⊂ X × ININ that project in a one-one manner to Aj . Consider the set

{(x,n(1),n(2),n(3), . . . ) : x ∈ X, n(k) ∈ ININ, (x,n(k)) ∈ Ck, k ∈ IN}.

This is a closed subset of X × (ININ)IN, and it projects in a one-one manner to
⋂∞

j=1Aj . We are

done when we recall that (ININ)IN is homeomorphic to ININ.
Now we put these three facts together. The class B contains all open sets, is closed under

countable disjoint unions, and is closed under countable intersections. Consequently (Exer-
cise 3:1.5), B contains all Borel sets and we are done. �
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11.4.2 Lusin’s separation theorem

The next result is commonly known as the Lusin separation theorem. Two disjoint sets P and
Q are said to be Borel separated if there are disjoint Borel sets B1 and B2 with P ⊂ B1 and
Q ⊂ B2.

11.14: Let X and Y be complete, separable metric spaces, let f : X → Y be continuous, and
let C and D be closed disjoint subsets of X. Then if the image sets f(C) and f(D) are disjoint,
these sets are Borel separated.

Proof. We obtain a contradiction by supposing that f(C) and f(D) are not Borel separated.
We carve up the space X =

⋃∞
i=1E(i) into sets of small diameter (using the notation and ideas

of the proof of Theorem 11.3) and observe that there must be n1,m1 ∈ IN, so f(C ∩ E(n1)) and
f(D ∩ E(m1)) are not Borel separated. Otherwise, using the results of Exercise 11:4.3, we could
show that f(C) and f(D) are Borel separated.

By induction on k we then obtain (continuing the notation of Theorem 11.3)

(n1, n2, n3, . . . ), (m1,m2,m3, . . . ) ∈ ININ

so that the sets

f(C ∩ E(n1, n2, n3, . . . , nk)), f(D ∩ E(m1,m2,m3, . . . ,mk)) (1)

are not Borel separated for each k ∈ IN. But the sets

C ∩ E(n1, n2, n3, . . . , nk), D ∩ E(m1,m2,m3, . . . ,mk)

each shrink down to, at most, a single point in C and D, respectively. A simple argument using
the continuity of f shows that, for large enough k, the sets in (1) must then be able to be sepa-
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rated by disjoint open sets. This contradicts our statement that they are not Borel separated.
�

11.15: Let X and Y be complete, separable metric spaces, let f : X → Y be continuous, and
let {Ai} be a sequence of disjoint analytic subsets of X. If the image sets {f(Ai)} are disjoint,
then there exist disjoint Borel sets B1, B2, B3, . . . so that f(Ai) ⊂ Bi for each natural number
i.

This is left as Exercise 11:4.4.

11.4.3 Continuous one-one images of closed sets

11.16: Let X and Y be complete, separable metric spaces, let f : X → Y be continuous and
one-one, and let C ⊂ X be closed. Then f(C) is a Borel subset of Y .

Proof. We shall express f(C) as a Borel set explicitly. We partition X into a sequence of dis-
joint Borel sets of small diameter. Using the sets E(n1, n2, n3, . . . , nk) once again, we have

X =
⋃

(n1,n2,n3,...,nk)∈INk

E(n1, n2, n3, . . . , nk),

and so also

X =
⋃

(n1,n2,n3,...,nk)∈INk

A(n1, n2, n3, . . . , nk),
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where

A(n1, n2, n3, . . . , nk) = [A(n1, n2, n3, . . . , nk−1)

∩E(n1, n2, n3, . . . , nk)] \
⋃

i<nk

E(n1, n2, n3, . . . , nk−1, i)

just re-expresses our union as a disjoint union. The elements are certainly Borel sets, since we
started with closed sets.

Since f is one-one, the sets

f(C ∩A(n1, n2, n3, . . . , nk))

are disjoint for distinct (n1, n2, n3, . . . , nk) ∈ INk. Consequently, using assertion 11.15 just
proved, we can select disjoint Borel sets

B(n1, n2, n3, . . . , nk)

so that

f(C ∩A(n1, n2, n3, . . . , nk)) ⊂ B(n1, n2, n3, . . . , nk)

⊂ B(n1, n2, n3, . . . , nk−1) ∩ f(C ∩ E(n1, n2, n3, . . . , nk)).

Now define

T =
⋃

(n1,n2,n3,... )

∞⋂

k=1

B(n1, n2, n3, . . . , nk). (2)

This is a Borel set since, using the fact that the sets are disjoint, we can express it also as

T =
∞⋂

k=1

⋃

(n1,n2,n3,...,nk)

B(n1, n2, n3, . . . , nk).
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It remains only to see that T = f(C). The inclusion f(C) ⊂ T follows immediately from the
first expression (2) for T and the definitions of the sets. In the opposite direction, we check that

T ⊂
⋃

(n1,n2,n3,... )

∞⋂

k=1

f(C ∩ E(n1, n2, n3, . . . , nk)) ⊂ f(C).

To see this let y be a point that belongs to the sets

f(C ∩ E(n1, n2, n3, . . . , nk))

for all k = 1, 2, 3, . . . . Then there must exist points

xk ∈ C ∩ E(n1, n2, n3, . . . , nk)

such that

d(f(xk), y) < 1/k (k = 1, 2, 3, . . . ).

Now {xk} is a Cauchy sequence in C so xk → x for some point x ∈ C. By the continuity of f ,
then f(xk) → f(x) so y = f(x) ∈ f(C). This completes the proof of assertion 11.16. �

The main theorem, Theorem 11.12, now follows from our four observations. Putting these
together is left as an exercise.

Exercises

11:4.1 Show that P and Q are Borel separated if dist(P,Q) > 0.

11:4.2 Suppose that Q and Pi are Borel separated for each i ∈ IN. Show that Q and
⋃∞

i=1 Pi are Borel
separated.

11:4.3 Suppose that Qj and Pi are Borel separated for each i, j ∈ IN. Show that
⋃∞

j=1Qj and
⋃∞

i=1 Pi

are Borel separated and that
⋂∞

j=1Qj and
⋃∞

i=1 Pi are Borel separated.
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11:4.4 Let X and Y be complete, separable metric spaces, let f : X → Y be continuous, and let Ai be
a sequence of disjoint analytic subsets of X. If the image sets {f(Ai)} are disjoint, then there exist
disjoint Borel sets B1, B2, B3, . . . so that f(Ai) ⊂ Bi for each natural number i. [Hint: Use the
fact that if A1 and A2 are disjoint analytic sets then they are the projections of disjoint closed sets
C1 and C2 in X × ININ. The earlier exercises give ideas on how to handle sequences.]

11:4.5 Give the necessary arguments that deduce Theorem 11.12 from the statements proved in this
section.

11:4.6 Show that assertion 11.16 is not valid in general if X is a nonseparable, complete metric space.
[Hint: Use X = Y = IR and suppose that f is the identity map, but use the discrete metric on X.]

11:4.7 Let I = [0, 1] and A = [0, 1] \ Q. Verify each of the following statements:

(a) If f : A→ IR is continuous, then f(A) is analytic.

(b) If f : A→ IR is continuous and one-one, then f(A) is a Borel set, but need not be of type Gδ.

(c) If f : A → IR is continuous and can be extended to a continuous function f on I, then f(A) is
residual in f(I).

(d) If f : A → IR is continuous and can be extended to a one-one continuous function f on I, then
f(A) is of type Gδ.

11:4.8 Let C(I, I) denote the space of all continuous mappings from I = [0, 1] into itself, supplied with
the supremum metric. Let

C2 = {f ◦ f : f ∈ C(I, I)}.
Prove that C2 is an analytic subset3 of C(I, I). [Hint: Consider the map f → f ◦ f .]

3 It is also true that C2 is a nowhere dense subset of C(I, I) so that very few members of C(I, I) are them-
selves iterates of a continuous function. See A. M. Blokh, Trans. Amer. Math. Soc. 333 (1992), 787–798.
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11.5 An Analytic Set That Is Not Borel

It is essential that we prove the existence of analytic sets that are not also Borel sets or else the
theory we have developed has no substance beyond finding extra properties of Borel sets. Suslin
was the first to obtain this.

Theorem 11.17: Suppose that X is a perfect, complete, separable metric space. Then X con-
tains an analytic set that is not a Borel set.

Proof. Observe first that it is enough to do this in the space ININ. Suppose that we can find
such a set in ININ. By Theorem 11.4, X contains a Borel set B that is a homeomorphic copy of
ININ. Inside B is then a copy of that analytic, non-Borel set.

For the first step, suppose that we are given a complete, separable metric space Z. We claim
that we can find a closed set C ⊂ Z × ININ so that every closed set in Z occurs as a “slice”:

Cn = {z : (z,n) ∈ C} (n ∈ ININ). (3)

Let {U(i)} be any countable base for the topology of Z. An arbitrary closed set F ⊂ Z can
be described by announcing for which integers i the sets U(i) are complementary to F , say for
i = n1, n2, n3, . . . . Thus, to each z ∈ Z, we can associate those sequences n = (n1, n2, n3, . . . )
such that, for all i, z is not in U(ni). This leads us to define the set

C = {(z, n1, n2, n3, . . . ) : z ∈ Z, i, ni ∈ IN, z 6∈ U(ni)}
which is a subset of Z × ININ. The set C is closed, since convergence in the product metric is
just coordinate-wise convergence. It is clear that every closed set in Z appears as one of the
slices (3) for a particular choice of n ∈ ININ.
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Suppose now that we are given a complete, separable metric space Y . For the second step,
we claim that we can find an analytic set A ⊂ Y × ININ so that every analytic set in Y occurs as
a slice:

Am = {z : (z,m) ∈ A} (m ∈ ININ).

We do this by applying the first step to the space Z = Y × ININ to get a closed set

C ⊂ Y × ININ × ININ

so that every closed set in Y × ININ appears as a slice:

Cm = {(y,n) : (y,n,m) ∈ C} (m ∈ ININ).

Define

A = {(y, t) : (y, s, t) ∈ C for some s ∈ ININ}.
Certainly, A is an analytic subset of Y × ININ, since A is a projection of a closed subset of

Y × ININ × ININ.

Fix any m ∈ ININ. Then

pY (Cm) = {y : (y,m,n) ∈ C for some n} = {y : (y,m) ∈ A} = Am,

and every analytic subset of Y can be represented this way.
For the final step, we can now claim, because of what we have just done (i.e., apply step 2

to Y = ININ), that there is an analytic set

A ⊂ ININ × ININ

so that every analytic subset of ININ appears as a slice:

Am = {n : (n,m) ∈ A}.
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Having before us a copy of each analytic subset of ININ, we can use a familiar diagonal argu-
ment to find a set that is not analytic. Consider the set

T = {n : (n,n) ∈ A}
and its complement

ININ \ T = {n : (n,n) 6∈ A}.
The former is analytic, and the latter cannot be the same as any set Am and so is not analytic.
In particular, by Theorem 11.12, neither is a Borel set. �

Exercises

11:5.1 In the proof of Theorem 11.17, explain why

T = {n : (n,n) ∈ A}
is analytic.

11:5.2 In the proof of Theorem 11.17, explain why there is no m ∈ ININ for which

ININ \ T = {n : (n,n) 6∈ A} = {n : (n,m) ∈ A}.

11.6 Measurability of Analytic Sets

We are now in a position to show that this new class of sets, the analytic sets, can be handled
by any reasonable measure. In a metric space the Borel sets are all measurable with respect to
any metric outer measure. So, too, are the analytic sets. (The theorem is stated for a complete,
separable metric space, but does not require all these hypotheses.)
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Theorem 11.18: Let X be a complete, separable metric space, and let µ∗ be a metric outer
measure on X. Then every analytic subset of X is µ∗-measurable.

Proof. Let A ⊂ X be analytic, and let T be an arbitrary subset of X with µ∗(T ) < +∞. We
wish to verify that

µ∗(T ) ≥ µ∗(T ∩A) + µ∗(T \A).

From this, by definition, the measurability of A follows. With no loss of generality, we can ob-
tain this under the extra assumption that µ∗ is finite and regular (Exercise 11:6.1). Thus, to
prove that A is measurable, we can reduce our arguments to the case where µ∗ is finite and reg-
ular and show that

µ∗(X) ≥ µ∗(A) + µ∗(X \A) (4)

since (by Theorem 2.36) this establishes the measurability of A.
We first show the existence, for any ε > 0, of a closed set C ⊂ A so that

µ∗(C) > µ∗(A) − ε. (5)

Since A is analytic, there is a continuous map f : ININ → X so that f(ININ) = A. Define E(k)
for each k ∈ IN as {n ∈ ININ : n1 ≤ k}. This expresses ININ as the limit of an increasing sequence
of closed sets

E(1) ⊂ E(2) ⊂ E(3) ⊂ · · · ր ININ.

Thus ,

µ∗(f(E(k))) ր µ∗(A)

since µ∗ is regular. (See, for example, Exercise 2:10.2).
Consequently, we can choose m1 ∈ IN so that

µ∗(f(E(m1))) > µ∗(A) − ε/2.
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This process can be continued inductively to produce an element

m = (m1,m2,m3, . . . ) ∈ ININ

so that if we write

E(m1,m2,m3, . . . ,mk)

= {n ∈ ININ : n1 ≤ m1, n2 ≤ m2, . . . nk ≤ mk}
then

µ∗(f(E(m1,m2,m3, . . . ,mk)))

> µ∗(f(E(m1,m2,m3, . . . ,mk−1))) − ε/2k. (6)

From (6) we obtain immediately that

µ∗(f(E(m1,m2,m3, . . . ,mk))) > µ∗(A) − ε. (7)

Now define

C =
∞⋂

k=1

f(E(m1,m2,m3, . . . ,mk)).

Certainly, C is closed and, using (7), we compute

µ∗(C) = lim
k→∞

µ∗(f(E(m1,m2,m3, . . . ,mk))) ≥ µ∗(A) − ε.

This proves (5), except that we do not yet know that C is a subset of A. We check this now.
Define

K = {n ∈ ININ : n ≤ m},
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where m = (m1,m2,m3, . . . ) is as constructed above and n ≤ m means that, for each k, nk ≤
mk. The set K is a compact subset of ININ. We show C = f(K). Certainly, C ⊃ f(K) by the
manner in which C was constructed. Conversely, let a be a point not in f(K); we shall show
that a 6∈ C. The sets {a} and f(K) are disjoint and compact and so are a positive distance
apart. Thus there must be open sets W and V with K ⊂ W ⊂ ININ and {a} ⊂ V ⊂ X so that
f(W ) ∩ V = ∅. The distance from K to ININ \W is positive, say greater than 2−i for some i.
Consider a point

n = (n1, n2, n3, . . . ) ∈ E(m1,m2,m3, . . . ,mi).

We know that

(n1, n2, n3, . . . , ni, 1, 1, 1, 1, 1, 1, . . . )

must belong to K and hence, since dist(n,K) ≤ 2−i, the point n is in W . This shows that

E(m1,m2,m3, . . . ,mi) ⊂W

and hence that

f(E(m1,m2,m3, . . . ,mi)) ⊂ X \ V.
In particular, since V is a neighborhood of a, the point a is not in the set

f(E(m1,m2,m3, . . . ,mi)),

and so a 6∈ C, as required.
Thus we have established (5). Now we obtain (4). Using the fact that C is measurable (since

it is closed) and (5), we have

µ∗(X) ≥ µ∗(C) + µ∗(X \ C)

≥ µ∗(A) − ε+ µ∗(X \A).
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Since ε is arbitrary, (4) follows. �

Exercises

11:6.1 Show that in the proof of Theorem 11.18 the argument can reduce to the case where µ∗ is finite
and regular. [Hint: If not finite, use the metric outer measure µ∗

1(E) = µ∗(T ∩ E). If not regular,
use the metric outer measure

µ∗
2(E) = inf{µ∗

1(B) : E ⊂ B and B measurable}.
11:6.2 Let g : X → Y , where X is a complete, separable metric space, Y is a metric space, and g is

continuous. If µ∗ is a metric outer measure on X and A ⊂ X is a Borel set or is analytic, show
that g(A) is measurable. (The proof here did not use the completeness or the separability of the
space.)

11.7 The Suslin Operation

We recall (Section 1.13) that Suslin originally defined a set E ⊂ IR to be analytic if it can be
expressed in the form

E =
⋃

(n1,n2,n3,... )

∞⋂

k=1

In1,n2,n3,...,nk

where each In1,n2,n3,...,nk
is a nonempty, closed interval for each

(n1, n2, n3, . . . , nk) ∈ INk

and each k ∈ IN and where the union is taken over all possible sequences

(n1, n2, n3, . . . )
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of natural numbers. In this section we relate this operation to the notion of an analytic set as
we have given it in Definition 11.5.

Let E be any family of sets. By the family Suslin-E we mean the collection of sets E that
can be written in the form

E =
⋃

(n1,n2,n3,... )

∞⋂

k=1

In1,n2,n3,...,nk
, (8)

where each In1,n2,n3,...,nk
∈ E for each

(n1, n2, n3, . . . , nk) ∈ INk

and each k ∈ IN. If the family E is closed under intersections, then we can insist that the repre-
sentation in (8) be descending in the sense that

In1,n2,n3,...,nk
⊂ In1,n2,n3,...,nk−1

.

We can always accomplish this by replacing In1,n2,n3,...,nk
by

k⋂

i=1

In1,n2,n3,...,ni .

Theorem 11.19: Let X be a complete, separable metric space, and let F denote the class of
closed subsets. Then every analytic set can be obtained as a Suslin-F set.

Proof. Let A ⊂ X be analytic. Then there is a continuous mapping f so that A = f(ININ).
Define the closed sets

Cn1,n2,n3,...,nk
= f(Sn1,n2,n3,...,nk

),
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where

Sn1,n2,n3,...,nk
= {m ∈ ININ : mi = ni, i = 1, 2, . . . , k}.

We claim that

A =
⋃

(n1,n2,n3,... )

∞⋂

k=1

Cn1,n2,n3,...,nk
,

which expresses A as a set obtained from the Suslin operation performed on a family of closed
sets, as required to prove the theorem.

Fix an n = (n1, n2, n3, . . .) ∈ ININ. Then, for each k ∈ IN, n ∈ Sn1,n2,n3,...,nk
, and so f(n) ∈

Cn1,n2,n3,...,nk
. Consequently,

f(n) ∈
∞⋂

k=1

Cn1,n2,n3,...,nk
. (9)

But diameter(Sn1,n2,n3,...,nk
) ց 0, and this implies that

diameter(f(Sn1,n2,n3,...,nk
)) = diameter(Cn1,n2,n3,...,nk

) ց 0,

and so the intersection in (9) is a single point. Consequently,

A = f(ININ) =
⋃

(n1,n2,n3,... )

{f((n1, n2, n3, . . . ))}

=
⋃

(n1,n2,n3,... )

∞⋂

k=1

Cn1,n2,n3,...,nk
,

as required. �

We see that the analytic sets are obtained from the Suslin operation applied to the closed
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sets. One should know, although we omit the proofs, that the analytic sets and the measurable
sets are each closed under any application of the Suslin operation. The texts cited in the intro-
duction to the chapter contain proofs.

11.8 A Method to Show a Set Is Not Borel

In many instances, one can see easily that a certain set under consideration is analytic or co-
analytic (i.e., the complement of an analytic set), but it is not clear that the set is not also a
Borel set. We describe in this section a method (which the logicians call a “completeness argu-
ment”) for proving that a given co-analytic set is not Borel.

Definition 11.20: A co-analytic set Q in a complete, separable, metric space X is said to
be a complete co-analytic set if for every co-analytic subset P of ININ there is a Borel function
f : ININ → X such that

x ∈ P ⇐⇒ f(x) ∈ Q.

We might say that the function f reduces the set P to Q since it reduces the question of
membership in the set P , by way of the function f , to membership in the set Q. We have seen
in Theorem 11.17 that the space ININ contains an analytic set that is not a Borel set. The com-
plement of that set is a co-analytic set that is also not a Borel set. Consequently, a complete
co-analytic set cannot be a Borel set (Exercise 11:8.4). Thus we have a beginning of a strategy
for determining that certain sets are not Borel sets.

To polish off the strategy requires us to have in our possession one example of a complete
co-analytic set that can be used to compare to a given set. The set of well-founded trees is per-
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haps the most used example. For the rest of this section we describe these notions and show
that the set of well-founded trees is indeed a complete co-analytic set in an appropriate space.

We define and describe the following:

• By IN∗ we denote the set of all finite sequences

n = (n1, n2, n3, . . . , nk)

of natural numbers. We include the empty sequence, denoted ( ).

• The metric space 2IN∗

is the set of all subsets of IN∗ and is isometric as a metric space to
2IN (the Cantor set).

• A tree is a set T ⊂ IN∗ that includes the empty sequence ( ) and with the property that

(n1, n2, n3, . . . , nk) ∈ T =⇒ (n1, n2, n3, . . . , np) ∈ T (∀p < k).

• For any tree T , by [T ] we denote the set of all elements

(n1, n2, n3, . . . ) ∈ ININ

such that

(n1, n2, n3, . . . , nk) ∈ T

for all k.

• A tree T is said to be well founded if [T ] = ∅.

• The set of all trees is a closed subset of 2IN∗

.
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()

(2) (8) (3)

(2,1) (8,11) (8,8)

(8,11,2) (8,11,1) (8,8,8)

(8,8,8,4) (8,8,8,5) (8,8,8,8)

Figure 11.1. A tree.

• The set WF denotes the set of all well-founded trees in the metric space 2IN∗

.

There is a natural partial order on any tree: a rough sketch of what this partially ordered
set looks like will reveal a treelike structure and hence the name. (See Figure 11.1, which, viewed
upside down, has the form of a tree.) The collection [T ] of infinite sequences would be consid-
ered the infinite branches of the tree T . A tree is well founded if it has no infinite branches; the
terminology has some special meaning in descriptive set theory. The collection of all trees re-
sides quite conveniently inside the complete, separable metric space 2IN∗

, where it is a closed
set; then WF will turn out to be a complete co-analytic subset that is useful in many instances.
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Let us begin with some preliminary observations that connect the study of trees with our
study so far of analytic sets. The proofs are left as Exercises 11:8.6 and 11:8.7.

Lemma 11.21: If C is a closed subset of ININ, then there is a tree T such that [T ] = C.

Lemma 11.22: If A is an analytic subset of ININ, then there is a tree S such that A can be
represented in the form

(n1, n2, n3, . . . ) ∈ A ⇐⇒ (n1,m1, n2,m2, n3,m3, . . . ) ∈ [S]

for some (m1,m2,m3, . . . ) ∈ ININ.

Theorem 11.23: WF is a complete co-analytic subset of 2IN
∗

.

Proof. Let P be a co-analytic subset of ININ. Then P ′, the complement of P , is analytic. By
Lemma 11.22, there is a tree S such that P ′ can be represented in the form

(n1, n2, n3, . . . ) ∈ P ′ ⇐⇒ (n1,m1, n2,m2, n3,m3, . . . ) ∈ [S]

for some (m1,m2,m3, . . . ) ∈ ININ.

Using S, we construct a mapping from ININ into 2IN∗

by associating with each

n = (n1, n2, n3, . . . ) ∈ ININ

the tree T (n) defined as the collection of all sequences

(b1, b2, b3, . . . , bk)

for which

(n1, b1, n2, b2, n3, b3, . . . , nk, bk) ∈ S.
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[We include the empty sequence in T (n), too.] Clearly, T (n) so defined is a tree, and the map
n → T (n) is a Borel mapping from ININ into 2IN∗

. We analyze membership in the co-analytic
set P in terms of this tree:

n ∈ P ⇐⇒ n 6∈ P ′ ⇐⇒ (n1,m1, n2,m2, n3,m3, . . . ) 6∈ [S]

for all (m1,m2,m3, . . . ) ∈ ININ

⇐⇒ T (n) ∈ WF .
By definition, since P was an arbitrary co-analytic set in ININ, we have proved that WF is a

complete co-analytic set in 2IN∗

. �

Exercises

11:8.1 For n, m ∈ IN∗, write n � m if n is an initial segment of m, that is, if n = ( ) or if n =
(n1, n2, n3, . . . , nk) and

m = (n1, n2, n3, . . . , nk, ck+1, . . . , cp)

for some ck+1, . . . , cp. Show that this is a partial order on any tree. Show that a tree is simply a
subset of IN∗ that is closed under initial segments.

11:8.2♦ Show that IN∗ is denumerable. (Hence there is a way of listing the elements and we can write,
for each n ∈ IN∗, 〈n〉 = j if n is the jth element in the listing.)

11:8.3 Explain how a tree can be considered as a point in the space 2IN∗

. What point represents the
tree containing only the empty sequence ( )?

11:8.4 Prove that a complete co-analytic set in a complete, separable, metric space X is not a Borel set.
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11:8.5 Let Y , Y ′ be complete, separable metric spaces and Q ⊂ Y , Q′ ⊂ Y ′ co-analytic subsets. Sup-
pose that there is a Borel function g : Y → Y ′ such that

y ∈ Q⇐⇒ g(y) ∈ Q′.

Show that Q′ must be a complete co-analytic set if Q is.

11:8.6 Prove Lemma 11.21: If C is a closed subset of ININ, then there is a tree T such that [T ] = C.
[Hint: Let T be the set of all initial segments of C. The fact that C is closed is needed to show
that if n ∈ [T ] then n ∈ C.]

11:8.7 Prove Lemma 11.22: If A is an analytic subset of ININ, then there is a tree S such that A can be
represented in the form

(n1, n2, n3, . . . ) ∈ A ⇐⇒ (n1,m1, n2,m2, n3,m3, . . . ) ∈ [S]

for some (m1,m2,m3, . . . ) ∈ ININ.

[Hint: Use Exercise 11:8.6 and Definition 11.5.]

11:8.8 Check that the mapping n → T (n) (in the proof of Theorem 11.23) is a Borel mapping from ININ

into 2IN∗

.

11.9 Differentiable Functions

The theory of analytic sets is playing an increasingly important role in analysis. We shall com-
plete our investigations by proving one classical result as an application of these methods to an
interesting example.

In 1936 S. Mazurkiewicz4showed that the set of differentiable functions in the metric space
C[0, 1] forms a set that is not Borel. Banach had asked this question, pointing out that the set

4S. Mazurkiewicz. “Über die Menge der differenzierbaren Funktionen,” Fund. Math. 27 (1936), 244–249.
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could be seen with little difficulty to be at least co-analytic. We shall give a proof of this result
in Theorem 11.24. We have already seen (Corollary 10.23) that this set is first category; it is an
analysis of a different kind we do now.

There have been further investigations of this type that appear in the analysis literature. By
now it is becoming natural to ask for the complexity of certain sets that arise. For example, it
is also true5 that the set of nowhere differentiable functions in the metric space C[0, 1] forms a
set that is co-analytic and not Borel. Recall that this set is residual.

Theorem 11.24 (Mazurkiewicz) The set of differentiable functions is a co-analytic subset of
C[0, 1] that is not a Borel set.

Proof. Our proof is essentially the original of Mazurkiewicz, but follows a more recent treat-
ment.6 We show that the set D of differentiable functions is a complete co-analytic set in C[0, 1]
by reducing it to the set WF of Theorem 11.23 (cf. also Exercise 11:8.5.

We use the fact that IN∗ is denumerable to list its elements and so write for each n ∈ IN∗,
〈n〉 = j if n is the jth element in the listing. (See Exercise 11:8.2.) For every element

n = (n1, n2, n3, . . . , nk) ∈ IN∗,

we define (by induction on k) an open interval Jn ⊂ [0, 1] and a much smaller closed subinterval
Kn such that:

1. The interval Kn is concentric with Jn, and its length is smaller than

2−〈n〉|Jn|.
5 D. Mauldin, Pacific J. Math. 121 (1986), 119-120.
6A. S. Kechris and W. H. Woodin, Mathematika 33 (1986), 252–278.
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2. For any n,

J(n1,n2,n3,...,nk,n) ⊂ Ln,

where Ln denotes the left half of Kn.

3. For any distinct n, m,

J(n1,n2,n3,...,nk,n) ∩ J(n1,n2,n3,...,nk,m) = ∅.

A useful consequence of (ii) and (iii) is that

4. Jn ∩ Jm = ∅ unless either n � m or m � n.

Let Rn denote the right half of Kn. Then, because of the way we have chosen in (ii) the
intervals always in the left half, the collection of these right half-intervals {Rn} is disjoint.

For any n = (n1, n2, n3, . . . ) ∈ ININ, we write x(n) for the unique point that lies in the
intersection

∞⋂

k=1

J(n1,n2,n3,...,nk) =
∞⋂

k=1

K(n1,n2,n3,...,nk) =
∞⋂

k=1

L(n1,n2,n3,...,nk).

For each tree T , we can use this system to construct a continuous function on [0, 1]. For any
interval [a, b] ⊂ [0, 1], write φ(x, [a, b]) as

φ(x, [a, b]) =

{
16(x− a)2(x− b)2(b− a)−3 if a ≤ x ≤ b;
0 if x < a or b < x.

Then, if T is a tree, we can define

FT (x) =
∑

n∈T

φ(x,Rn).
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The maximum of the nonnegative function φ(x, [a, b]) occurs at the midpoint of [a, b] and has
the value (b− a). (See Exercise 11:9.1 and Figure 11.2.) Consequently,

|φ(x,Rn)| ≤ |Rn| ≤ 2−〈n〉,

and so it is clear that the series defining FT is uniformly convergent to a continuous function on
[0, 1].

The mapping T → FT , considered as a mapping from the metric space 2IN∗

into C[0, 1], is
continuous. We claim that

T ∈ WF ⇐⇒ FT is everywhere differentiable, (10)

and this, because of Theorem 11.23, will prove that the set D of differentiable functions is a
complete co-analytic set in C[0, 1]. (See also Exercise 11:8.5.)

The rest of the proof is now a real variables argument. To check (10) we show two things:
(1) if n is an element of [T ] and x0 = x(n) (the corresponding point), then F ′

T (x0) does not
exist; and
(2) if x0 is a point of [0, 1] such that for no element n of [T ] does x0 = x(n), then F ′

T (x0) does
exist.

To prove (1) suppose that there is an element n = (n1, n2, . . . ) ∈ [T ] and let x0 = x(n).
Then x0 belongs to L(n1,n2,...,nk) for all k. Let ξk denote the midpoint of the interval R(n1,n2,...,nk),
and let ηk be half the length of that interval. Since x0 belongs to none of the right-hand inter-
vals of the system, FT (x0) = 0. Since ξk + ηk is an endpoint of a right-hand interval, FT (ξk +
ηk) = 0. Also, since x0 is in the corresponding left half L(n1,n2,...,nk) of the interval K(n1,n2,...,nk),
we know that

|x0 − ξk| < 3ηk,
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and hence

FT (ξk) = 2ηk ≥ 2
3 |x0 − ξk|.

This is enough to see that F ′
T (x0) does not exist. For as k → ∞,

ξk → x0 and ξk + ηk → x0,

and yet
FT (ξk + ηk) − FT (x0)

ξk + ηk − x0
= 0,

while ∣∣∣∣
FT (ξk) − FT (x0)

ξk − x0

∣∣∣∣ ≥ 2
3 .

Let us now prove (2). Suppose that x0 is a point of [0, 1] such that for no element n of [T ]
does x0 = x(n). Then there must be an integer N so that, whenever n ∈ T and 〈n〉 ≥ N , x0

does not belong to Jn.
Let us first establish the estimate∣∣∣∣

φ(x0 + t, Rn) − φ(x0, Rn)

t

∣∣∣∣ ≤ 2−〈n〉 (11)

for 〈n〉 ≥ N . Since x0 does not belong to Jn, it must follow that φ(x0, Rn) = 0. If also x0 + t
does not belong to Rn, it follows that

φ(x0 + t, Rn) = 0

and (11) holds. On the other hand, if x0 + t does belong to Rn it follows that

φ(x0 + t, Rn) ≤ |Rn| ≤ |Rn|(1
2 |Jn|)−1t ≤ 2−〈n〉t,

and again (11) holds.
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The function FT can be expressed as a uniform limit of a sequence of continuous functions
by writing

FT (x) = lim
k→∞

F k
T (x) = lim

k→∞

∑

n∈T, 〈n〉≤k

φ(x,Rn).

Then, for k ≥ N , we obtain from (11) that
∣∣∣∣
FT (x0 + t) − FT (x0)

t
− F k

T (x0 + t) − F k
T (x0)

t

∣∣∣∣

≤
∞∑

m=k+1

2−m ≤ 2−k. (12)

Thus we can obtain upper and lower estimates on the fraction
∣∣∣∣
FT (x0 + t) − FT (x0)

t

∣∣∣∣

by considering the fractions
∣∣∣∣
F k

T (x0 + t) − F k
T (x0)

t

∣∣∣∣ .

As t → 0, this latter fraction approaches a limit for each k, and we can conclude from this
and (12) that a finite real number F ′

T (x0) does indeed exist.
Since (1) and (2) are now proved, the theorem is proved. �
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Exercises

11:9.1 Prove that the function

φ(x, [a, b]) =

{
16(x− a)2(x− b)2(b− a)−3 if a ≤ x ≤ b;
0 if x < a or b < x.

is nonnegative, continuous, and differentiable on [0, 1] and has a maximum value of (b − a). Show
that the graph looks much like that given in Figure 11.2.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Figure 11.2. Graph of φ(x, [a, b]) with [a, b] = [0.3, 0.8] in Exercise 11:9.1

11.10 Additional Problems for Chapter 11

11:10.1 Let X and Y be complete, separable metric spaces. If f : X → Y is Borel measurable, then the
graph

graph (f) = {(x, f(x)) : x ∈ X}
is a Borel subset of X × Y . [Hint: Consider F : X × Y → Y × Y defined by F (x, y) = (f(x), y) and
F−1({(y, y) : y ∈ Y }).]
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11:10.2 Let X and Y be complete, separable metric spaces. If f : X → Y and the graph

graph (f) = {(x, f(x)) : x ∈ X}
is a Borel subset of X × Y , then f is Borel measurable. [Hint: For any Borel set B ⊂ Y , note that

the sets graph (f) ∩ (X × B) and graph (f) ∩ (X × B̃) are Borel subsets of X × Y that project to

f−1(B) and f−1(B̃).]

11:10.3 Let X and Y be complete, separable metric spaces. If f : X → Y and the graph

graph (f) = {(x, f(x)) : x ∈ X}
is an analytic subset of X × Y , then f is Borel measurable.

11:10.4 Let X and Y be complete, separable metric spaces. If f : X → Y is a bijection and f is
Borel measurable then f−1 is also Borel measurable. [Hint: Compare graph (f) ⊂ X × Y and
graph (f−1) ⊂ Y ×X.]

11:10.5 (Sets with the property of Baire) A subset S of a metric space X is said to have the property of
Baire provided that it can be represented in the form

S = G△ E = (G \ E) ∪ (E \G),

where G is open and E is first category in X. Establish the following:

(a) S has the property of Baire if and only if it can be represented in the form S = F △E, where
F is closed and E is first category in X.

(b) The class of subsets of X having the property of Baire is a σ–algebra. This σ–algebra is pre-
cisely that σ–algebra generated by the class of all sets that are open or are of the first cate-
gory.

(c) If X is a complete, separable metric space and S is analytic, then S has the property of
Baire.
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(d) Give an example of a set in a complete, separable metric space that is not analytic, but does
have the property of Baire.

11:10.6 (Functions with the property of Baire) Let X and Y be metric spaces. A function f : X → Y
is said to have the property of Baire provided that for every closed set F ⊂ Y the set f−1(F )
has the property of Baire as a subset of X. Assume that X and Y are complete, separable metric
spaces and prove the following:

(a) Every Borel measurable function f : X → Y has the property of Baire.

(b) A necessary and sufficient condition that a function f : X → Y has the property of Baire is
that there is a set E ⊂ X of first category so that the restriction of f to X \ E is continuous.

(c) A set S ⊂ X has the property of Baire if and only if the characteristic function χ
S

has the
property of Baire.

(d) Give an example of a function f : IR → IR that is not Borel measurable, but does have the
property of Baire.

(e) Parts (a) and (b) together establish the following theorem. Explain why it can be interpreted
as a category analog of Lusin’s theorem (Theorem 4.25).

Theorem Let f : IR → IR be a Borel measurable function. Then there exists a set
H residual in IR so that the restriction of f to H is continuous.

Show that this statement is not true for an arbitrary Lebesgue measurable function.

(f) Show that a Bernstein subset of IR does not have the property of Baire. (See Exercise 1:22.7.)
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BANACH SPACES

Many of the methods of Banach space theory can be found in the early years of the twenti-
eth century in works of M. Fréchet, F. Riesz, Lebesgue, and others. The formal study of these
spaces began with the axiomatic treatment given by Stefan Banach (1892–1945) in his doctor’s
thesis of June 1920, and his name has been attached to this study every since. Norbert Wiener
(1894–1964) published an identical study only a few months later, but conceded priority to Ba-
nach; he then withdrew from the subject as he was not of a temperament to face competition.
The fact that two mathematicians of their stature would independently develop the same struc-
ture at the same time shows that the time for these ideas had very much come.

In Chapter 9 we saw a great many examples of important metric spaces, many of which had
a feature that we did not much comment upon but did play a role in some of the applications.
In these spaces, natural notions of addition of two members of the space and of multiplication
of members by real numbers endow them with the structure of a linear space. The metric was
in all cases invariant under this addition, and the balls in the space had a special geometric
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property: they were convex. By the time that Banach and Wiener were ready to axiomatize the
theory, there were many studies in the analysis of the years 1900 to 1920 that exploited an in-
terconnection between metric space arguments and the geometry of linear spaces. These studies
are now considered the beginnings of a major area of modern mathematics, functional analysis.
In this chapter we begin the study of some of the most important concepts of functional analy-
sis: normed linear spaces, Banach spaces, linear operators, and linear functionals. This is just a
brief introduction to a field that is now highly developed.

12.1 Normed Linear Spaces

We assume that the reader is familiar with the concept of a linear space (vector space). The
important examples of linear spaces in analysis have the real or complex numbers as the scalar
field. For our short introduction to the subject, we shall assume this field to be IR unless we
specifically ask for complex scalars; later we emphasize the complex case. We shall denote the
origin of X by 0.

Definition 12.1: Let X be a linear space. A norm on X is a nonnegative real-valued function,
written ‖x‖, such that

1. ‖x‖ = 0 if and only if x = 0,

2. ‖ax‖ = |a|‖x‖ for all a ∈ IR and x ∈ X, and

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

Condition (iii) is called the triangle inequality.
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A linear space X furnished with a norm ‖x‖ is called a normed linear space. Every normed
linear space gives rise to the metric

ρ(x, y) = ‖x− y‖.
The norm properties easily show that this is a metric on X. It is called the metric induced by
the norm. One verifies easily that ρ is also an invariant metric; that is, it is invariant under
translation:

ρ(x, y) = ρ(x+ z, y + z) for all x, y, z ∈ X.

There is a close interplay between metric properties and linear properties. The mappings (a, x) →
ax and (x, y) → x + y are linear and continuous; the norm is a continuous real-valued function
on X. The most important examples of normed linear spaces are complete, and these are re-
ferred to as Banach spaces.

Definition 12.2: A Banach space is a complete normed linear space.

12.1.1 Metric linear spaces

A linear space X furnished with a metric is not necessarily a normed linear space. As an exam-
ple, the space S[0, 1] (Example 9.9 and repeated in Example 12.11) is a metric linear space, but
the metric is not induced by a norm since, in general,

∫ 1

0

|af |
1 + |af | dλ 6= |a|

∫ 1

0

|f |
1 + |f | dλ.

Observe that the unit ball B(0,1) is not convex. (The unit ball in a normed linear space must
be convex; see Exercise 12:1.3.) This is an example of a metric linear space that is not, how-
ever, a normed linear space.
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Definition 12.3: A metric linear space is a linear space furnished with a metric ρ(x, y) that is
invariant under translation,

ρ(x, y) = ρ(x+ z, y + z) for all x, y, z ∈ X,

and such that an → a and xn → x imply that anxn → ax.

Note that in a metric linear space the mappings (a, x) → ax, (x, y) → x + y, and (x, y) →
ρ(x, y) are continuous. The major fundamental difference between a general metric linear space
and a normed linear space is that the balls in the former need not be convex. This small geo-
metric detail is behind almost all the results that we obtain in this chapter. Our attention to
general metric linear spaces is minimal: we indicate occasionally that some space that we are
studying has this structure, but is not a normed linear space. While the literature of normed
linear spaces greatly exceeds that for metric linear spaces, the latter have an important role to
play, too, in many applications of analysis (e.g., in probability theory, integral operators, ana-
lytic functions, and Fourier series).

12.1.2 Sequence spaces

We list some familiar metric linear spaces and Banach spaces, many of which will play a role in
the applications that we develop. In most cases we will leave the verifications to the reader. For
those spaces discussed in earlier chapters, we just point out that the metric given before yields
a metric linear space or, better, in most cases a Banach space.

Nearly all the examples of sequence spaces presented in Section 9.1 as metric spaces are
metric linear spaces; most are Banach spaces.
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Example 12.4: We denote by s the set of all sequences of real numbers equipped with the
metric

ρ(x, y) =
∞∑

i=1

|xi − yi|
2i(1 + |xi − yi|)

.

This is a metric linear space, but the metric is not defined by a norm and so the space is not
a normed linear space. It is complete, but not a Banach space. Recall that to verify that this
is a metric linear space one must show that the metric is invariant (obvious) and that scalar
multiplication is continuous.

The space 2IN, the set of all sequences of 0’s and 1’s, was equipped with the same metric,
but is not a linear space and so does not enter into our discussion here.

Example 12.5: The sequence space ℓp (1 ≤ p < ∞) is the collection of all sequences x =
(x1, x2, x3 . . . ) of real numbers such that

∑∞
i=1 |xi|p <∞ and furnished with the norm

‖x‖p =

(
∞∑

i=1

|xi|p
)1/p

.

Both to check that ℓp is a linear space and to verify that ‖x‖p is a norm requires Minkowski’s
inequality. Since these spaces are complete, they are Banach spaces. We verify these statements
in Chapter 13.

Example 12.6: The sequence space ℓ∞ is the set of all bounded sequences of real numbers and
furnished with the norm

‖x‖∞ = sup
i

|xi|.
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It is easy to see that this is a linear space and that ‖x‖∞ is a norm. Since this space is com-
plete, it too is a Banach space.

We have previously discussed some important subspaces of ℓ∞: c (the space of convergent
sequences) and c0 (the space of sequences converging to zero). Since these are linear subspaces
and closed, they too are Banach spaces.

12.1.3 Function Spaces

We have seen all the examples in this collection before: they are metric linear spaces formed of
real-valued functions; some are Banach spaces.

Example 12.7: By M [a, b], we mean the set of all bounded real-valued functions on the closed
interval [a, b] with norm

‖f‖∞ = sup
a≤t≤b

|f(t)|.

This is often called the sup norm. It is immediate that M [a, b] is a linear space and that ‖f‖∞
is a norm. Since we already know that M [a, b] is complete, it is a Banach space.

Some important subspaces of M [a, b] that we have encountered already are

1. C[a, b], the space of continuous functions,

2. △[a, b], the space of differentiable functions,

3. P[a, b], the space of polynomials, and

4. R[a, b], the space of Riemann integrable functions.
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Each of these is a linear subspace of M [a, b] and so all are normed linear spaces; only the
subspaces C[a, b] and R[a, b] are closed, and so they are the only Banach spaces here.

There is nothing special about the domain of these functions being an interval [a, b]: any
nonempty set A can be the domain for a set of bounded functions, and the space M(A) of bounded
functions on A becomes a Banach space under the norm

‖f‖∞ = sup
t∈A

|f(t)|.

Example 12.8: The space L1(X,M, µ) is furnished with the norm

‖f‖1 =

∫

X
|f | dµ.

With this norm, ‖f‖1 = 0 if and only if f = 0 a.e., so condition (i) of Definition 12.1 for a norm
fails. All the other properties of a norm do hold. We have already encountered this problem
in the setting of metric spaces, and we know what to do: we identify equivalent functions. If
f = g a.e., we consider f and g to be the same element of the space. Thus, as before, L1 does
not consist of functions, but equivalence classes of functions defined by the relation f ∼ g if
f = g a.e. In a more formal treatment we would be obliged now to show that the norm ‖f‖1

remains unchanged if f is replaced by any other equivalent function, and this is obvious.

Example 12.9: Let (X,M, µ) be a measure space, and let 0 < p < ∞. By Lp(X,M, µ) or
merely Lp(µ), we denote those measurable functions defined on X such that

∫

X
|f |p dµ <∞.
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Once again we identify equivalent functions.
That this is a linear space follows from the inequality

(a+ b)p ≤ 2p(ap + bp)

for a, b ≥ 0. If f , g ∈ Lp(µ) then, integrating the inequality

|f(x) + g(x)|p ≤ 2p (|f(x)|p + |g(x)|p) ,

we see that f + g ∈ Lp(µ).
For 1 ≤ p <∞, we use the p norm

‖f‖p =

(∫

X
|f |p dµ

)1/p

,

and we shall see in Chapter 13 that these are Banach spaces.
The expression ‖f‖p is not a norm if 0 < p < 1, and these spaces need special treatment: we

use the metrics

ρp(f − g) =

∫

X
|f − g|p dµ

and, so equipped, these are complete metric linear spaces, but not Banach spaces.
A treatment of the Lp(X,M, µ) spaces can be found in Chapter 13. They have been pre-

sented in this chapter just for early reference, but we shall not develop any of the special prop-
erties here.

Example 12.10: Let (X,M, µ) be a measure space. For any measurable function write

‖f‖∞ = ess sup |f(x)| = inf {t > 0 : µ ({x : |f(x)| > t}) = 0} (1)

and refer to this as the essential supremum or ∞ norm of the function f . By L∞(X,M, µ) or
merely L∞(µ), we denote those measurable functions defined on X such that ‖f‖∞ < ∞. Such
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functions are said to be essentially bounded ; they are bounded if a set of measure zero can be
ignored. Again, as usual for function spaces associated with measure theory, we identify func-
tions that are equal almost everywhere with respect to the underlying measure. Then ‖f‖∞ = 0
only for the zero function. Note too, that every essentially bounded function can be identified
in this space with an equivalent bounded function.

It is easy to check that L∞(µ) is a linear space and that ‖f‖∞ is a norm; like the other Lp

spaces, this too is a Banach space (see Chapter 13).

Example 12.11: Let S denote the measurable functions on [0,1] furnished with the metric

ρ(f, g) =

∫ 1

0

|f − g|
1 + |f − g| dλ.

Provided that we identify functions that are a.e. equal, as we normally do in function spaces
associated with measures, this becomes a complete metric linear space. It is not a Banach space.

Example 12.12: We denote by BV=BV[a, b], the set of functions of bounded variation on
[a, b], furnished with the norm

‖f‖ = |f(a)| + V (f ; [a, b]).

(The variation V (f ; [a, b]) of a function f on an interval [a, b] has been defined in Section 1.14.)
This can be proved to be a Banach space and plays an important role in many investigations.

A special subspace of this space will be used in Section 12.8. By NBV[a, b], we denote the
space of those functions f of bounded variation on [a, b] that are right continuous on (a, b) and
that satisfy f(a) = 0. The norm is that inherited as a subspace, and so it is evidently given by

‖f‖ = V (f ; [a, b]).

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 12.1. Normed Linear Spaces 793

This too is a Banach space. The N in the name is meant to indicate that the functions have
been “normalized” by selecting a right continuous member that vanishes at the left end of the
interval.

Example 12.13: Let C′ = C′[a, b] denote the set of continuously differentiable functions on
[a, b]. We furnish the space with the norm

‖f‖ = max
a≤t≤b

|f(t)| + max
a≤t≤b

|f ′(t)|.

To verify that this is a norm is similar to checking that the sup norm has the correct properties
in M [a, b]. It is an instructive exercise to check that this space is complete.

Exercises

12:1.1 Verify that a metric induced by a norm is invariant and that the norm is a continuous function
on X.

12:1.2 Verify that the mapping (x, y) → x + y is continuous (i.e., xn → x and yn → y imply that
xn + yn → x+ y) both in a normed linear space and in a metric linear space.

12:1.3 Prove that the unit ball of a normed linear space is convex.

12:1.4 Check the assertions made in this section about the examples. Are they linear spaces? Do the
norms satisfy the conditions of Definition 12.1? Are the metrics invariant? Are the spaces claimed
to be Banach spaces complete? (Not all the verifications are elementary; for the Lp–spaces the
tools developed in Chapter 13 are needed.)
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12.2 Compactness

One of our most successful tools in the study of metric spaces has been the notion of compact-
ness. Naturally, we would expect that compact sets play an important role in the study of Ba-
nach spaces, too. Indeed they do, but there are a few surprises here. In contrast to the Eu-
clidean spaces IRn, closed and bounded sets are not compact in an arbitrary Banach space.
Compact sets are quite a bit “smaller” than one might have expected. The unit ball in an infinite-
dimensional Banach space has a great deal of room for moving about.

Here we shall collect a few interesting observations that arise from questions related to the
notion of compactness as it appears in Banach space theory. Let Y be a proper subspace of a
normed linear space, and let x ∈ X be a point not in Y .

Problem 1. Does there exist a point in Y that is nearest to the point x?

Problem 2. Does there exist a point on the unit sphere {z : ‖z‖ = 1} that is farthest from all
points in Y ?

In the finite-dimensional spaces IRn, the geometry is transparent enough to see how to an-
swer these. There is a point in Y that is nearest to the point x; take the orthogonal projection
of x on the subspace Y . There is a point on the unit sphere {z : ‖z‖ = 1} that is farthest
from all points in Y ; just head in an orthogonal direction from the origin to find a point at dis-
tance 1. In an infinite-dimensional space, what happens?

12.2.1 The unit sphere in an infinite dimensional space

Let us look at Problem 2 first. An example shows that there is no such point on the unit sphere,
in general, even if we make the natural assumption that the subspace is closed (all subspaces of
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finite-dimensional spaces are closed anyway).

Example 12.14: Consider the subspaces X and Y of C([0, 1]), where X is that proper sub-
space consisting of those functions vanishing at the left endpoint of [0, 1], and Y is that proper
subspace of X consisting of those functions f with f(0) = 0 and

∫ 1
0 f(t) dt = 0. These are closed

subspaces. Is there a function f1 ∈ X with ‖f1‖ = 1 such that inf{‖f − f1‖ : f ∈ Y } = 1?
Suppose that such a function f1 has been chosen; since f1(0) = 0, |f1(t)| ≤ 1, we note that

−1 < α =

∫ 1

0
f1(t) dt < 1. (2)

Now for any δ < 1 we can choose f ∈ X with ‖f‖ = 1 and βf =
∫ 1
0 f(t) dt > δ. The function

f1 − (α/βf )f is in Y (check the integral), and hence

1 ≤ ‖f1 − (f1 − (α/βf )f)‖ = |α/βf |
so that |α| > βf > δ. Since δ < 1 is arbitrary, this contradicts (2).

12.2.2 Riesz’s theorem

From this example we see that we cannot find a point on the unit sphere quite as distant from
that subspace as we might have hoped. A simple lemma of F. Riesz shows that we can, how-
ever, get close. That lemma will then provide us with a precise answer to the question about
the compactness of balls in a normed linear space.

Lemma 12.15 (Riesz) Let X be a normed linear space and Y a proper closed subspace. Then
for every 0 < δ < 1 there is an element xδ ∈ X with ‖xδ‖ = 1 and such that dist(xδ, Y ) ≥ δ.
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Proof. There is a point x1 not in Y and at a positive distance from Y , say d = dist(x1, Y ).
There must be a point x0 ∈ Y close enough to x1 so that ‖x1 − x0‖ ≤ dδ−1. We merely take

xδ =
1

‖x1 − x0‖
(x1 − x0).

To check that this works, we use an arbitrary y ∈ Y and obtain

‖xδ − y‖ =
1

‖x1 − x0‖
‖x1 − (x0 + ‖x1 − x0‖ y)‖ ≥ d

dδ−1
= δ,

since x0 + ‖x1 − x0‖ y is an element of the subspace Y . Hence dist(xδ, Y ) ≥ δ, as required. �

Theorem 12.16 (Riesz) It is a necessary and sufficient condition for a normed linear space
to be finite-dimensional that the the closed unit ball is compact.

Proof. If X is a finite-dimensional normed linear space, then it is easy to check that the closed
unit ball is compact (for the same reason that the closed unit ball in IRn is compact).

Conversely, suppose that X is infinite-dimensional. Choose an element x1 with ‖x1‖ =
1. By applying Lemma 12.15 to the subspace Y1 spanned by x1, there is an element x2 with
‖x2‖ = 1 and dist(x2, Y1) ≥ 1

2 . Once again applying the lemma to the subspace Y2 spanned by
{x1, x2}, there is an element x3 with ‖x3‖ = 1 and dist(x3, Y2, ) ≥ 1

2 . Continuing inductively, we
obtain a sequence such that each pair of its members is at a distance apart of at least 1

2 . As X
is infinite-dimensional, this process cannot stop. Since such a sequence can have no convergent
subsequence, the unit ball cannot be compact. �

A corollary expresses the theorem in a different way.

Corollary 12.17: Each compact set in an infinite-dimensional normed linear space is nowhere
dense.
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Proof. If K is compact, then it is closed. If it has an interior point, then it contains a closed
ball. But the proof of the theorem applies to a ball of any radius and center, not just the unit
ball, and so K contains a noncompact closed subset, which is impossible. �

12.2.3 Best approximation problems

We turn now to Problem 1 expressed at the beginning of this section. Here Y is a proper sub-
space of a normed linear space, x ∈ X is a point not in Y , and our problem asks whether there
exists a point in Y that is nearest to the point x?

We can use compactness arguments to answer best-approximation problems. We have seen
though that compactness arguments in infinite dimensions will require some caution, since closed,
bounded sets are not necessarily compact. Our best-approximation problem will avoid this by
seeking a best-approximation from a finite-dimensional subspace. The problem is that we are
given an element x in a Banach space X and a finite-dimensional subspace Y ⊂ X. We know
that dist(x, Y ) will be finite, and we hope to find an element y0 ∈ Y for which the distance is
realized:

dist(x, Y ) = ‖x− y0‖ .

Theorem 12.18: Let Y be a finite-dimensional subspace of a normed linear space X. Then for
every element x0 ∈ X not in Y there is y0 ∈ Y with dist(x0, Y ) = ‖x0 − y0‖.

Proof. Let d = dist(x0, Y ). We look for a nearest point to x0 that is in Y and also some-
where in the closed ball B[x0, 2d] (the nearest point cannot be anywhere else). But the set

K = B[x0, 2d] ∩ Y
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is a closed, bounded set in the finite-dimensional space Y and hence is compact. Ordinary met-
ric space arguments (Exercise 9:9.11) supply a point y0 ∈ K with dist(x0,K) = ‖x0 − y0‖, and
this is exactly what we wanted. �

Example 12.19: Let f be a continuous function on the interval [a, b] and determine

min
λ0,λ1,λ2,λ3

max
t∈[a,b]

∣∣f(t) − λ0 − λ1t− λ2t
2 − λ3t

3
∣∣

and

min
λ0,λ1,λ2,λ3

∫ b

a

∣∣f(t) − λ0 − λ1t− λ2t
2 − λ3t

3
∣∣ dt.

Without our current (admittedly elementary) tools, we might be in doubt as to whether these
minima exist. It is easy to interpret these as best-approximation problems for an element of
the space C[a, b] (and the space L1[a, b] relative to a four-dimensional subspace and so apply
Theorem 12.18 to show that these exist. Note, however, that the two answers may differ, and
there is no guarantee that there is a unique cubic polynomial that expresses the approximation.

In many cases, one would like uniqueness and not just existence of a best approximation.
For that the geometry of the norm comes into play. Here are two conditions that would allow
us to claim uniqueness. A norm is said to be rotund if for every distinct x, y with ‖x‖ = ‖y‖ =
1 there is the strict inequality

‖x+ y‖ < 2.

A norm is said to satisfy the parallelogram rule if

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 12.3. Linear Operators 799

for every distinct x, y in the space. Under either of these conditions the existence of a best ap-
proximation guarantees the uniqueness. We leave this as Exercise 12:2.1. The parallelogram
rule holds only in normed linear spaces in which the norm is supplied by an inner product. This
is the subject of Chapter 14.

Exercises

12:2.1 Let C be a convex set in a normed linear space and suppose that x0 6∈ C and that there is a
point y0 ∈ C with

dist(x0, C) = ‖x0 − y0‖.
If the norm is rotund, show that such a point is unique. If the norm satisfies the parallelogram
rule, show that such a point is unique.

12:2.2 The set

I∞ = {(x1, x2, x3, . . . ) : |xi| ≤ i−1}
is called the Hilbert cube. Show that this is a compact subset of ℓ2 and verify directly that it is
nowhere dense.

12:2.3 Let X be a normed linear space and A and B two closed subsets. The “sum” is the set

A+B = {a+ b : a ∈ A, b ∈ B}.
Show that A+B need not be closed. Show that A+B is closed if A is compact.

12.3 Linear Operators

When dealing with a linear space, one is often interested in linear operators defined on that
space. Several of the contraction maps we mentioned in Section 9.7 provide examples of linear
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operators. We give here an introduction to the theory of linear operators on a normed linear
space. The most important and deep theorems about linear operators are collected in later sec-
tions.

Definition 12.20: Let X and Y be linear spaces. Let T :X→Y . If

T (α1x1 + α2x2) = α1T (x1) + α2T (x2)

for all α1, α2 ∈ IR and x1, x2 ∈ X, we say T is a linear operator or a linear transformation from
X into Y .

When Y = IR, we say that T is a linear functional on X. We might prefer a lowercase letter
to indicate linear functionals. Thus a mapping h : X → IR is a linear functional if

h(α1x1 + α2x2) = α1h(x1) + α2h(x2)

for all α1, α2 ∈ IR and x1, x2 ∈ X. Linear functionals are quite special, and their investigation
can proceed differently from just general linear operators. For the rudiments of the theory ap-
pearing in this section, the same arguments work for both. A deeper study of continuous linear
functionals is given in Sections 12.5, 12.6, and 12.7.

A number of familiar operators involving integration and differentiation are linear. For ex-
ample, Df = f ′ is a linear operator from △ to △′,

(Sf)(x) =

∫ x

a
f dλ

is linear from C[a, b] to C[a, b] or from L1[a, b] to C[a, b], and

I(f) =

∫ b

a
f dλ
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is a linear functional on L1[a, b].
If X and Y are normed linear spaces, we can discuss continuity of a linear operator. The in-

tegral operators S and I, above, are continuous everywhere, while the differential operator D
is discontinuous everywhere on the space of differentiable functions with bounded derivatives
when both the domain and range of D are furnished with the sup norm. (We leave verification
of these statements as Exercise 12:3.1.) Our first observation is that continuity for linear oper-
ators is already a very special thing: continuity at a single point ensures continuity everywhere
and, in fact, it ensures uniform continuity on the space.

Theorem 12.21: Let X and Y be normed linear spaces, and let T :X→Y be a linear operator.
If T is continuous at a point, then T is continuous everywhere, and the continuity is uniform.

Proof. For x1, x2 ∈ X we have

‖Tx1 − Tx2‖ = ‖T (x1 − x2)‖.
Now T is continuous at some point, which by translation invariance we may take to be 0. Thus
for every ε > 0 there exists δ > 0 such that if ‖x‖ < δ then ‖Tx‖ < ε. It follows that if
‖x1 − x2‖ < δ then

‖Tx1 − Tx2‖ = ‖T (x1 − x2)‖ < ε.

�

12.3.1 Bounded linear operators

The requirement that T be linear allows a characterization of continuity in terms of how T
maps bounded sets.
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Definition 12.22: A linear operator T : X → Y is bounded if there exists M ≥ 0 such that
‖Tx‖ ≤M‖x‖ for all x ∈ X. The operator norm for a bounded linear operator T is defined as

‖T‖ = inf {M : ‖Tx‖ ≤M‖x‖ for all x ∈ X} .

For all x 6= 0, we have

Tx = T

(
x

‖x‖

)
‖x‖.

It follows that T is bounded if and only if T is a bounded function on the closed unit ball {x : ‖x‖ ≤
or, equivalently, T is a bounded function on the unit sphere {x : ‖x‖ = 1}. Thus a bounded lin-
ear operator is one that maps bounded sets to bounded sets. The operator norm also expresses
this boundedness:

‖Tx‖ ≤ ‖T‖ ‖x‖ (for all x ∈ X).

We have referred to this as the “operator norm,” but we have yet to see that it is a genuine
norm on some linear space. We shall develop these ideas after we have proved that boundedness
and continuity are equivalent for linear operators.

Theorem 12.23: A linear operator is bounded if and only if it is continuous.

Proof. Suppose that T is a bounded linear operator with bound M . Let ε > 0, and let δ =
ε/M . If ‖x‖ < δ, then

‖Tx‖ ≤M‖x‖ < Mδ = ε,

so T is continuous at x = 0. It follows from Theorem 12.21 that T is continuous on X.
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To prove the converse, suppose that T is continuous. Choose δ > 0 such that ‖Tx‖ < 1 if
‖x‖ = δ. For x ∈ X, x 6= 0, we have ∥∥∥∥

δx

‖x‖

∥∥∥∥ = δ.

Thus

‖Tx‖ =

∥∥∥∥T
(
δx

‖x‖

)∥∥∥∥
‖x‖
δ

<
1

δ
‖x‖,

so T is bounded. �

12.3.2 The space of bounded linear operators

Now let X and Y be normed linear spaces, and let B(X,Y ) be the set of bounded linear op-
erators from X to Y . We shall interpret B(X,Y ) as a normed linear space using the opera-
tor norm of Definition 12.22. That B(X,Y ) is a linear space under the usual interpretations
is straightforward: for T1, T2 ∈ B(X,Y ) define T1 + T2 by

(T1 + T2)(x) = T1(x) + T2(x) for all x ∈ X,

and for α ∈ IR define αT1 by

(αT1)(x) = αT1(x) for all x ∈ X.

To show that B(X,Y ) is linear, we must show that it is closed under addition and multiplica-
tion by scalars: linear combinations of bounded operators must themselves be bounded. Let T ,
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T1, T2 ∈ B(X,Y ), and let α ∈ IR. Then

‖T1(x) + T2(x)‖ ≤ ‖T1(x)‖ + ‖T2(x)‖
≤ ‖T1‖ ‖x‖ + ‖T2‖ ‖x‖
= (‖T1‖ + ‖T2‖)‖x‖

for all x ∈ X. Thus

‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖, (3)

and so the sum T1 + T2 is bounded. It is clear that

‖αT‖ = |α|‖T‖, (4)

so the scalar multiple αT is bounded.
We have shown that B(X,Y ) is a linear space; it is also a normed linear space when fur-

nished with the operator norm. It is clear that ‖T‖ = 0 if and only if T = 0. The remaining
properties of a norm can be seen from (3) and (4).

We next show that B(X,Y ) is a Banach space if Y is complete.

Theorem 12.24: Let B(X,Y ) be the normed linear space of bounded linear operators from a
normed linear space X to a Banach space Y . Then B(X,Y ) is a Banach space.

Proof. Let {Tn} be a Cauchy sequence in B(X,Y ). Then, for all x ∈ X, {Tnx} is a Cauchy
sequence in Y , since

‖Tmx− Tnx‖ ≤ ‖Tm − Tn‖ ‖x‖.
Define T by

Tx = lim
n→∞

Tnx.
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We show that T ∈ B(X,Y ) and {Tn} converges to T in B(X,Y ).
First, it is clear that T is a linear operator. To see that T is bounded, observe that the

sequence {‖Tn‖} is a bounded sequence of real numbers. This follows immediately from the
fact that every Cauchy sequence in a metric space is bounded. Thus there exists M such that
‖Tn‖ ≤ M for all n ∈ IN. It follows that, for all x ∈ X, ‖Tnx‖ ≤ M‖x‖, so ‖Tx‖ ≤ M‖x‖, and
‖T‖ ≤M . This shows that T is bounded.

Finally, we show that ‖Tm − T‖ → 0 as m → ∞. Let ε > 0. Choose N ∈ IN such that
‖Tm − Tn‖ < ε if m,n ≥ N . Then

‖Tmx− Tnx‖ < ε‖x‖ for m,n ≥ N and x ∈ X.

Fixing m ≥ N and letting n→ ∞, we infer that

‖Tmx− Tx‖ ≤ ε‖x‖ for all x ∈ X.

This implies that ‖Tm − T‖ ≤ ε for all m ≥ N .
We have shown that for every ε > 0 there exists N ∈ IN such that ‖Tm − T‖ ≤ ε for all

m ≥ N ; that is, Tm → T in B(X,Y ). Thus every Cauchy sequence in B(X,Y ) converges, so
B(X,Y ) is complete and hence a Banach space. �

We end this section with two remarks. First, we have used the same symbol ‖ . ‖ for norms
in the spaces X, Y and B(X,Y ). This standard practice should cause no confusion. In con-
structing proofs the reader may wish to label the norms in some way so as to keep oriented.

Our second remark relates to the scalar field. We have chosen IR rather than C, the set of
complex numbers. Most of the development so far would be essentially the same had we chosen
C.
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Exercises

12:3.1 Define the linear operators D, S, and I on the appropriate spaces of functions by Df = f ′,

(Sf)(x) =
∫ x

a
f dλ and I(f) =

∫ b

a
f dλ. Show that S and I are continuous operators, while D is

discontinuous.

12:3.2 Let X and Y be normed linear spaces with X finite-dimensional. Show that every linear map-
ping T : X → Y must belong to B(X,Y ).

12:3.3 Let X and Y be normed linear spaces with X infinite-dimensional. Show that there must exist a
linear mapping T : X → Y that does not belong to B(X,Y ).

12.4 Banach Algebras

Let X be a Banach space. According to Theorem 12.24, the space B(X,X) of bounded linear
operators on X is also a Banach space. But there is more structure here: we can also define a
multiplication operation. For S, T ∈ B(X,X), let ST = S ◦ T . It is clear that ST is a linear
operator. To show that ST ∈ B(X,X) observe that, for each x ∈ X,

‖ST (x)‖ = ‖S(Tx)‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖ ‖x‖,
so

‖ST‖ ≤ ‖S‖ ‖T‖. (5)

Thus ST is a bounded operator on X. It is also clear that ‖I‖ = 1, where I is the identity
operator defined by Ix = x for all x ∈ X. It now follows readily that B(X,X) is an algebra
with unit I. In fact, B(X,X) is a Banach algebra under the following definition.
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Definition 12.25: A Banach algebra is a Banach space B on which is defined a multiplication
operation that satisfies the following conditions:

1. The multiplication operation is associative; that is,

S(TU) = (ST )U (S, T, U ∈ B).

2. The multiplication operation is distributive; that is,

S(T + U) = ST + SU , (S + T )U = SU + TU (S, T, U ∈ B).

3. Scalar multiplication associates with the multiplication operation, that is

(λS)T = λ(ST ) = S(λT )

for every S, T,∈ B, and every real (or complex) scalar λ.

4. The norm satisfies

‖ST‖ ≤ ‖S‖ ‖T‖ (S, T ∈ B).

If there is an element I of B such that IS = SI = S for all S ∈ B we say I is a unit for
B. There is a highly developed field devoted to the study and applications of Banach algebras.
We pause here only to prove one simple fact and apply it to a solution of an integral equation
in Example 12.27. We shall return to these ideas in Section 13.9, where we shall see that with
an appropriate multiplication operation the Banach space L1(IR) is also a Banach algebra.

The reader is familiar with the fact that if a is a complex number with |a| < 1 then (1 − a)−1 =
1 + a+ a2 + · · · . It is of interest that a similar representation is valid in the setting of a Banach
algebra.
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Theorem 12.26: Let B be a Banach algebra with unit element I, and let T ∈ B. Suppose that
‖T‖ < 1. Then

1. (I − T )−1 exists,

2. (I − T )−1 = I + T + T 2 + · · · , and

3. ‖(I − T )−1‖ ≤ (1 − ‖T‖)−1. Thus (I − T )−1 ∈ B.

Proof. Observe first that the series
∑∞

j=0 ‖T‖j converges, since ‖T‖ < 1. By equation (5),

‖Tn‖ ≤ ‖T‖n, so the sequence
{∑n

j=0 T
j
}

is Cauchy and hence the series in (ii) must converge.

Let

S = I + T + T 2 + T 3 + · · · .
Then TS = ST = T + T 2 + · · · , so (I − T )S = S(I − T ) = I. This shows that S = (I − T )−1,
establishing (i) and (ii).

Finally, to verify (iii) we calculate

‖(I − T )−1‖ ≤
∞∑

n=0

‖Tn‖ ≤
∞∑

n=0

‖T‖n =
1

1 − ‖T‖ ,

as required. �

12.4.1 Existence and uniqueness of solutions of an integral equation

We shall apply this theorem to the Banach algebra B(X,X), where X is the Banach space
C[a, b] of continuous functions on the interval [a, b], furnished with the usual sup norm. This
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example is in the same setting as Example 9.48 involving Fredholm equations. Here, however,
we shall use material of this section instead of contraction mappings to prove the existence of a
solution and exhibit how it can be obtained.

Example 12.27: Let X = C[a, b], and let K be continuous on the square [a, b] × [a, b]. Define
an operator A on X by Af = g, where

g(x) =

∫ b

a
K(x, y)f(y) dy.

It is clear that A ∈ B(X,X). Consider the equation

φ(x) = f(x) −
∫ b

a
K(x, y)f(y) dy, (6)

for a fixed φ ∈ C[a, b]. We can write this in the more suggestive form

φ = f −Af = (I −A)f or (I −A)−1φ = f.

If ‖A‖ < 1, we can infer from Theorem 12.26 that this equation has the unique solution

f = φ+Aφ+A2φ+ · · · . (7)

Let

M = sup{|K(x, y)| : x, y ∈ [a, b]}.
From the definition of the operator A, we see that ‖A‖ ≤ M(b − a); thus ‖A‖ < 1 if M <
(b− a)−1. Observe that we have obtained precisely the same sufficient condition for a unique
solution to (6) here as we obtained in Example 9.48, but by different methods.

The operator A in Example 12.27 has another property that we should mention, and this
property holds independently of the norm of ‖A‖. Let {fn} be any bounded sequence in C[a, b],
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and let gn = Afn. Since ‖gn‖ ≤ ‖A‖ ‖fn‖ for all n ∈ IN, the sequence {gn} is also bounded
in C[a, b]. We next show that the set {gn} is equicontinuous, from which it will follow from As-
coli’s theorem (see Section 9.11) that the set {gn} has compact closure in C[a, b].

Let S = supn ‖fn‖. Now K is uniformly continuous on the square [a, b] × [a, b] and so, for
each ε > 0, there exists δ > 0 such that

|K(x1, y) −K(x2, y)| < ε

S(b− a)

for every y ∈ [a, b], provided that |x2 − x1| < δ. Thus, if |x2 − x1| < δ, then, for each n ∈ IN,

|gn(x1) − gn(x2)| =

∣∣∣∣
∫ b

a
[K(x1, y) −K(x2, y)]fn(y) dy

∣∣∣∣

≤ (b− a)S

(
ε

S(b− a)

)
= ε.

It follows that {gn} is equicontinuous.
We have shown that the operator A has the property that if {fn} is bounded in X then the

sequence {Afn} has a convergent subsequence in X. An operator with this property is said to
be a compact operator. We shall study such operators in Chapter 14 in the setting of Hilbert
spaces. Here we mention only that every compact operator is clearly bounded, but the con-
verse is false. In fact, the identity operator on any infinite-dimensional Banach space cannot
be a compact operator, since the unit ball in such a space contains a sequence {xn} that has no
convergent subsequence. (See Theorem 12.16.)

Exercises

12:4.1 Show that B(X,X) is an algebra with unit I; that is, for R, S, T ∈ B(X,X) and a, b ∈ IR (or C)
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(a) (RS)T = R(ST ).

(b) R(S + T ) = RS +RT .

(c) (R+ S)T = RT + ST .

(d) (aR)(bS) = (ab)(RS).

(e) IR = RI = R.

12:4.2 Show that in Theorem 12.26 it is also true that

‖(I − T )
−1 − I − T‖ ≤ ‖T‖

1 − ‖T‖ .

12.5 The Hahn–Banach Theorem

One of the most indispensable tools of modern analysis is the theorem of Hahn and Banach
that we shall now present. Hans Hahn (1879–1934) first showed in 1927 that a continuous linear
functional defined on a subspace of a normed linear space could be extended to the whole of the
space. He showed how to extend it up one dimension at a time and then used transfinite induc-
tion on the dimension; in our version, this is replaced by an appeal to Zorn’s lemma. Banach in
1929, apparently unfamiliar with Hahn’s paper, proved his version stated for linear functionals
dominated by a subadditive functional. This is the version we give first. Note that it is entirely
an algebraic theorem, making no mention of normed linear spaces or continuous functionals.
We obtain Hahn’s version as a consequence of this. A further more geometric version is given in
Section 12.9 due apparently to Jean Dieudonné (1906–1992) in 1941.

These theorems are all set in real linear spaces, which is where we wish to remain for most
of our considerations. For complex linear spaces and complex Banach spaces, a different idea is
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needed. This was supplied by H. F. Bohnenblust and A. Sobczyk in 1938. Any modern func-
tional analysis text will supply the details.

We will have several opportunities to apply the Hahn–Banach theorem. In particular, appli-
cations of this theorem appear in Sections 12.6 and 12.8 and the exercises to this section.

Let X be a linear space, and let p :X→ IR. If

p(ax) = ap(x) for all x ∈ X and a ≥ 0,

we say that p is positively homogeneous. If

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

we say that p is subadditive.
For example, a norm for a linear space is both positively homogeneous and subadditive.

Some examples that are not norms are also important. See the exercises and Section 12.6. Ob-
serve that a subadditive, positively homogeneous functional p on X is a convex function; that
is, it satisfies the inequality

p(ax+ (1 − a)y) ≤ ap(x) + (1 − a)p(y)

for all x, y ∈ X and all a ∈ [0, 1].
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12.5.1 Banach’s version of the Hahn–Banach theorem

Theorem 12.28 (Hahn–Banach) Let X be a linear space, and let Y be a linear subspace
of X. Let p be a subadditive, positively homogeneous functional defined on X. If f is a linear
functional defined on Y and

f(x) ≤ p(x) for all x ∈ Y,

then there exists an extension F of f to all of X such that F is linear, and

F (x) ≤ p(x) for all x ∈ X.

Proof. We present the proof in two parts. First we show that if Y is not all of X, f can be
extended to a linear functional f1 defined on a linear subspace Y1 of X such that Y1 properly
contains Y and such that

f1(x) ≤ p(x) for all x ∈ Y1.

We then use Zorn’s lemma to show that the required extension of f to all of X is possible.
If Y 6= X, let z ∈ X \ Y , and let

Y1 = {x ∈ X : ∃a ∈ IR and ∃y ∈ Y such that x = y + az} .
Observe that the given representation for members of Y1 is unique: if

x = y1 + a1z = y2 + a2z,

then

(a1 − a2)z = y2 − y1 ∈ Y.

Thus a1 −a2 = 0, since z /∈ Y , and therefore y2 − y1 = 0. It is clear that Y1 is a linear space and
that Y1 contains Y properly.
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Now we can define f1 on Y1 by

f1(x) = f1(y + az) = f(y) + af1(z)

for an appropriate choice of the value af1(z). Any choice for the value of f1(z) will result in
the linearity of f1. Our problem is to choose this value in such a way that f1(x) ≤ p(x) for all
x ∈ Y1. Let us write u for f1(z). Our requirement then becomes

f(y) + au ≤ p(y + az) for all y ∈ Y and a ∈ IR. (8)

The inequality (8) is satisfied for a = 0, by hypothesis.
Let us see what is required of the number u for that inequality to hold for a > 0 and for

a < 0. For a 6= 0, write y = av. For a > 0, we can then write (8) in the form

f(v) + u ≤ p(v + z). (9)

This is possible because p is positively homogeneous. For a < 0, −a > 0, so we can write (8) in
the form

−f(v) − u ≤ p(−v − z). (10)

The effect of the substitution y = av is to replace the requirement (8) by the tractable inequali-
ties

−p(−v1 − z) − f(v1) ≤ u ≤ p(v2 + z) − f(v2) (11)

for v1, v2 ∈ Y that follow from (9) and (10). But for v1, v2 ∈ Y ,

f(v2) − f(v1) = f(v2 − v1) ≤ p(v2 − v1)

= p((v2 + z) + (−v1 − z))

≤ p(v2 + z) + p(−v1 − z)
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so

−p(−v1 − z) − f(v1) ≤ p(v2 + z) − f(v2)

for all v1, v2 ∈ Y . Thus

A = sup
v1

(−p(−v1 − z) − f(v1)) ≤ inf
v2

(p(v2 + z) − f(v2)) = B.

From (11) we see that if

A ≤ u ≤ B

then (11) and therefore (8) are satisfied. For such a value of u = f1(z), the functional

f1(y + az) = f(y) + af1(z)

has the required property. This completes the first part of the proof.
Now, let L denote the family of all linear extensions of f that are dominated by p on their

domains. Partially order L by writing

f1 � f2

for any pair of elements f1, f2 ∈ L if f2 is an extension of f1. This means that the domain Y2

of f2 contains Y1, the domain of f1, and f2 = f1 on Y1. The domains of linear functionals are
linear spaces.

To apply Zorn’s lemma we must verify that every chain in L has an upper bound. Let C be
a chain in L. Thus C is a subset of L such that if f1, f2 ∈ C either

f1 � f2 or f2 � f1.

Let U be the union of the domains of functions in C. Define F on U by F (x) = g(x) if g ∈ C
and x is in the domain of g. Since C is a chain, the definition of F is consistent. For x, y ∈ U
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there exists g ∈ C such that x and y are both in the domain of g. Thus U and F are linear, and

F (x) ≤ p(x) for all x ∈ U.

We have shown that F is an upper bound for the chain C. By Zorn’s lemma, L has a max-
imal element, F0. This linear functional F0 must have all of X as its domain; otherwise, one
could extend F0 by the first part of the proof, and this would contradict the maximality of F0.
�

12.5.2 Hahn’s version of the Hahn–Banach theorem

If we apply this theorem to a normed linear space, we obtain the following version, due to Hahn.
One useful outcome of this next theorem is that there are always an abundance of continuous
linear functionals in the setting of a normed linear space or a Banach space (see Exercise 12:7.1).
This is not the case for general metric linear spaces (as Section 13.7 shows).

Theorem 12.29: Let X be a normed linear space, Y a subspace of X, and let f be a bounded
linear functional on the space Y . Then there exists an extension of f to a bounded linear func-
tional f̂ on the entire space X with the same norm, that is, so that ‖f‖ = ‖f̂‖.

Proof. Let p(x) = ‖f‖ ‖x‖. Then, for every y ∈ Y

|f(y)| ≤ ‖f‖ ‖y‖.
By Theorem 12.28, f can be extended to a linear functional F on X so that

|F (x)| ≤ ‖f‖ ‖x‖ for all x ∈ X.
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But this last inequality implies that F is a bounded linear functional on X. Writing f̂ = F , we
see that

|f̂(x)| ≤ ‖f‖ ‖x‖ for all x ∈ X.

Thus ‖f̂‖ ≤ ‖f‖. The reverse inequality is obvious. �

Exercises

12:5.1♦ (Extending the Riemann integral) Let p(f) =
—∫
f(t) dt denote the upper Riemann integral of

a bounded function f on the interval [a, b]. Let R denote the linear space of Riemann integrable
functions on [a, b]. For f ∈ R, let

R(f) =

∫ b

a

f (t) dt.

(a) Show that p(f) is positively homogeneous and subadditive on the set of bounded functions
on [a, b].

(b) Show that R is a linear functional on R and that R(f) ≤ p(f) for all f ∈ R.

(c) What conclusion can one now draw from Theorem 12.28?

12:5.2 (Banach limits) Define a function p on the sequence space ℓ∞ by

p(x) = lim sup
n→∞

x1 + x2 + · · · + xn

n
,

and define a linear functional l on the subspace c by

l(x) = lim
n→∞

xn.

(a) Show that p is subadditive and positively homogeneous on ℓ∞.
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(b) Apply the Hahn–Banach theorem to obtain a linear functional L on ℓ∞ such that, for x =
{xn},

(i) L(x) ≥ 0 if xn ≥ 0 for all n ∈ IN.

(ii) L({x1, x2, x3, . . . }) = L({x2, x3, x4, . . . }) for all x ∈ ℓ∞.

(iii) lim inf xn ≤ L(x) ≤ lim supxn for all x ∈ ℓ∞.

(iv) L(x) = limn→∞ xn for all x ∈ c.

Thus L provides a notion of limit applied to all bounded sequences. The four properties (i)
through (iv) are ones that we would expect of a generalized limit. One calls L a Banach
limit.

(c) Calculate L({0, 1, 0, 1, . . . }).

12:5.3 In most cases the extension of ideas in the text from real to complex Banach spaces is routine.
The complex version of Theorem 12.28 is not routine. Find and present a proof of this theorem
(attributed, usually, to Bohnenblust and Sobczyk).

12.6 Improving Lebesgue Measure

In this section we illustrate how the Hahn–Banach theorem can be used to address some of the
measure theory problems on extensions of Lebesgue measure that arise from concerns in our
earlier chapters.

In Section 2.1 we began with the primitive notion of the length of an interval and then ex-
tended this notion to apply it to a σ-algebra of sets, the class L of Lebesgue measurable sets.
The result was Lebesgue measure λ. As a measure, λ is countably additive on L and therefore
satisfies our intuitive requirement that “the whole should be the sum of its parts.” But λ sat-
isfies another intuitive requirement as well, that length should be invariant under translations.
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(In fact, the only Lebesgue–Stieltjes measures on IR that are translation invariant are multiples
of λ. Other Lebesgue–Stieltjes measures are not meant to model length.)

Thus λ seems to be an optimal generalization of the concept of lengths for subsets of IR.
But, as we saw in Section 2.1, not all subsets of an interval are Lebesgue measurable. This
leads to a natural question:

12.30: Can one extend Lebesgue measure to a measure λ defined for all subsets of [0, 1] such
that λ is translation invariant?1

We saw in Section 3.12 that the answer is no; it is no even if we drop the requirement of
translation invariance. In fact, there is no finite nontrivial nonatomic measure defined on all
subsets of [0,1]. This leads to the following questions:

12.31: Can one extend Lebesgue measure to a finitely additive measure λ defined for all sub-
sets of [0, 1] such that λ is translation invariant?

12.32: Can one extend λ to a genuine measure λ, defined on a “large” σ-algebra L containing
L, such that λ is still translation invariant?

We discuss these two questions and some analogs in higher dimension in this section.

1Since we state our question for subsets of [0,1], rather than for all bounded subsets of IR, translation must
be understood as “translation modulo [0, 1).” That means that the part of a translated set that lies outside the
interval [0, 1) must be moved to the corresponding part of [0, 1).
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12.6.1 Extension of Lebesgue measure to a finitely additive measure

The reader may recall that we have already mentioned in Section 2.11 that the question 12.31
has an affirmative answer. We can prove this now. The key tool is the Hahn–Banach theorem.

In order to apply that theorem we will require a subadditive, positively homogeneous func-
tion p defined on the linear space of bounded functions on [0,1] such that

∫ 1

0
f dλ ≤ p(f)

for all bounded measurable functions f . This functional p should be such that the linear exten-
sion I of

I(f) =

∫ 1

0
f dλ

to all bounded functions on [0,1] has a certain translation invariant property. By considering
characteristic functions, we should then be able to interpret λ in terms of the extended linear
functional I applied to characteristic functions.

Exercise 12:5.1 suggests using the upper Riemann integral

p(f) =

—∫
f(t) dt

of an arbitrary bounded function f on the interval [a, b]. This functional p is subadditive and
positively homogeneous, and as part of the proof of Theorem 5.20 [see the inequalities (10) in
that proof], we have obtained that I(f) ≤ p(f) for all bounded measurable functions f . The
extended linear functional I, whose existence follows from the Hahn–Banach theorem, will then
provide an extension of λ by the interpretation we described. However, translation invariance
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becomes a problem (see Exercise 12:6.1). Another choice of p, one advanced by Banach, does
the job, as we now show.

Let X denote the family of bounded real-valued functions on [0, 1). For purposes of calcula-
tions, extend each f ∈ X to all of IR by periodicity. Thus each f ∈ X is extended to all of IR so
that

f(t+ 1) = f(t) for all t ∈ IR.

For f ∈ X and for each finite sequence (α1, α2, . . . , αn) of real numbers, let

M(f : α1, α2, . . . , αn) = sup
t

1

n

n∑

i=1

f(t+ αi).

Finally, let

p(f) = inf M(f : α1, α2, . . . , αn),

the infimum being taken over all finite sequences (α1, α2, . . . , αn) of real numbers. Loosely speak-
ing, each n-tuple provides a mean value of f over a certain set of translates of t. The supremum
of these means over t ∈ IR provides a single number,

M(f : α1, α2, . . . , αn).

The functional p provides “efficient” choices of translates.
It is clear that p is positively homogeneous. We now show that p is subadditive.
Let f, g ∈ X, and let ε > 0. Choose (α1, . . . , αm) and (β1, . . . , βm) such that

M(f : α1, . . . , αm) < p(f) + ε and M(g : β1, . . . , βm) < p(g) + ε.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



822 Banach Spaces Chapter 12

The set of mn numbers αi + βj can be arranged into a single sequence γ1, γ2, . . . , γmn. Then

p(f + g) ≤M(f + g : γ1, . . . , γmn)

= sup
t

1

mn

m∑

i=1

n∑

j=1

(f + g)(t+ αi + βj)

≤ sup
t


 1

n

n∑

j=1

1

m

m∑

i=1

f(t+ βj + αi)




+ sup
t


 1

m

m∑

i=1

1

n

n∑

j=1

g(t+ αi + βj)




≤ sup
t


 1

n

n∑

j=1

M(f : α1, . . . , αm)




+ sup
t

(
1

m

m∑

i=1

M(g : β1, . . . , βn)

)

= M(f : α1, . . . , αm) +M(g : β1, . . . , βn)

≤ p(f) + p(g) + 2ε.

Since ε is arbitrary, p(f + g) ≤ p(f) + p(g). This proves that p is subadditive.
We next show that p dominates the Lebesgue integral

I(f) =

∫ 1

0
f dλ
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defined for bounded measurable functions on [0, 1).
Let α1, α2, . . . , αn be any finite sequence of real numbers. For α ∈ IR, let fα(t) = f(t + α).

Since f has been extended periodically to IR, we see that, for each α ∈ IR, I(f) = I(fα). Thus

I(f) =
1

n

∫ 1

0
(f(t+ α1) + · · · + f(t+ αn)) dλ ≤M(f : α1, . . . , αn).

Since this is valid for every finite sequence (α1, α2, . . . , αn), we infer that I(f) ≤ p(f) on the
linear space Y of bounded measurable functions on [0, 1).

We now apply the Hahn–Banach theorem, obtaining a linear functional I defined on X such
that I(f) ≤ p(f) for all f ∈ X. We show that, for each α ∈ IR, I(f) = I(fα).

To see this, let g = fα − f , and let

α1 = 0, α2 = α, α3 = 2α,. . . , αn = (n− 1)α.

Then

p(g) ≤M(g : α1, . . . , αn) =
1

n
sup

t
(f(t+ nα) − f(t)). (12)

Since (12) is valid for all n ∈ IN and f is bounded we infer that p(g) ≤ 0, and therefore that
I(g) ≤ 0.

In a similar way, we find that p(−g) ≤ 0. Thus

I(g) = −I(−g) ≥ −p(−g) ≥ 0.

Therefore, I(g) = 0; that is, I(f) = I(fα), as was to be shown.
We summarize this discussion as a theorem.
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Theorem 12.33: There exists a linear functional I on the space of bounded real-valued func-
tions on [0, 1) such that

1. If f is a bounded measurable function on [0, 1), then

I(f) =

∫ 1

0
f dλ.

2. For each α ∈ IR, I(f) = I(fα).

As an immediate corollary, we have an answer to question 12.31.

Theorem 12.34: There exists a finitely additive measure λ defined on all subsets of [0, 1) such
that

1. If E ∈ L, then λ(E) = λ(E).

2. For each α ∈ IR, λ(E) = λ(Eα), where

Eα = {t ∈ [0, 1) : There exists x ∈ E such that t = x+ α(mod 1)} .

Proof. Let λ(E) = I(χ
E

), and apply Theorem 12.33. �

Exercise 12:6.2 shows that we can obtain a bit more. Condition (ii) of Theorem 12.34 is a
form of translation invariance of λ. One can also obtain reflection invariance of λ.
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12.6.2 The Banach–Tarski paradox

The analog of Theorem 12.34 is valid in IR2. There is an isometry-invariant extension of λ2 to
all subsets of the unit square (or, more generally, to all bounded subsets of IR2).

But the result fails for n ≥ 3. This is part of the content of the Banach–Tarski2 paradox.
It is possible to decompose a ball in IR3 into five pairwise disjoint pieces and then reassem-
ble these pieces to form two disjoint balls of the same size. More precisely, there exists sets
A1, . . . , A5 and E1, . . . , E5 such that

1. Ai ∩Aj = ∅ if i 6= j.

2. Ai is congruent to Ei for i = 1, . . . , 5.

3.
⋃5

i=1Ai = B(0, 1).

4.
⋃5

i=1Ei = B(0, 1) ∪B(2, 1).

It is therefore clear that no congruent-invariant finitely additive extension of λ3 to all bounded
subsets of IR3 can exist. The difference between dimension 2 and dimension n ≥ 3 is that in the
latter case there are simply too many isometries to allow such an extension.

It is beyond our purpose to develop the Banach–Tarski paradoxes, but we can give an exam-
ple of a related “paradox” in IR2. We construct two disjoint sets R and T , situated in IR2, such
that R ∼= T ∼= R ∪ T , with ∼= being the congruence relation.

For each complex number z, let

t(z) = z + 1 , r(z) = eiz.

2See S. Wagon, The Banach–Tarski Paradox, Cambridge University Press (1985).
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Thus t is just a right translation by one unit and r is a rotation by one radian. Let S consist of
those points that can be obtained from the origin by a finite number of applications of t and r.
Thus each member of S can be represented as a polynomial in ei with integer coefficients. Since
ei is transcendental, the representation is unique. Let R consist of those points of S whose rep-
resentations have no constant term, and let T = S \R. Then

t(S) = T and r(S) = R

from which it follows that the sets R, T , and S = R ∪ T are congruent.
This simple example provides no measure-theoretic paradox. It simply shows that a certain

set S allows a rotation r and a translation t such that the sets S, R = r(S) and T = t(S) are
pairwise congruent, with R ∪ T = S and R ∩ T = ∅.

12.6.3 A translation invariant improvement of Lebesgue measure

We turn now to a brief discussion of question 12.32. We saw in Exercise 3:13.13 that we can ex-
tend Lebesgue measure on [0, 1) to a σ-algebra L of sets properly containing L. We made no
provision to guarantee that the extended measure λ is translation invariant. In fact, if L con-
tains the nonmeasurable set A from Section 2.1, λ cannot be translation invariant. S. Kaku-
tani and J. Oxtoby3 have shown that λ can be extended to a σ-algebra L much larger than L
in such a way that the resulting measure λ is translation invariant. What does “much larger”
mean here?

3S. Kakutani and J. Oxtoby, “Construction of a non-separable invariant extension of the Lebesgue measure
space,” Ann. of Math. 52 (1950), 580–590.
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To answer this question, we recall that the metric space (L, ρ) with metric given by

ρ(A,B) = λ(A△B)

is separable. The Kakutani–Oxtoby σ-algebra L has the property that any dense subset of
(L, ρ) must have cardinality 2c. A similar result holds in IRn for all n ∈ IN. There one obtains
an extension of n-dimensional Lebesgue measure λn to a much larger σ-algebra on which the
extended measure λn is invariant with respect to isometries: if A and B are congruent, then
λ(A) = λ(B).

Exercises

12:6.1 Apply the reasoning leading to Theorem 12.33, but using instead the upper Riemann integral

p(f) =

—∫
f(t) dt.

Let I be the resulting linear functional. Let g = f − f√2. Show that −1 ≤ I(g) ≤ 1. Can one

conclude that I(g) = 0, as desired?

12:6.2 (Refer to the discussion leading to Theorem 12.33.) Let

I(f) =
1

2

(
I(f) + I(f(1 − t))

)
.

Show that I = I on Y and I(f) = I(f(1 − t)) on X. Interpret this result for characteristic func-

tions to obtain an extension λ of λ to all bounded functions on [0, 1). Show that this extension is
invariant under isometries.

12:6.3 (Refer to the discussion ending this section.) Verify that t(S) = T and that r(S) = R.
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12.7 The Dual Space

The material in the preceding two sections suggests the importance of continuous linear func-
tionals on normed linear spaces. Many concepts of analysis can be expressed in this language.

In fact, the importance lies even deeper. The structure of a normed linear space is revealed
to a great extent in the collection of continuous linear functionals. It is customary to denote
B(X, IR) by X∗, the space of continuous linear functionals on X. This space is called the dual
of X (or perhaps conjugate or adjoint.).

This space can be furnished with a norm, too, so that X∗ is also a normed linear space. The
norm of a linear functional x∗ ∈ X∗ can be described by

‖x∗‖ = sup {|x∗(x)| : ‖x‖ = 1} , (13)

which is the supremum of the values of |x∗(x)| on the unit sphere {x : ‖x‖ = 1}. Note that
there are two spaces here, X and X∗, each equipped with a norm, which one commonly writes
using the same symbol. Be careful to make a distinction between the norms as needed.

There is a true “duality” between a space X and its dual X∗ that can only be fully ex-
ploited in the language of topological vector spaces. Nonetheless, even restricting ourselves to
the language of normed linear spaces, we can still discover a great deal about the interplay be-
tween a space and its dual. The function notation x∗(x) for the value of the functional x∗ at
the point x is often abandoned for a notation that encourages the duality notions:

〈x, x∗〉 = x∗(x).

We point out first that the dual of a normed linear space, even an incomplete space, is a
Banach space.

Theorem 12.35: If X is a normed linear space, then its dual X∗ is a Banach space.
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Proof. This follows directly from Theorem 12.24. �

One of our main tools in embarking on the study of the dual space is the Hahn–Banach the-
orem. We restate is here. This is just a rewording of Theorem 12.29 in the language of the dual
space and in the form in which it is frequently applied.

Theorem 12.36 (Hahn–Banach) Let X be a normed linear space, Y a subspace of X and
y∗ ∈ Y ∗. Then there exists an extension of y∗ to a functional x∗ ∈ X∗, with ‖x∗‖ = ‖y∗‖.

One of our first observations is that, because of the Hahn–Banach theorem, there is an abun-
dance of continuous linear functionals. That is, the space X∗ is supplied with enough elements
for most applications. The first theorem shows that we can find elements of X∗ to “pick off”
any element x0 of X. The second theorem shows that we can use continuous linear functionals
to distinguish between such an element x0 and a closed subspace Y at a positive distance from
x0.

Theorem 12.37: Let X be a normed linear space and x0 a nonzero element of X. Then there
exists a functional x∗ ∈ X∗ with ‖x∗‖ = 1 and x∗(x0) = ‖x0‖.

Proof. Let Y be the subspace spanned by the single element x0. Every element y of Y can be
written uniquely in the form y = αx0 for some real α. Define an element y∗ of Y ∗ by y∗(y) =
y∗(αx0) = α‖x0‖. It is easy to check that y∗ has the required properties, that ‖y∗‖ = 1 and
y∗(x0) = ‖x0‖. The proof is completed by invoking Theorem 12.36 to obtain an extension of y∗

to an element x∗ ∈ X∗ with the same norm. �
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Theorem 12.38: Let X be a normed linear space and x0 a nonzero element of X. Suppose
that Y is a closed subspace of X and that dist(x0, Y ) = h0 > 0. Then there exists a functional
x∗ ∈ X∗ such that ‖x∗‖ = 1, x∗(x0) = h0, and x∗(y) = 0 for each y ∈ Y .

Proof. Let Y1 be the subspace spanned by Y and x0. Every element y1 of Y1 can be written
uniquely as y1 = y + (α/h0)x0 for some y ∈ Y and some real α. An easy computation shows
that ‖y1‖ ≥ |α|.

We define an element y∗ of Y ∗
1 by

y∗(y1) = y∗(y + (αh−1
0 )x0) = α

using the representation above. It is routine to verify that y∗ has the required properties, that
‖y∗‖ = 1, y∗(x0) = h0, and y∗(y) = 0 for each y ∈ Y . The proof is completed by invoking
Theorem 12.36 to obtain an extension of y∗ to an element x∗ ∈ X∗ with the same norm. �

The study of the dual will play an important role in the study of any normed linear space.
As a simple application, let us use the material developed so far to show that a certain impor-
tant property of the dual space is reflected in the space.

Theorem 12.39: Let X be a normed linear space. If X∗ is separable, then so too is X.

Proof. Let x∗n be a sequence of elements of X∗ forming a dense set. Then, for each n, we may
find an element xn ∈ X so that ‖xn‖ = 1 and |x∗n(xn)| > 3

4‖x∗n‖. Let Y be the closure of the
linear space spanned by the set xn in X. If Y = X, then we are done, since the set of rational
linear combinations of the set of all xn forms a countable dense subset of X.

Suppose, contrary to this, that Y is a proper subspace. Then there is a point of X at posi-
tive distance from Y . Applying Theorem 12.38, we find then an element x∗ with ‖x∗‖ = 1 and
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x∗(y) = 0 for all y ∈ Y . In particular x∗(xn) = 0 for all n. There must be an element x∗m with
‖x∗ − x∗m‖ < 1

4 , since the sequence x∗n forms a dense set in X∗. Since ‖x∗‖ = 1, we see that
‖x∗m‖ ≥ 3

4 . But this is impossible since
3
4‖x∗m‖ ≤ |x∗m(xm)| = |x∗m(xm) − x∗(xm)| ≤ ‖x∗m − x∗‖ < 1

4 .

From this contradiction the theorem follows. �

Exercises

12:7.1 If x, y are distinct points in a normed linear space X, show that there is a member of X∗ that
separates x and y (i.e., 〈x, x∗〉 6= 〈y, x∗〉 for some x∗ ∈ X∗).

12:7.2 Let X be a normed linear space. Prove that, for any x ∈ X,

‖x‖ = sup{|x∗(x)| : x∗ ∈ X∗, ‖x∗‖ = 1},
which can be considered a dual assertion to (13).

[Hint: Use Theorem 12.37.]

12:7.3 Prove that the converse of Theorem 12.39 does not hold. [Hint: You may assume that the dual
of the space ℓ1 can be taken as ℓ∞, a fact that is proved in Section 13.6.]

12:7.4 Show that if T ∈ B(X,Y ) then

‖T‖ = sup {〈Tx, y∗〉 : ‖x‖ ≤ 1, ‖y∗‖ ≤ 1, x ∈ X, y∗ ∈ Y ∗} .
12:7.5 Let X, Y be Banach spaces with duals X∗ and Y ∗. Show that to each T ∈ B(X,Y ) corresponds

a unique T ∗ ∈ B(X∗, Y ∗) defined by

〈Tx, y∗〉 = 〈x, T ∗y∗〉 (x ∈ X, y∗ ∈ Y ∗)

and that ‖T‖ = ‖T ∗‖.
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12:7.6♦ A Banach space X has a dual X∗ that is also a Banach space and so has its own dual, denoted
by X∗∗.

(a) Show that the mapping φ : X → X∗ defined by

〈x, x∗〉 = 〈x, φ(x)〉
is a linear isometry of X to a closed subspace of X∗∗.

If X∗∗ = φ(X), we say that X is reflexive. (In this case X is isomorphic, in the sense defined in
Section 12.10, to its second dual X∗∗.)

(b) Prove that X is reflexive if and only if X∗ is reflexive.

(c) Prove that if X is reflexive, then every continuous linear functional on X assumes a max-
imum on the closed unit ball of X. [Hint: Use Theorem 12.37 to obtain an element x∗∗ of
X∗∗ such that ‖x∗∗‖ = 1 and 〈x∗, x∗∗〉 = ‖x∗‖. Use reflexivity to find x ∈ X with 〈x, x∗〉 =
‖x∗‖.]

(d) Refer to Example 12.6. Define x∗ as follows: For each element

a = {a1, a2, . . . }
of the space c0, we require

〈a, x∗〉 =

∞∑

k=1

ak/k! .

Show that x∗ ∈ c0 and that ‖x∗‖ =
∑∞

k=1 1/k!. Use part (c) to show that c0 is not reflexive.
(In fact it can be shown that c∗0 = ℓ1 and c∗∗0 = ℓ∞.)

(e) Prove that C[a, b] is not reflexive.
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12.8 The Riesz Representation Theorem

Given a concrete Banach space X, what are the continuous linear functionals on X? What pre-
cisely is the dual space X∗? What we want is a “representation” of the elements of X∗ that
is given at least as explicitly as we have been given the elements of X. This is an obvious and
natural mathematical problem, but it has practical import: if the space X is useful in applica-
tions, then the dual space X∗ is an important tool to use in working with X.

We shall find a representation for the continuous linear functionals on the Banach space
C[a, b] and describe C[a, b]∗. It is easy to come up with some if not all continuous linear func-
tionals on C[a, b]. The functions

F1(f) = f(x0),

F2(f) =

∞∑

i=0

2−if(xi),

F3(f) =

∫ b

a
f(t) dt,

F4(f) =

∫ b

a
f(t)g(t) dt,

where x0, x1, x2, . . . are points of [a, b] and where g is integrable on [a, b], are all evidently con-
tinuous linear functionals. But what idea captures all continuous linear functionals on this
space.

Jacques Hadamard (1865–1963) showed in 1903 that every continuous linear functional must
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be of the form

F (f) = lim
n→∞

∫ b

a
kn(t)f(t) dt

for some sequence of continuous functions kn. Incidentally, this paper contains perhaps the first
use of the term “functional” (fonctionelle) in our subject.

This representation is inadequate to characterize the dual space. By 1909, F. Riesz had re-
considered the problem and arrived at the solution we now present. His representation was in
terms of Stieltjes integrals, a concept that had received no attention since its introduction by
the Dutch mathematician T. J. Stieltjes (1856–1894) many years earlier. We shall characterize
precisely the space C[a, b]∗.

The essence of the Riesz representation theorem4 is that it identifies each continuous linear
functional on C[a, b] with some Lebesgue–Stieltjes signed measure µg. Each such signed measure
determines a unique function g of bounded variation on [a, b] and right continuous on (a, b) with
g(a) = 0. Conversely each such function g determines a Lebesgue–Stieltjes signed measure µg.
Because we are dealing with continuous functions and Lebesgue–Stieltjes signed measures, we
can take the integrals in the simpler Riemann–Stieltjes sense. We begin our preparation for the
Riesz representation theorem by recalling the definition of the Riemann–Stieltjes integral.

Let f ∈ C[a, b] and let g ∈ BV[a, b]. Let P be a partition of [a, b], say

a = x0 < x1 < · · · < xn = b,

and let t1, t2, . . . , tn satisfy

xi−1 ≤ ti ≤ xi for all i = 1, . . . , n.

4Many different theorems go by this same name in the literature, testimony to the importance that Riesz (and
his brother M. Riesz) played in the early decades of the development of functional analysis.
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Finally, let

△(P ) = max
i

(xi − xi−1).

A standard theorem asserts that
∫ b

a
f dg = lim

△(P )→0

n∑

i=1

f(ti)(g(xi) − g(xi−1)) (14)

exists. This means that there exists α ∈ IR such that for each ε > 0 there exists δ > 0 for which∣∣∣∣∣

n∑

i=1

f(ti)(g(xi) − g(xi−1)) − α

∣∣∣∣∣ < ε

for every partition P with △(P ) < δ and for arbitrary choice of the points ti ∈ [xi−1, xi].
It is clear that the integral (14) is linear in f and g. Our sole requirement on g is that g ∈

BV[a, b], but it is trivial that the value of the integral does not change if we add a constant to
g.

The Riesz representation theorem gives a correspondence between the bounded linear func-
tionals on C[a, b] and the space BV[a, b]. In order to make the correspondence a bijection, we
shall restrict our attention to the space NBV[a, b] of those functions g of bounded variation on
[a, b] that are right continuous on (a, b) and that satisfy g(a) = 0. One verifies that the varia-
tion

‖g‖ = V (g; [a, b])

is a norm on NBV[a, b], and that
∣∣∣∣
∫ b

a
f dg

∣∣∣∣ ≤ ‖f‖∞ ‖g‖, (15)
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where

‖f‖∞ = max
x∈[a,b]

|f(x)|.

We leave verification of (15) as Exercise 12:8.2.
To this point we have obtained a one to one linear correspondence between NBV[a, b] and

a subset of the bounded linear functionals on C[a, b] that does not increase norms. The Riesz
representation theorem states that this mapping is a linear isometry between NBV[a, b] and all
of C∗[a, b], and every continuous linear functional on C[a, b] can be represented by a Riemann–
Stieltjes integral.

Theorem 12.40 (Riesz) Let F be a bounded linear functional on C[a, b]. Then there exists
g ∈ NBV[a, b]such that

F (f) =

∫ b

a
f dg for all f ∈ C[a, b].

Furthermore,

‖g‖ = V (g; [a, b]) = ‖F‖.

Proof. We shall use the Hahn–Banach theorem to obtain a function g ∈ NBV[a, b] that has
all the required properties.

The functional F is linear on the space C[a, b]. By Theorem 12.29, it can be extended to a
linear functional, which we also denote by F , on all of M [a, b], with preservation of ‖F‖.

Consider now the family of step functions of the form

φx(t) =

{
1 a ≤ t < x,
0 x ≤ t ≤ b,
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for a < x ≤ b, with φa(t) = 0 for all t ∈ [a, b]. Define g on [a, b] by g(x) = F (φx). We show that
g ∈ BV[a, b] and that V (g; [a, b]) ≤ ‖F‖.

Let a = x0 < x1 < · · · < xn = b be an arbitrary partition of [a, b]. To simplify our notation,
define a function sgn by

sgn(x) =





1 if x > 0;
0 if x = 0;

−1 if x < 0,

and let αi = sgn(g(xi) − g(xi−1)), i = 1, . . . , n. Then

n∑

i=1

|g(xi) − g(xi−1)| =
n∑

i=1

αi(g(xi) − g(xi−1))

=
n∑

i=1

αiF (φxi − φxi−1) = F

(
n∑

i=1

αi(φxi − φxi−1)

)

≤ ‖F‖
∥∥∥∥∥

n∑

i=1

αi(φxi − φxi−1)

∥∥∥∥∥ ≤ ‖F‖,

the last inequality following from the fact that the function

n∑

i=1

αi(φxi − φxi−1)

can take only the values 0, −1, and 1.
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Thus
n∑

i=1

|g(xi) − g(xi−1)| ≤ ‖F‖.

Since this is true for every partition of [a, b], we see that g ∈ BV[a, b] and that

V (g; [a, b]) ≤ ‖F‖.
Now g(a) = F (φa) = F (0) = 0. It follows that, by modifying g to be right continuous on (a, b) if
necessary, we can take g to be in NBV[a, b], so

V (g; [a, b]) = ‖g‖.
Thus ‖g‖ ≤ ‖F‖. Since we have already observed the reverse inequality in (15), we have ‖g‖ =
‖F‖.

We now show that F can be represented in the desired form

F (f) =

∫ b

a
f dg.

Let f ∈ C[a, b], and let k ∈ IN. Since f is uniformly continuous on [a, b], there exists δk > 0 such
that δk < 1/k and

|f(x) − f(y)| < 1

k
(16)

whenever x, y ∈ [a, b] and |x− y| < δk.
Let a = x0 < x1 < · · · < xn = b be a partition of [a, b] with |xi − xi−1| < δk for i = 1, . . . , n.

Define a function fk by

fk(t) =
n∑

i=1

f(xi)(φxi(t) − φxi−1(t)).
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Each of the functions fk is a step function having the value f(xi) in the interval xi−1 ≤ t < xi.
By (16), |f(t) − fk(t)| < 1/k for all t ∈ [a, b]. Thus ‖f − fk‖∞ < 1/k and fk → f [unif].

From the definition of the function g, we see that

F (fk) =
n∑

i=1

f(xi)(F (φxi) − F (φxi−1))

=
n∑

i=1

f(xi)(g(xi) − g(xi−1)).

This shows that F (fk) is an approximating sum for
∫ b
a f dg. Since δk < 1/k for each k, it fol-

lows that {F (fk)} converges to
∫ b
a f dg.

But F is continuous on M [a, b], and {fk} converges to f in M [a, b], so {F (fk)} converges to
F (f). Thus

F (f) =

∫ b

a
f dg,

as was to be shown. �

Observe that the mapping Φ defined by

(Φ(g)) (f) =

∫ b

a
f dg

is a linear norm-preserving mapping of NBV[a, b] onto C∗[a, b]. Thus, these two spaces can be
identified as Banach spaces: Φ preserves both the linear and the norm structures of the spaces.
Since we can also associate with each g ∈ NBV[a, b] a Lebesgue–Stieltjes signed measure µg,
we can view the dual space C∗[a, b] of C[a, b] as a space of finite Borel signed measures. Note
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also that we found it convenient to use the language of the Riemann–Stieltjes integral in our
development. For continuous functions f ,

∫ b

a
f dg =

∫

[a,b]
f dµg.

The material in this section has been generalized to obtain the dual space for C(X), where
X is a much more general space than an interval of the real line. Our methods were very much
in the setting of the real line, and this extension, while it still involves integrals and measures,
is quite different. In greater generality, the theorem is known as the Riesz–Kakutani theorem5,
and it provides a connection between the dual of the complex Banach space C(X), where X is a
compact Hausdorff space, and the space of complex, regular, Borel measures on X.

Exercises

12:8.1 Show that each of the four functionals F1, F2, F3, and F4 defined at the beginning of this sec-
tion is a continuous linear functional on C[a, b], and determine its norm. How may each of these be
represented by a Stieltjes integral?

12:8.2 (a) Verify that the Riemann–Stieltjes integral is linear in f and g.

(b) Verify that ‖g‖ = V (g; [a, b]) is a norm on NBV[a, b].

(c) Verify the inequality ∣∣∣∣∣

∫ b

a

f dg

∣∣∣∣∣ ≤ ‖f‖∞ ‖g‖.

5 For example, see N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, 1958, pp. 262–265.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 12.9. Separation of Convex Sets 841

12:8.3 Let g(x) = x2 on [−1, 1], and let

F = {f ∈ C[−1, 1] : |f(x)| ≤ 5 for all x ∈ [−1, 1]} .
Calculate supf∈F

∫ 1

−1
f dg.

12:8.4 For g to be in NBV[a, b], we required that g be right continuous on (a, b). Why did we not re-
quire right continuity at x = a? What about right continuity at b? [Hint: Let F (f) = f(a). Then

F ∈ C∗[a, b]. How do we represent F as a Riemann–Stieltjes integral
∫ b

a
f dg if g is right continu-

ous at x = a?]

Observe that for g of bounded variation g is continuous except on a countable set Df . If one

changes the values of g on Df it will not affect the value of
∫ b

a
f dg, provided that arbitrarily fine

partitions can avoid points of Df . This is possible if and only if a, which must be in every parti-
tion, is not a member of Df .

12.9 Separation of Convex Sets

The Hahn–Banach theorem assumes one more form, this time as a separation theorem. In two
dimensions the ideas are transparent. It is intuitively plausible that, if C1 and C2 are arbitrary
closed nonintersecting convex sets in the plane, then there is a line L separating C1 from C2;
C1 lies on one side of L, C2 on the other. We can formulate our conjecture analytically: there
exists a, b, c ∈ IR such that

ax+ by ≥ c for all (x, y) ∈ C1, and

ax+ by ≤ c for all (x, y) ∈ C2.

Thus our notion of separation can be couched in the language of linear functionals. We shall
obtain a similar separation theorem for arbitrary linear spaces.
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Let X be a (real) linear space, and let x, y ∈ X. The closed segment joining x and y is the
set

{αx+ (1 − α)y : 0 ≤ α ≤ 1} .
The open segment joining x and y is the set

{αx+ (1 − α)y : 0 < α < 1} .
The interior of a set S ⊂ X is the set

{s ∈ S : For each x ∈ X, ∃ ε > 0 such that s+ tx ∈ S if |t| < ε} .
Thus s is in the interior of S if and only if the intersection with S of each line through s con-
tains an open segment about s. The set S is convex if, whenever x, y ∈ S, the closed segment
joining x and y is contained in S. A convex set is called a convex body if it has nonempty in-
terior. For example, a ball in a normed linear space is a convex body. On the other hand, a
proper subspace of a normed linear space is a convex set, but cannot be a convex body. The
class of convex sets in a linear space is closed under various operations. (See Exercise 12:9.1.)

We have already mentioned that a ball in a normed linear space is a convex body. This is a
special case of Theorem 12.41.

Theorem 12.41: Let p be a nonnegative, positively homogeneous, subadditive functional on a
linear space X. Then for every k > 0 the set

S = {x : p(x) ≤ k}
is a convex body. Its interior is the set {x : p(x) < k}.

Proof. Let x, y ∈ S, and let α ∈ [0, 1]. Then

p(αx+ (1 − α)y) ≤ αp(x) + (1 − α)p(y) ≤ αk + (1 − α)k = k,
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so the closed segment joining x and y is in S, and S is convex.
To verify the statement about the interior of S, let p(s) < k, let t > 0, and let x ∈ X. Then

p(s+ tx) ≤ p(s) + tp(x)

and

p(s− tx) ≤ p(s) + tp(−x).

If p(x) = p(−x) = 0, then s± tx = s ∈ S for all t. If p(x) 6= 0 or p(−x) 6= 0, then for

t <
k − p(s)

max(p(x), p(−x))

we find that p(s± tx) < k, so s± tx ∈ S. �

Consider now the set S = {x : p(x) ≤ 1}. Since p(0) = 0, 0 ∈ S. Thus p determines a convex
body S with 0 as an interior point. We can turn the process around: Let S be a convex body
having 0 as an interior point. Let p = pS be defined by

pS(x) = inf
{
r > 0 : r−1x ∈ S

}
.

This functional is called the Minkowski functional of the convex body S. It is clear that S =
{x : pS(x) ≤ 1}.

Theorem 12.42: The Minkowski functional p is nonnegative, positively homogeneous, and
subadditive.

Proof. Since 0 is an interior point of S, it is clear that for every x ∈ X, r−1x ∈ S for r suffi-
ciently large. Thus p is finite and nonnegative. It is also clear that p(0) = 0.
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To check for positive homogeneity of p, let a > 0. Then

p(ax) = inf
{
r > 0 : ar−1x ∈ S

}

= inf
{
ar > 0 : r−1x ∈ S

}

= a inf
{
r > 0 : r−1x ∈ S

}
= ap(x).

Finally, we verify that p is subadditive. Let ε > 0, and let x1 and x2 be arbitrary elements
of the space. Choose r1 and r2 such that

p(x1) < r1 < p(x1) + ε

and

p(x2) < r2 < p(x2) + ε.

Then

x =
1

r1 + r2
(x1 + x2) =

(
r1

r1 + r2

)
x1

r1
+

(
r2

r1 + r2

)
x2

r2
,

so x is in the segment joining x1/r1 and x2/r2. Since S is convex, x ∈ S. Thus we see from the
way r1 and r2 were chosen that

p(x1 + x2) ≤ p(x1) + p(x2) < r1 + r2 < p(x1) + p(x2) + 2ε.

Since ε is arbitrary,

p(x1 + x2) ≤ p(x1) + p(x2),

so p is subadditive, completing the proof of the theorem. �

We turn now to the question of separation of convex sets in a linear space X. Let A and B
be subsets of X, and let f be a linear functional on X. If there exists c ∈ IR such that f(x) ≥ c

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 12.9. Separation of Convex Sets 845

for all x ∈ A and f(x) ≤ c for all x ∈ B, we say that f separates A and B. Then f separates A
and B if and only if f separates the sets {0} and

A−B = {z : z = x− y for some x ∈ A and y ∈ B} .
This is also equivalent to the statement that, for every x0 ∈ X, f separates the sets A − {x0}
and B − {x0}. We omit the easy verifications of these statements.

Theorem 12.43: Let A and B be disjoint convex sets in a linear space. If A is a convex body,
then there exists a nontrivial linear functional f on X that separates A and B.

Proof. We may assume that 0 is an interior point of A; otherwise, we would simply apply our
proof to the sets A− {x0} and B − {x0}, where x0 is an interior point of A.

Let y0 ∈ B. Then −y0 is an interior point of the set A − B, and 0 is an interior point of the
set

A−B + y0 = {z : z = x− y + y0 with x ∈ A, y ∈ B} .
Now A and B are disjoint by hypothesis, so

0 /∈ A−B and y0 /∈ A−B + y0.

Let p be the Minkowski functional for the set A−B+y0. Since y0 is not in the set A−B+y0,
it follows that p(y0) ≥ 1. Define a linear functional f on Y = {ay0 : a ∈ IR} by f(ay0) = ap(y0).
For a > 0,

f(ay0) = ap(y0) = p(ay0).

For a < 0,

f(ay0) = af(y0) < 0 ≤ p(ay0),

since p is nonnegative by definition. Thus f ≤ p on Y .
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We now apply the Hahn–Banach theorem, obtaining a linear functional F defined on all of
X such that F (x) ≤ p(x) for all x ∈ X. Since p is the Minkowski functional for the set A−B +
y0, we have F (x) ≤ p(x) ≤ 1 on that set. On the other hand, F (y0) = f(y0) = p(y0) ≥ 1. This
means that F separates the sets A − B + y0 and {y0}. But, as we observed before stating the
theorem, this implies that F separates A and B. Since F (y0) ≥ 1, F is nontrivial. �

Theorem 12.43 is often called the “separation” form of the Hahn–Banach theorem. The con-
dition that one of the sets A or B has interior points cannot be dropped from the hypothesis of
Theorem 12.43.

Example 12.44: Let X be the linear space of polynomials. Let A consist of those polynomials
whose highest-order coefficient is positive. Then A is convex and 0 /∈ A. Let f be a linear func-
tional on X with f ≥ 0 on A. Consider now any polynomial of the form aun + un+1, a ∈ IR,
n ≥ 0. This polynomial is in A, and

af(un) + f(un+1) = f(aun + un+1) ≥ 0.

The inequality is valid for all n and a (even a < 0), so f(un) = 0 for all n ≥ 0. Since each
member of X is a linear combination of the elements un in X and f is linear, we infer that f ≡
0 on X. Similarly, if f ≤ 0 on A then f ≡ 0 on X. Thus there is no nontrivial linear functional
separating A and {0}.

Example 12.45: Let X = C[0, 1]. Let h(t) = et, and let

A = {f ∈ X : ‖f‖ ≤ 1} and B = {f ∈ X : ‖f − h‖ ≤ 1} .
Then A and B are disjoint convex bodies in X. We find a linear functional that separates A
and B.
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If ‖f − h‖ ≤ 1, then f(t) ≥ et − 1 for all t ∈ [0, 1]; in particular, f(t) ≥ 1 on [ln 2, 1]. On the
other hand, if ‖f‖ ≤ 1, then f(t) ≤ 1 on [ln 2, 1]. To separate A from B, we seek a function g ∈
BV such that the linear functional

F (f) =

∫ 1

0
f dg

separates A and B.
We can obtain such a g easily; let g(t) = 0 for 0 ≤ t ≤ ln 2 and g(t) = t−ln 2 for ln 2 ≤ t ≤ 1.

If ‖f‖ ≤ 1, then

F (f) ≤
∫ 1

0
1 dg =

∫ 1

ln 2
dg = 1 − ln 2.

For ‖f − h‖ ≤ 1,

F (f) ≥
∫ 1

0
(et − 1) dg =

∫ 1

ln 2
(et − 1) dg ≥

∫ 1

ln 2
1 dg = 1 − ln 2.

The functional F therefore separates A and B.

Exercises

12:9.1 Let X be a linear space. Verify the following statements:

(a) Any subspace of X is convex.

(b) If A and B are convex subsets of X and a, b ∈ IR, then the set

aA+ bB = {ax+ by : x ∈ A, y ∈ B}
is convex.
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(c) If A is a family of convex sets in X, then
⋂

A∈A
A is convex.

(d) For each set S ⊂ X there exists a smallest convex set in X containing S. This set is called
the convex hull of S.

12:9.2 (Refer to Example 12.44.) Let x be a member of A, say

x = a0 + a1u+ · · · + anu
n , an > 0.

Show that x is not an interior point of A by considering polynomials of the form x+ tun+1.

12:9.3 (Refer to Example 12.45.) Let h(t) = aet, a ≥ 0.

(a) Find the smallest value of a for which the functional F given in the example separates A and
B.

(b) Is there a smallest value of a for which some linear functional separates A and B? If so, what
is it? If not, find the infimum of

{a > 0 : ∃ a linear functional F that separates A and B} .
(c) How would the answer to (b) change if the question were asked for open balls rather than

closed balls?

12.10 An Embedding Theorem

The notion of an abstract normed linear space is a large one to grasp. It is defined axiomat-
ically, and it encompasses a seemingly inexhaustible variety of concrete examples. Often in
mathematics in such a situation there is some way of realizing all instances of an abstract struc-
ture as aspects of one single thing. In this section we shall see that all normed linear spaces
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can be viewed as spaces of functions equipped with the sup norm. Specifically, we embed every
normed linear space as a subspace of M(A) for some set A.

In Section 9.6 we discussed embeddings of a metric space X into a metric space Y . The
mapping that defined the embedding was required to be an isometry, thereby preserving met-
ric properties. We did not require linearity, since no linear structure was imposed on X. Thus
we can identify X and Y if these spaces are isometric.

In our present setting we are dealing with normed linear spaces. We wish to identify two
such spaces X and Y if there is a linear mapping φ from X onto Y such that

‖φ(x)‖ = ‖x‖
for all x ∈ X. Such a mapping φ is called an isomorphism or linear isometry, and we say that
X and Y are isomorphic. If Y = φ(X) is contained in a normed linear space Z, we say that X
is embedded in Z, or X is isomorphic to the subspace Y of Z.

The main theorem of this section involves embedding X into the Banach space M(A) of
bounded functions on an appropriate set A, with the sup norm. (See Example 12.7.)

We can now state our theorem. Observe in the proof that the expression fα(x) appears re-
peatedly and with varying interpretations. Exercise 12:10.1 may be helpful in distinguishing
these interpretations.

Theorem 12.46: Let X be a normed linear space. Then there exists a set A such that X is
isomorphic with a subspace of the Banach space M(A) of bounded real-valued functions on A
with norm

‖f‖∞ = sup
t∈A

|f(t)|.

Proof. We begin by choosing any dense subset of X. Index this set as {xα : α ∈ A}. The in-
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dex set A will be the domain for the functions in the Banach space that we construct. For each
α ∈ A, there exists by Theorem 12.37 a linear functional fα on X such that

‖fα‖ = 1 and fα(xα) = ‖xα‖.
For each α ∈ A and x ∈ X, we have

|fα(x)| ≤ ‖fα‖ ‖x‖ = ‖x‖. (17)

To this point, we have viewed each fα as a function of x. We now change our perspective.
For each x ∈ X, fα(x) ∈ IR, for every α ∈ A. Thus for each x ∈ X we can view fα(x) as a func-
tion of α, which by (17) is bounded on A. Now define φ : X → M(A) by (φ(x))(α) = fα(x).
Thus, for each x ∈ X, φ(x) is a bounded function on A. We therefore view φ as a mapping
from X to M(A) and show that φ is an isomorphism of X onto φ(X) ⊂M(A).

To check the linearity of φ, let x, y ∈ X. From the linearity of the functionals fα, we see
that

φ(x+ y) = fα(x+ y) = fα(x) + fα(y) = φ(x) + φ(y).

Similarly, for x ∈ X and a ∈ IR, we obtain

φ(ax) = fα(ax) = afα(x) = aφ(x).

Thus φ is linear.
It remains to show that φ is norm preserving; that is, for every x ∈ X,

‖x‖ = sup
α∈A

|fα(x)| = ‖φ(x)‖∞.

From (17), we see that

sup
α∈A

|fα(x)| ≤ ‖x‖, (18)
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so we need only establish the reverse inequality.
For each α ∈ IR and x ∈ X, fα(xα) = ‖xα‖, so

| |fα(xα)| − ‖x‖ | = | ‖xα‖ − ‖x‖ | ≤ ‖xα − x‖.
Also,

| |fα(x)| − |fα(xα)| | ≤ |fα(x) − fα(xα)|
= |fα(x− xα)| ≤ ‖x− xα‖,

the last inequality following from (17). Thus

| |fα(x)| − ‖x‖ | ≤ 2‖xα − x‖.
Finally, we recall the fact that the set {xα : α ∈ A} is dense in X. We can therefore choose

α ∈ A such that ‖xα − x‖ is arbitrarily small, so fα(x) is arbitrarily close to ‖x‖. It follows that

‖x‖ ≤ sup
α∈A

|fα(x)|. (19)

It follows from (18) and (19) that

‖x‖ = sup
α∈A

|fα(x)| = ‖φ(x)‖∞.

Thus φ is norm preserving. This completes the proof. �

If X is a separable normed linear space, we can choose A to be a countable set. Since A
is only an index set (it has no metric or measure associated with it), we can take A to be IN.
Thus we have proved that every separable normed linear space is isomorphic to a subspace of
the space ℓ∞ of bounded sequences with norm

‖x‖∞ = sup {|xn| : n ∈ IN} .
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Corollary 12.47: Every separable normed linear space is isomorphic to a subspace of the space
ℓ∞.

Exercises

12:10.1 Consider the functions appearing in the proof of Theorem 12.46.

(a) For each α ∈ IR, fα(x) ∈ IR for all x ∈ X, so fα :X→ IR is a bounded linear functional on X.

(b) For each x ∈ X, fα(x) ∈M(A), so fα(x) ∈ IR for all α ∈ A.

(c) For each x ∈ X, (φ(x))(α) = fα(x); hence φ :X→M(A).

Thus the expression fα(x) appears in three different contexts. Clarify for yourself the differences
in the three usages of the notation fα(x). For example, are the functions in (a) continuous? What
are their domains and ranges? The same questions are relevant for (b). What about φ? Is φ con-
tinuous? Is φ one to one? Is φ an isometry?

12.11 Uniform Boundedness Principle

The study of linear operators in Banach spaces is dominated by four powerful and important
ideas: the Hahn–Banach theorem, the uniform boundedness principle, the open mapping theo-
rem, and the closed graph theorem. Many arguments in the subject will touch on one or more
of these themes. We have already discussed at some length some of the ideas surrounding the
Hahn–Banach theorem. In this section we turn to the uniform boundedness principle.

Commonly, this is attributed to Banach and to Hugo Steinhaus (1887–1972) and may ap-
pear cited as the Banach–Steinhaus theorem. The original conception appears in an argument
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of Lebesgue in 1908, and his ideas in turn might be traced back to the condensation of singular-
ities method of Cantor.

We inquire as to the continuity behavior of a collection F of linear operators from a Banach
space X to a normed linear space Y . We already know that boundedness and continuity are
related for a single operator. What conditions will give equicontinuity for the family? We have
already seen in Sections 9.11 and 9.12 that this notion of equicontinuity plays a vital role in
some investigations. It is easy to see that equicontinuity for the family is related to a uniform
boundedness of the operators in the family: if ‖T‖ ≤M for all T ∈ F , then the inequality

‖T (x) − T (y)‖ ≤M‖x− y‖
holds throughout the family and the space giving equicontinuity. The uniform boundedness
principle allows us to claim such a condition from an apparently much weaker pointwise bound-
edness condition. The proof employs a category argument, and this is why we need the domain
space X to be complete.

Theorem 12.48 (Uniform boundedness) Let X be a Banach space, let Y be a normed
linear space, and let F be a family of bounded linear operators from X to Y . Suppose that for
each x ∈ X there exists a constant Mx such that

‖Tx‖ ≤Mx for all T ∈ F .
Then there exists a constant M such that

‖T‖ ≤M for all T ∈ F .

Proof. For each n ∈ IN, let

An = {x ∈ X : ‖Tx‖ ≤ n for all T ∈ F} .
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Since each T is continuous, the set {x : ‖Tx‖ ≤ n} is closed. Since

An =
⋂

T∈F
{x : ‖Tx‖ ≤ n} (20)

these sets are closed, too. The assumption in the statement of the theorem means that every
point in the space is in one of the sets An. By the Baire category theorem, we conclude that
there exists n0 ∈ IN and a ball B(x0, δ) ⊂ X such that‖Tx‖ ≤ n0 for all x ∈ B(x0, δ) and
T ∈ F . Let z ∈ X with ‖z‖ < δ. Then x0 + z ∈ B(x0, δ). It follows that, for T ∈ F ,

‖Tz‖ = ‖T (x0 + z) − T (x0)‖ ≤ ‖T (x0 + z)‖ + ‖Tx0‖ ≤ 2n0.

Thus ‖Tz‖ ≤ 2n0 on B(0, δ), so ‖Tx‖ ≤ 2n0/δ for all x ∈ B(0, 1). This means that

‖T‖ ≤ 2n0/δ

for all T ∈ F and the theorem is proved with M = 2n0/δ. �

12.11.1 Convergence of sequences of continuous linear operators

We can use the uniform boundedness principle to obtain a contrast between the structure of
Baire-1 functions on IR and pointwise limits of continuous linear operators on a Banach space
X. Recall that a function in the first Baire class is one that is a pointwise limit of a sequence
of continuous functions. Such a function can be discontinuous almost everywhere on IR. [See
Exercise 5:5.5 (f).]

Theorem 12.49: Let {Tn} be a sequence of continuous linear operators on a Banach space
X to a normed linear space Y . If {Tn} converges pointwise to a function T on X, then T is a
continuous linear operator on X.
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Proof. That T is linear is clear since

T (ax+ by) = lim
n→∞

Tn(ax+ by) = lim
n→∞

(aTn(x) + bTn(y))

= aT (x) + bT (y).

We have only to show that T is continuous on X. Let x ∈ X, with ‖x‖ = 1. Since {Tnx} con-
verges to Tx, {‖Tnx‖} is bounded, say ‖Tnx‖ ≤ Mx. From the uniform boundedness principle,
we infer the existence of a constant M such that ‖Tn‖ ≤M for all n ∈ IN. For every z ∈ X with
‖z‖ = 1, we have

‖Tz‖ = lim
n→∞

‖Tnz‖ ≤ lim sup
n→∞

‖Tn‖ ‖z‖ = lim sup
n→∞

‖Tn‖ ≤M.

Thus ‖T‖ ≤M , so T is bounded and therefore continuous. �

Thus continuity is preserved under pointwise limits of sequences of continuous linear oper-
ators on Banach spaces. For example, suppose that {gn} is a sequence of functions of bounded
variation on [a, b], and

Tn(f) =

∫ b

a
f dgn

converges to T (f) for all f ∈ C[a, b]. By Theorem 12.49, T is a bounded linear functional on
C[a, b]. It follows from the Riesz representation theorem that there exists g ∈ NBV[a, b] such
that

T (f) =

∫ b

a
f dg for all f ∈ C[a, b].
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12.11.2 Condensation of singularities

There is another important way in which the uniform boundedness principle can be used. Sup-
pose that the family F of bounded linear operators in Theorem 12.48 is not uniformly bounded.
Then each of the closed sets {An} in (20) must be nowhere dense; otherwise, the conclusion
of the theorem would be reached. This gives us another interpretation of the theorem, which
is known as the principle of the condensation of singularities for linear operators on a Banach
space. We apply this idea to a double sequence {Tmn} of operators (m,n ∈ IN) and obtain a a
first-category set for each m. The union over m of those sets is first category. We state this as a
theorem.

Theorem 12.50: Let X be a Banach space, let Y be a normed linear space, and let {Tmn} be a
doubly indexed sequence of bounded linear operators from X to Y such that for each m there is
some xm ∈ X for which

lim sup
n→∞

‖Tmn(xm)‖ = ∞.

Then the set of points x ∈ X for which

lim sup
n→∞

‖Tmn(x)‖ = ∞ (all m = 1, 2, 3, . . . ) (21)

is residual in X.

In the language of Chapter 10 we could say that, for the typical point x ∈ X, the asser-
tion (21) holds. In Chapter 15 we shall apply the uniform boundedness principle in this form to
show that there are continuous functions whose Fourier series diverge at many points. Applica-
tions such as this indicate the power of these methods.
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Exercises

12:11.1 Completeness is essential in the proof of Theorem 12.48. Let X be the linear space of polyno-
mials p(t) = a0 + a1t+ · · · amt

m of any degree m equipped with norm ‖p‖ = maxi |ai|. Define

fn(p) =
n−1∑

i=0

ai.

Show that {fn} is a sequence of bounded linear functionals on X, that

|fn(p)| ≤ (m+ 1)‖p‖
for every polynomial p(t) = a0 + a1t + · · · amt

m and n, but that the norms {‖fn‖} are unbounded.
How does this not contradict Theorem 12.48?

12.12 An Application to Summability

In this section we show how some functional analytic ideas can be applied to a very classical
problem, the convergence of infinite sequences. The interesting aspect of this example is the
shift in viewpoint: A problem that starts out with an investigation of convergent sequences
finds its proper expression in the language of linear functionals on a Banach space where it can
draw on such powerful tools at the uniform boundedness principle.

Our problem is that of assigning a “limit” to a divergent infinite sequence {xi}. By a summa-
bility method, we mean that we are given a doubly infinite matrix

A =




a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
. . . . . . . . . . . .
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and we use, if possible, as the new version of the limit of the sequence {xi} the expression

lim
n→∞

∞∑

i=1

anixi.

For example, a simple choice of matrix A would give a method of summation that merely takes
averages

lim
n→∞

x1 + x2 + x3 + · · · + xn

n
,

and this has proved most useful in applications. It is normally named after Ernesto Cesàro
(1859–1906) who studied it in 1890, but it had been employed much earlier.

It is clear that there are some restrictions to be imposed on the matrix A in order for this
to be profitable. We need the sums

∑∞
i=1 anixi to be defined; in order for this to work for all

bounded sequences {xi}, we should ask for
∑∞

i=1 |ani| to converge. The method applied to the
constant sequence e0 = (1, 1, 1, 1, . . . ) should naturally produce 1 as limit, and this cannot hap-
pen unless

lim
n→∞

∞∑

i=1

ani = 1.

The method applied to the sequence

em = (0, 0, . . . , 0, 1, 0, 0, 0, 0 . . . ) (m ≥ 1),

where the solitary 1 occurs in the m–th place, should naturally produce 0 as limit, and this
cannot happen unless

lim
n→∞

anm = 0.

These considerations and a bit of hard work led Otto Toeplitz (1881–1940) to impose the fol-
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lowing conditions, which should seem entirely natural. The first condition appears a bit strong
at first glance, since we are asking for a uniform bound on the sums

∑∞
i=1 |ani|.

Definition 12.51: A summability method defined by a matrix

A =




a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
. . . . . . . . . . . .




is said to be regular provided that

1. supn

∑∞
i=1 |ani| <∞,

2. limn→∞ anm = 0 for each m = 1, 2, 3, . . . , and

3. limn→∞
∑∞

i=1 ani = 1.

12.12.1 Toeplitz’s theorem

The most important features of regular summability methods is that they assign to sequences
that are already convergent the limit that we would have assigned anyway. What is more re-
markable is that the only summability methods that have this property for all convergent se-
quences are the regular ones.

Theorem 12.52 (Toeplitz) In order for a summability method defined by a matrix A to as-
sign the value limxn for every convergent sequence {xn}, it is necessary and sufficient that A be
regular.
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Proof. It is the proof of this theorem that is of primary interest to us. The theorem itself,
though, will be needed for some discussions of summability of trigonometric series in Chap-
ter 15.

The highlight of the proof is the reinterpretation of the statement into the language of linear
functionals. The Banach space that is clearly present in the statement of the theorem is the
space c of convergent sequences with the sup norm ‖x‖∞ = sup |xi|. For the matrix A = (aij)
and x ∈ c, write

Tmn(x) =
m∑

i=1

anixi , Tn(x) =
∞∑

i=1

anixi

and observe that each Tmn, Tn : c → IR is a linear functional on c (assuming that the series
converge) and with norms

‖Tmn‖ =
m∑

i=1

|ani| , ‖Tn‖ =
∞∑

i=1

|ani|.

For example, the inequality ∣∣∣∣∣

m∑

i=1

anixi

∣∣∣∣∣ ≤ (sup |xi|)
m∑

i=1

|ani|

shows that

‖Tmn‖ ≤
m∑

i=1

|ani|,

and the choice of x ∈ c with xi = ±1 so that anixi = |ani| shows that the value of the norm is
correct.
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Thus the summability method consists of taking for the limit of the sequence {xi} the ex-
pression

lim
n→∞

Tn(x) = lim
n→∞

lim
m→∞

Tmn(x) = lim
n→∞

lim
m→∞

m∑

i=1

anixi.

Thus we are now in a setting with some powerful tools: sequences of bounded linear functionals
on a Banach space.

Suppose that the method A assigns the ordinary limit to all sequences x ∈ c. Conditions (ii)
and (iii) of Definition 12.51 must hold as we already noted in the discussion before the defini-
tion. We wish to establish condition (i) of Definition 12.51. The limit

lim
m→∞

Tmn(x) = lim
m→∞

m∑

i=1

anixi

must exist for all x ∈ c, and so, by Theorem 12.49, Tn must be a continuous linear functional
for each n, and

‖Tn‖ = lim
m→∞

‖Tmn‖ =
∞∑

i=1

|ani|.

Once again the limit

lim
n→∞

Tn(x) = lim
n→∞

∞∑

i=1

anixi
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must exist for all x ∈ c, and so by the uniform boundedness principle (Theorem 12.48) the
norms ‖Tn‖ are uniformly bounded. Hence we have

∞∑

i=1

|ani| ≤ sup
n

‖Tn‖ <∞,

which is exactly condition (i) of Definition 12.51.
Conversely, suppose that A is regular. Let T (x) = limi→∞ xi for each x ∈ c. This is a con-

tinuous linear functional on c assigning to each convergent sequence its limit. Clearly, ‖T‖ = 1.
We wish to show that A assigns this same value to every x ∈ c; that is, Tn(x) → T (x). Consider
the special elements of c that we have already indicated as e0, e1, e2, . . . in the preamble to our
definition. Note that every element of the space c can be approximated by a finite linear com-
bination of these (Exercise 12:12.5). Conditions (i), (ii), and (iii) of Definition 12.51 show easily
that Tn(ek) → T (ek) for each of these special sequences. In fact, from this and condition (i) we
can show that Tn(x) → T (x) for every x ∈ c.

To this end, let ε > 0 and M = supn ‖Tn‖. Choose a finite linear combination

x0 =
K∑

k=0

λkek

so that

‖x0 − x‖∞ <
ε

3M + 3
.

Since Tn(ek) → T (ek) for each 1 ≤ k ≤ K, there is an integer N so that

|Tn(x0) − T (x0)| < ε/3
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for all n ≥ N . Thus

|Tn(x) − T (x)| ≤ |Tn(x) − Tn(x0)| + |Tn(x0) − T (x0)| + |T (x0) − T (x)|
≤M‖x− x0‖∞ + 1

3ε+ ‖T‖‖x− x0‖∞ < ε

for all n ≥ N . We have shown that Tn(x) → T (x) for every x ∈ c., Hence, this summability
method assigns the correct value limxn for every convergent sequence {xn}. �

Exercises

12:12.1 Show that condition (i) of Definition 12.51 is a consequence of condition (iii) if all the ani are
nonnegative.

12:12.2 What summability matrix would yield the Cesàro method of summation that takes averages

lim
n→∞

x1 + x2 + x3 + · · · + xn

n
.

Is this matrix regular?

12:12.3 Let A be a regular matrix, each of whose entries is nonnegative. Set σn =
∑∞

i=1 anixi. Show
that

lim inf
n→∞

xn ≤ lim inf
n→∞

σn ≤ lim sup
n→∞

σn ≤ lim sup
n→∞

xn.

(Is this condition that all the entries are nonnegative necessary?)

12:12.4 Let p1, p2, p3, . . . be a sequence of real numbers and q1, q2, q3, . . . a sequence of positive num-
bers. Write Pn = p1 + p2 + · · · + pn and Q = q1 + q2 + · · · + qn. Show that if pn/qn → x
then Pn/Qn → x. What does this reduce to if all qi = 1? [Hint: Let xi = pi/qi, and check that
Pn/Qn =

∑n
i=1 qiQ

−1
n xi.]
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12:12.5 Show that every element of the space c can be approximated by a finite linear combination
from the set {e0, e1, e2, . . . }. [Hint: If x ∈ c, then xk → λ. Compute

∥∥∥∥∥λe0 +

n∑

k=1

(xk − λ)ek − x

∥∥∥∥∥ .

12:12.6 There is a general principle at work in the proof of Theorem 12.52. Let T , Tn be continuous
linear functionals on a Banach space X. Show that Tn(x) → T (x) for every x ∈ X (we say Tn → T
weakly) if and only if supn ‖Tn‖ < ∞ and Tn(x) → T (x) for every x belonging to some set whose
linear span is dense in X.

12.13 The Open Mapping Theorem

A mapping T : X → Y is said to be open if the image of every open set in X is open in Y .
Note the comparison with continuity: T is continuous if the preimage T−1(G) of every open set
G ⊂ Y is open. A bijection that is continuous and open is evidently a homeomorphism.

In the setting of Banach spaces, bounded linear transformations that are surjections are al-
ways open. This fact is known as the open mapping theorem and is due to Banach. Like the
uniform boundedness principle of the previous section and the closed graph theorem of the
next, it is one of the preeminent tools of the theory.

Theorem 12.53 (Open mapping) A bounded linear operator T mapping a Banach space X
onto a Banach space Y is an open mapping; that is, it maps open sets in X onto open sets in
Y . Thus, if T is one to one, then T−1 is continuous.
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Proof. To prepare for the proof, we recall some notation. If A and B are subsets of X and
α ∈ IR, then αA denotes the set {αa : a ∈ A} and A−B denotes the set {a− b : a ∈ A, b ∈ B}.

We first show that the closure of the set T (B(0, 1)) contains a ball centered at 0 in Y . Let
B = B(0, 1/2) in X. For x ∈ X, the sequence {x/n} converges to 0, so there exists n ∈ IN such
that x ∈ nB. Thus

Y =
∞⋃

n=1

nT (B).

Since Y is complete, the Baire category theorem implies that there exists n ∈ IN such that the
closure of the set nT (B) contains a ball in Y . It follows readily (see Exercise 12:13.3) that the
closure of the set T (B) also contains a ball B(y0, s) and that y0 can be chosen in T (B).

Choose x0 ∈ B such that y0 = Tx0. For each y ∈ B(y0, s), there exists x ∈ X such that
Tx = y. Now

T (x0 − x) = y0 − y ∈ B(0, s).

By allowing y to vary over T (B), we see that
{
y0 − y : y ∈ T (B)

}
⊃ B(0, s).

But T (B) is dense in T (B), and for each y ∈ T (B), there exists x ∈ B such that Tx = y. For
such an x, we have

x0 − x ∈ B(0, 1).

It follows that T (B(0, 1)) is dense in B(0, s), so

T (B(0, 1)) ⊃ B(0, s). (22)
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To complete the proof, let

Bn = B
(
0, 2−n

)

in the space X, and let

B∗
n = B

(
0, s2−n

)

in the space Y for each n = 0, 1, 2, . . . . From (22) and the linearity of T , we infer that

T (Bn) ⊃ B∗
n.

We now show that T (B0) ⊃ B∗
1 . Let y ∈ B∗

1 . Since y ∈ T (B1) and T is continuous, there
exists x1 ∈ B1 such that

‖y − Tx1‖ <
s

4
.

Proceeding inductively, we obtain a sequence {xk} of points in X such that, for each k, xk ∈ Bk

and ∥∥∥∥∥y −
n∑

k=1

T (xk)

∥∥∥∥∥ <
s

2n+1
(23)

for all n ∈ IN.
The sequence {∑n

k=1 xk} is a Cauchy sequence in X, since ‖xk‖ < 2−k for each k. Because
X is complete by hypothesis, the sequence converges to a point x =

∑∞
k=1 xk in X. Now T is

continuous, so

T (x) = lim
n→∞

T

(
n∑

k=1

xk

)
= lim

n→∞

n∑

k=1

T (xk) =
∞∑

k=1

T (xk) = y,

the last equality following from (23). Thus y ∈ T (B0). This shows that T (B0) ⊃ B∗
1 .
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We have shown that the image under T of the unit ball B(0, 1) in X contains a ball B(0, 1
2s)

centered at 0 in Y . The linearity of T implies that T maps every open ball B(x, r) onto a set
containing a ball with center T (x). It follows that T maps open sets onto open sets, as was to
be proved. �

12.13.1 Equivalence of norms on a Banach space

As an application illustrating how this theorem can be used, we obtain a theorem showing how
to check that two norms on a Banach space are equivalent. This is meant in the same sense as
the equivalence of metrics that we discussed in Section 9.4. For example, we know that the Eu-
clidean plane IR2 is complete under the norm

‖x‖1 = |x1| + |x2|,

as well as under the norm

‖x‖∞ = max{|x1|, |x2|},

and that these norms are equivalent. We obtain this from the fact that there exist constants c1
and c2 such that, for each x ∈ IR2,

‖x‖1 ≤ c1‖x‖∞ and ‖x‖∞ ≤ c2‖x‖1.

The open mapping theorem shows that it is enough to establish just one since either of the in-
equalities above implies the other.
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Theorem 12.54: Let X be a linear space that is complete with respect to each of two norms
‖·‖a and ‖·‖b. If there exists a constant c1 such that

‖x‖a ≤ c1‖x‖b

for all x ∈ X, then there exists a constant c2 such that

‖x‖b ≤ c2‖x‖a

for all x ∈ X.

Proof. Apply the open mapping theorem to the identity map Tx = x. �

12.13.2 Perturbations in differential equations

We conclude this section with an application of the open mapping theorem to obtain a result
about perturbations in differential equations.

Example 12.55: Consider the differential equation

x′′(t) + a1(t)x′(t) + a2(t)x(t) = y(t). (24)

Here a1, a2, and y are members of C[a, b]. An initial-value problem for (24) calls for finding a
twice continuously differentiable function x on [a, b] satisfying (24) and satisfying the initial
conditions

x(a) = x′(a) = 0.

A standard theorem in differential equations asserts that this initial value problem has a unique
solution. We wish to study the dependency of the function x on y, and vice versa.
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Let X = C2, the space of twice continuously differentiable functions. Then X becomes a
Banach space under the norm

‖x‖ = max
{
‖x‖∞, ‖x′‖∞, ‖x′′‖∞

}
, (25)

where ‖·‖∞ denotes the usual supremum norm in C[a, b]. (See Exercise 12:13.1.) Let Y = C[a, b].
Let T :X→Y be defined by Tx = y, where

y(t) = x′′(t) + a1(t)x′(t) + a2(t)x(t), (a ≤ t ≤ b). (26)

The standard theorem in differential equations that we mentioned before asserts that T is one
to one on X and maps X onto Y . We show that T is a continuous operator.

Let

A = 1 + ‖a1‖∞ + ‖a2‖∞.
Then

‖Tx‖∞ = ‖y‖∞ ≤ ‖x′′‖∞ + ‖a1‖∞ ‖x′‖∞ + ‖a2‖∞ ‖x‖∞ ≤ A‖x‖,
so T is continuous. By the open mapping theorem, T−1 is also continuous. We can interpret
this as saying that small perturbations of the function y will result in small perturbations of the
solution x ∈ C2. This means that such a perturbed solution x1 will be “C2-close” to x; that is,
x1, x′1, and x′′1 will be (uniformly) close to x, x′, and x′′, respectively.

Exercises

12:13.1 Show that C2 is a Banach space under the norm indicated in (25).

12:13.2 Let X be the linear space of continuous functions on [0,1]. Let ‖·‖∞ be the norm of C[0, 1], and
let ‖·‖1 be the L1 norm.
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(a) Show that there exists a constant c1 such that ‖f‖1 ≤ c1‖f‖∞ for all f ∈ X.

(b) Show that there is no constant c2 such that ‖f‖∞ ≤ c2‖f‖1 for all f ∈ X.

(c) Explain why the results in (a) and (b) do not violate Theorem 12.54.

12:13.3 (Refer to the proof of Theorem 12.53.) Verify that T (B) contains a ball B(y0, s) with y0 ∈
T (B).

12.14 The Closed Graph Theorem

Let f be a real-valued function defined on an interval [a, b]. In elementary courses, the function
is often studied in terms of its graph

Gf = {(x, y) : x ∈ [a, b], y = f(x)},
which is a subset of the space IR2. If f is continuous, then the graph Gf is closed. To prove
this, just suppose that (xn, yn) ∈ Gf converges to (x, y) then

f(x) = lim f(xn) = lim yn = y,

and so (x, y) ∈ Gf , hence this set is closed. Does the converse hold? If f has a closed graph,
must f be continuous? If that were so, it would be a useful observation, since checking for the
closure of a set may be easier than checking continuity everywhere. It is not hard to come up
with an example of a discontinuous function with a closed graph, but it is if you are looking
for bounded functions. In fact, the following theorem is easy to prove using our metric space
methods of Chapter 9.
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Theorem 12.56: Let f : X → Y , where X and Y are metric spaces and Y is compact. If f
has a closed graph

Gf = {(x, f(x)) : x ∈ X}
(as a subset of X × Y ), then f is continuous.

Can we use these ideas in the study of linear operators on Banach spaces? If a linear op-
erator has a closed graph, must it be continuous? The answer is yes, and this is a most useful
fact, but it is true for different reasons than the theorem above might suggest. We have no hope
of using compactness arguments here since, as we have seen in Section 12.2, compact sets in
infinite-dimensional spaces are rather small. The closed graph theorem for linear operators is
due, as is much of the material of this chapter, to Banach. It can be obtained almost immedi-
ately from the open mapping theorem. Observe that to check for a closed graph for an operator
T we merely show that the assertion of the following definition holds.

Definition 12.57: Let X and Y be Banach spaces, and let T be a linear operator defined on a
subspace X1 of X with T (X1) ⊂ Y . Then T is called closed if

xn ∈ X1 , lim
n→∞

xn = x , and lim
n→∞

Txn = y

implies that x ∈ X1 and y = Tx.

It is clear that a bounded linear operator defined on a closed subspace of a Banach space
is a closed operator. While the converse is not true in general, as the operator D in Exam-
ple 12.59 will illustrate, it is true under the assumptions that the domain X1 of the operator T
is closed. This result, called the closed graph theorem for reasons that will be apparent, follows
easily from the open mapping theorem. We can now state and prove the closed graph theorem.
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Theorem 12.58 (Closed graph theorem) Let T be a closed linear operator from X to Y ,
where X and Y are Banach spaces. Then T is continuous.

Proof. Denote the norm in X by ‖·‖. Define a norm ‖·‖a by

‖x‖a = ‖x‖ + ‖Tx‖.
If {xn} is a Cauchy sequence relative to ‖·‖a, then {xn} is also a Cauchy sequence relative to
‖·‖, and {Txn} is a Cauchy sequence in Y . Since X and Y are complete, both {xn} and {Txn}
converge, say

‖xn − x‖ → 0 and ‖Txn − y‖ → 0.

Since T is closed, y = Tx. Therefore, ‖xn − x‖a → 0, and X is complete relative to ‖·‖a. By
Theorem 12.54, there exists a constant c such that ‖x‖a ≤ c‖x‖, so ‖Tx‖ ≤ c‖x‖. Thus T is
continuous, as required. �

Example 12.59: We observed in Section 12.1 that not all important linear operators on a
normed linear space need be continuous. Generally, differential operators tend not to be contin-
uous, but they are usually closed and this compensates. This does not violate the closed graph
theorem since the domain of the operator will not be complete and so not a Banach space.

Let C1 be the subspace of C = C[0, 1] consisting of those functions on [0, 1] that are continu-
ously differentiable. Define D on C1 by Df = f ′. Then D is linear and maps C1 onto C. But D
is not bounded on C1. To see this, let fn(t) = tn, so

(Dfn)(t) = f ′n(t) = ntn−1.

Now

‖fn‖ = max
t∈[0,1]

|fn(t)| = 1,
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but

‖Dfn‖ = max
t∈[0,1]

|ntn−1| = n,

so D is unbounded on the unit ball in C1. Observe that neither the sequence {fn} nor the se-
quence {Dfn} = f ′n converges.

Suppose now that {fn} is a sequence in C1 that converges to f in C, and {Dfn} converges to
g in C. Since convergence in these spaces is uniform convergence, we can calculate, for 0 ≤ t ≤
1, that

∫ t

0
g (u) du =

∫ t

0
lim

n→∞
f ′n (u) du = lim

n→∞

∫ t

0
f ′n (u) du

= lim
n→∞

(fn(t) − fn(0)) = f(t) − f(0).

Thus

f(t) = f(0) +

∫ t

0
g (u) du

for all t ∈ [0, 1]. It follows that f ∈ C1 and

Df = g = lim
n→∞

f ′n.

We see, then, that D is closed. Thus, for X = Y = C[0, 1] and X1 = C1, the differential operator
Df = f ′ is closed, but not continuous.

Exercises

12:14.1 Give an example of a discontinuous function f : IR → IR with a closed graph. (Why does this
not contradict the closed graph theorem? After all, IR is a Banach space.)
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12:14.2 Prove the metric space theorem, Theorem 12.56.

12:14.3 Formulate and prove a version of the closed graph theorem that applies to a closed linear oper-
ator defined only on a subspace of the Banach space X.

12.15 Additional Problems for Chapter 12

12:15.1 (Hamel bases) Let X be a real linear space. A linearly independent set H = {xα} of vectors in
X is called a Hamel basis for X if every x ∈ X has a representation of the form

x = α1x1 + · · · + αnxn, xi ∈ H, αi ∈ IR.

(a) Prove that every real linear space has a Hamel basis. [Hint: Use Zorn’s lemma.]

(b) Show that every x ∈ X has a unique representation as a finite linear combination of elements
of H.

(c) Prove that every Hamel basis for X has the same cardinality (called the algebraic dimension
of X).

(d) Show that H = {1, x, x2, . . . } is a Hamel basis for the linear space of real polynomials.

Let H1 be a Hamel basis for C[a, b] such that H1 ⊃ H. Let h1 ∈ H1 \H. Let Th1 = 1 and Th = 0
for all h ∈ H, h 6= h1. Extend T to H1 by linearity.

(e) Show that T is not continuous on C[a, b] (with respect to the usual norm in C[a, b]). [Hint: If
T were continuous, the set

{f ∈ C[a, b] : Tf = 0}
would be a closed subspace of C[a, b] containing the polynomials P. But P is dense in C[a, b].]

This problem exhibits a discontinuous linear functional on C[a, b].
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12:15.2 (Geometric interpretation of the norm of a linear functional.) Let X = IR2, with the usual
Euclidean norm

‖x‖ =
√
x2

1 + x2
2.

For x = (x1, x2), let f(x) = x1 + x2, and let A =
{
x ∈ IR2 : f(x) = 1

}
.

(a) Calculate ‖f‖.

(b) Calculate d = inf {‖x‖ : x ∈ A}.

(c) Compare the results in (a) and (b) and make and prove a conjecture about ‖f‖ and d when
f(x) = a1x1 + a2x2. Interpret ‖f‖ geometrically.

Let X be a normed linear space, and let f be a nontrivial continuous linear functional on X. Let
A = {x ∈ X : f(x) = 1}, and let

d = inf {‖x‖ : x ∈ A} .

(d) Verify that if x ∈ A then ‖x‖ ≥ (‖f‖)−1 so d ≥ (‖f‖)−1. [Hint: |f(x)| ≤ ‖f‖ ‖x‖ for all x ∈
X.]

(e) Verify that d ≤ (‖f‖)−1. [Hint: Show that for every ε > 0 there exists x0 ∈ A such that

(‖f‖ − ε)‖x0‖ < 1.

From (d) with (e), we see that the norm of a continuous linear functional is the reciprocal of the
distance between the set {x : f(x) = 1} and the origin. The set

A = {x : f(x) = constant}
is called a hyperplane. For X = IR2, A is a line; for X = IR3, A is a genuine plane.

12:15.3 Let X be a linear space, and let f be a linear functional on X. The kernel K of f is the set
{x : f(x) = 0}.
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(a) Show that K is a linear space.

(b) For α ∈ IR, let Kα = {x : f(x) = α}. Let x1 ∈ Kα. Show that

Kα = K + x1 = {x+ x1 : x ∈ K} .
(c) Let X be a normed linear space. Show that if K is closed in X then Kα is closed for every

α ∈ IR.

(d) Show that f is continuous if and only if K is closed. [Hint: If f is discontinuous at 0, there
exists a sequence {xn} such that xn → 0, f(xn) → α 6= 0, and for each n, f(xn) 6= 0. Let
yn = xn/f(xn). Then yn → 0 and f(yn) → 1, so Kα is not closed.]

12:15.4 Let D denote the differentiation operator f → f ′ defined from X into C[a, b] where

X = {f ∈ C[a, b] : f(a) = 0 and f ′ is continuous on [a, b]} .

(a) Show that X is a normed linear space, but is not a Banach space.

(b) Is D a bounded linear operator on X?

(c) Is D a surjection of X to C[a, b]?

(d) Is D a closed operator?

(e) Does D map open sets onto open sets?

(f) Is D a contraction map?
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Chapter 13

THE LP SPACES

In this chapter we collect some interesting facts about the scale of Lp function spaces. As a spe-
cial case, this includes the scale of sequence spaces ℓp.

The three spaces L1, L2, and L∞ and the part of the scale Lp for 1 < p < ∞ all exhibit
different behavior in different settings, and herein lies their importance. In many parts of mod-
ern analysis (Fourier analysis, operator theory, differential equations, etc.), these spaces play a
key role. The space L2 of square integrable functions on an interval was early on recognized as
important in the study of Fourier series; indeed, these spaces characterize Hilbert spaces, as we
shall see in Chapter 14. Many of the linear operators that arise in applications are bounded on
the scale Lp (1 < p < ∞), but not at the extremes L1 or L∞. The whole scale provides, too, a
fundamental class of examples of Banach spaces for functional analysts seeking to gain an un-
derstanding of the geometry of normed linear spaces and Banach spaces.

The full scale of Lp spaces was first studied by F. Riesz in 1910. The basic ideas go back,

877
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however, to Minkowski, who considered the metrics

ρp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

on IRn (see Section 9.1). The ℓp spaces can be considered infinite-dimensional analogs of these
metric spaces and the Lp spaces as further generalizations.

13.1 The Basic Inequalities

Let (X,M, µ) be a measure space and f a real or complex (possibly infinite valued) measurable
function defined on the space X. For any 0 < p < ∞ the function |f |p is measurable, too (since
it is the composition of a continuous function with f), and so we can define what is called the
“p–norm” of f by writing

‖f‖p =

(∫

X
|f |p dµ

)1/p

.

(This might be infinite.) This does have the usual properties that ‖cf‖p = |c|‖f‖p (unless c = 0
and ‖f‖p = ∞) and ‖f‖p = 0 if and only if f = 0 a.e. But, in fact, this is not a norm in the
usual sense if 0 < p < 1 because the triangle inequality fails. Nonetheless, it does not trouble
us to use the term norm for this expression. For 1 ≤ p < ∞, the triangle inequality does hold,
and so it is a norm in that part of the scale. By Lp(X,M, µ) we denote the collection of all real
(complex) valued measurable functions f on X for which ‖f‖p < ∞. It is this scale of function
spaces that is our concern throughout the chapter.

For most of this chapter we present the arguments needed if our functions are real valued;
the resulting linear spaces are then over the real numbers. All statements apply as well if the
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functions are taken as complex valued and the spaces are linear spaces over the complex field.
In our studies in Sections 13.5, 13.9, and 13.11, however, we specifically give the arguments for
the complex case as it differs in some details from the real.

The cases

0 < p < 1, p = 1, p = 2, and 1 < p <∞

are different in character, importance, and technique. We have separated the case 0 < p <
1 from the discussion; this class is found in Section 13.7. The situation for p = 1 we mostly
know already. The part of the scale 1 < p < ∞ receives most of our attention throughout. The
special case p = 2 (Hilbert space) has its own problems and is discussed in Section 13.5 and
again in Chapter 14.

13.1.1 Hölder’s inequality

The essential tools in discussing the Lp spaces for 1 < p <∞ are the inequalities of Otto Hölder
(1860–1937) and Hermann Minkowski (1864–1909). These are so frequently used and so fun-
damental to our discussion that they deserve a central place, and we obtain them immediately.
One crucial concept is already apparent in Hölder’s inequality: to any index 1 < p < ∞ there is
a conjugate index 1 < q <∞ for which

1

p
+

1

q
= 1

[or, alternatively, p + q = pq or, again, q = p(p − 1)−1]. The role of the conjugate index appears
clearly in the two inequalities and finds later a deeper meaning in the study of the dual spaces.
Some special cases to notice: p = 2 and q = 2 are conjugate indices, and as a limiting case we
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shall later consider also p = 1 and q = ∞. (The reader may wish to review related material
from Section 9.1 on these inequalities.)

Theorem 13.1 (Hölder’s inequality) Let (X,M, µ) be a measure space, let p, q be conju-
gate indices, and let f ∈ Lp(µ), g ∈ Lq(µ). Then the product fg is integrable and∫

X
|fg| dµ ≤ ‖f‖p‖g‖q.

The inequality is strict except precisely in the case where there exist constants c1, c2 (c1c2 6= 0)
for which c1|f |p = c2|g|q µ–a.e.

Proof. Recall that we have already established the elementary inequality

αβ ≤ p−1αp + q−1βq (1)

and that equality can hold in (1) if and only if αp = βq (see Section 9.1). Assume, first, that
‖f‖p = ‖g‖q = 1. Then the inequality (1) gives us

|f(x)| |g(x)| ≤ p−1|f(x)|p + q−1|g(x)|q, (2)

and an integration of (2) over the space yields
∫

X
|fg| dµ ≤

∫

X
|f | |g| dµ

≤ p−1

∫

X
|f |p dµ+ q−1

∫

X
|g|q dµ = p−1 + q−1 = 1. (3)
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The general case follows from this. If ‖f‖p‖g‖q = 0, there is nothing to prove. Otherwise,
in (2) replace f by f/‖f‖p and replace g by g/‖g‖p. Then the inequality

∫

X
|fg| dµ ≤ ‖f‖p‖g‖q

follows. From this, too, we see that if ‖f‖p and ‖g‖q are finite then fg is integrable.
Finally, it remains to sort out when equality can occur. We can have equality in (3) if and

only if we have equality for µ-almost every x in (2). We know that this occurs if and only if
|f(x)|p = |g(x)|q for µ-almost every x. This, remember, is under our additional assumption that
‖f‖p = ‖g‖q = 1. In the general case, we replace f by f/‖f‖p and g by g/‖g‖p as before and so
obtain equality in the statement of the theorem if and only if

|f(x)|p/‖f‖p = |g(x)|q/‖g‖q

for µ-almost every x. It is now an easy matter to see that the inequality is strict except pre-
cisely in the case where c1|f |p = c2|g|q µ–a.e. for some constants c1, c2 (e.g., c1 = ‖g‖q and
c2 = ‖f‖p). �

13.1.2 Minkowski’s inequality

Hölder’s inequality leads to a further, closely related, inequality. As before we address the case
1 < p <∞ here and handle the extreme cases, for p = 1 and p = ∞, elsewhere.
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Theorem 13.2 (Minkowski inequality) Let (X,M, µ) be a measure space, and let 1 < p <
∞. For all functions f , g ∈ Lp(µ),

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The inequality is strict except precisely in the case where there are nonnegative constants c1, c2
(c1c2 6= 0) so that c1f = c2g µ–almost everywhere.

Proof. Under the assumptions of the theorem, both f and g are finite µ–a.e., and so we can
ignore the possibility of infinite values, which would interfere with many statements.

An easy inequality is

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1

≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1, (4)

which holds at every point x where f(x) and g(x) are finite. We integrate the inequality (4) to
obtain

‖f + g‖p
p =

∫

X
|f | |f + g|p−1 dµ+

∫

X
|g| |f + g|p−1 dµ. (5)

An application of Hölder’s inequality to each of the terms on the right-hand side of the iden-
tity (5) will complete the proof.
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One application yields
∫

X
|f | |f + g|p−1 dµ

≤ ‖f‖p

(∫

X
|f + g|(p−1)p/(p−1) dµ

)(p−1)/p

= ‖f‖p ‖f + g‖p−1
p , (6)

and, in the same way, we would have
∫

X
|g| |f + g|p−1 dµ ≤ ‖g‖p ‖f + g‖p−1

p . (7)

Using (6) and (7) in (5), we obtain

‖f + g‖p
p ≤ ‖f‖p ‖f + g‖p−1

p + ‖g‖p ‖f + g‖p−1
p

= (‖f‖p + ‖g‖p) ‖f + g‖p−1
p ,

and the Minkowski inequality follows immediately.
It remains to sort out when equality could occur. This happens if there is equality in (4)

almost everywhere as well as equality in the two applications of Hölder’s inequality when we
obtained (6) and (7). Equality in (4) occurs at points where f(x) and g(x) are the same sign.
Equality in (6) and (7) (by Theorem 13.1) will hold if

c1|f(x)|p = |f(x) + g(x)|q = c2|g(x)|q

holds a.e., and from this the assertion of the theorem follows. �
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Exercises

13:1.1♦ If f ∈ Lp(X,M, µ) then, for all t > 0,

µ ({x ∈ X : |f(t)| > t}) ≤
(‖f‖p

t

)p

.

[Hint: Use Fubini’s theorem.]

13:1.2 Show that for all 0 < p < ∞ the collections Lp of measurable functions defined on a measure
space (X,M, µ) such that ∫

X

|f |p dµ <∞

are linear spaces. [Hint: Use the inequality (a+ b)p ≤ 2p(ap + bp).]

13:1.3 Prove the Minkowski inequality for the case p = 1: Let (X,M, µ) be a measure space, and let f ,
g ∈ L1(µ). Then

‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.

The inequality is strict except precisely in the case where there is a nonnegative measurable func-
tion h so that fh = g µ–a.e. on the set where neither f nor g vanishes. [Hint: The inequality is
trivial; it is the conditions for equality that need to be looked into here.]

13:1.4♦ [A Minkowski inequality for integrals] For 1 ≤ p < ∞ and for any nonnegative measurable
function on an interval [a, b],

(∫ b

a

(∫ b

a

f(x, y) dx

)p

dy

)1/p

≤
∫ b

a

(∫ b

a

f(x, y)p dy

)1/p

dx.

[Hint: Use Fubini’s theorem and Hölder’s inequality.]

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 13.2. The ℓp and Lp Spaces (1 ≤ p <∞) 885

13.2 The ℓp and Lp Spaces (1 ≤ p < ∞)

We proceed now to study the ℓp and Lp spaces for that part of the scale (1 ≤ p < ∞). Later we
will add on to the high end of the scale by introducing (in Section 13.3) the spaces ℓ∞ and L∞

and to the low end of the scale by studying (in Section 13.7) the spaces ℓp and Lp for (0 < p <
1).

Definition 13.3: Let (X,M, µ) be a given measure space. We denote by

Lp(X,M, µ)

or merely Lp(µ) the collection of those measurable real (or complex) functions defined on X
such that ∫

X
|f |p dµ <∞;

that is, those functions having a finite p–norm.

As usual for function spaces associated with measure theory, we identify functions that are
equal almost everywhere with respect to the underlying measure. Then, since ‖f‖p = 0 if and
only if f vanishes almost everywhere, we can consider that ‖f‖p = 0 only for the zero function.
It is easy to check that each of these spaces is a real (complex) linear space and that f → ‖f‖p

is a norm. The Minkowski inequality supplies the only difficult parts of the proofs.
The ℓp spaces (1 ≤ p < ∞) are particular cases of the general Lp spaces, but deserve atten-

tion on their own merit.
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Definition 13.4: By ℓp, we denote the collection of all sequences

x = (x1, x2, x3 . . . )

of real (complex) numbers such that

‖x‖p =

(
∞∑

i=1

|xi|p
)1/p

<∞.

Since this is precisely the space Lp taken over the measure space on IN with counting mea-
sure µ, all our theory applies to these sequence spaces too. These spaces are infinite-dimensional
analogs of the spaces introduced in Section 9.1.

Our main theorem here is that the Lp–spaces are Banach spaces. For this, we need to con-
struct a completeness proof. We recall the elements of a standard completeness proof (cf. Sec-
tion 9.6). We construct an “object” from an arbitrary Cauchy sequence that will be the desired
function, we show that object is a member of the space, and, finally, we show that the sequence
converges to the object in the space.

Theorem 13.5: Let (X,M, µ) be a measure space. Then the spaces Lp(µ) for 1 ≤ p < ∞ are
Banach spaces furnished with the norm ‖f‖p.

Proof. We prove that each Cauchy sequence in the space converges to an element of the space.
Let {fn} be Cauchy in Lp(µ). We can pass to a subsequence so that

‖fni+1 − fni‖p < 2−i
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for i = 1, 2, 3, . . . . Write

gk =
k∑

i=1

|fni+1 − fni |

and

g = lim
k→∞

gk =
k∑

i=1

|fni+1 − fni |.

Note that the function g is defined everywhere, but may be infinite. By using the Minkowski
inequality, we see that

‖gk‖p ≤
k∑

i=1

‖fni+1 − fni‖p ≤
k∑

i=1

2−i < 1

and hence Fatou’s lemma supplies us with the inequality∫

X
|g|p dµ ≤ lim inf

k→∞

∫

X
|gk|p dµ ≤ 1.

In particular, g(x) <∞ for µ–almost every x ∈ X and, consequently, the limit

f(x) = lim
i→∞

fni(x) = fn1(x) +
k∑

i=1

(
fni+1(x) − fni(x)

)

provides a finite value for µ–a.e. point x (since the series converges absolutely). We can define
f(x) = 0 at all other points, and this gives a finite-valued measurable function defined every-
where on the space.

This is our candidate for the limit of the Cauchy sequence {fn}. Let ε > 0, and choose N
so large that ‖fn − fm‖p < ε for all m, n ≥ N . Fix m ≥ N , and apply Fatou’s lemma to the
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sequence {fni}, this time obtaining
∫

X
|f − fm|p dµ ≤ lim inf

i→∞

∫

X
|fni − fm|p dµ ≤ εp.

This gives the p–norm estimate ‖f − fm‖p ≤ ε for all m ≥ N . By Minkowski’s inequality,

‖f‖p ≤ ‖f − fm‖p + ‖fm‖p <∞,

and so f is a member of the space Lp and evidently ‖f − fm‖p → 0 as m→ ∞, as required. �

Exercises

13:2.1♦ Let X denote any set. The ℓp(X) spaces (1 ≤ p < ∞) are defined as the set of all functions
x : X → IR (or C if preferred) such that

‖x‖p =

(
∑

α∈X

|xα|p
)1/p

<∞.

Show that this is precisely the space Lp taken for an appropriate measure space.

13:2.2 Let {fn} be convergent to a function f in Lp(µ). Show that there is a subsequence {fnk
} that

is almost everywhere convergent to f . [Hint: This is essentially contained in the proof of Theo-
rem 13.5. Also, this is related to an earlier result from Section 4.2 on subsequences of sequences
converging in measure.]
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13.3 The Spaces ℓ∞ and L∞

Let us move to the high end of the scale. This can be motivated in several ways. For one thing,
we notice that the duality between conjugate pairs of indices p, q with p−1 + q−1 = 1 collapses
for p = 1, unless we allow q = ∞. A space corresponding to L∞ seems to be needed just for
symmetry. On the other hand the p–norm itself can be extended to the end of the scale by tak-
ing limits:

‖f‖∞ = lim
p→∞

‖f‖p.

We proceed directly. Let (X,M, µ) be a given measure space. For any measurable function
(real or complex), we write

‖f‖∞ = ess sup |f(x)| = inf {t > 0 : µ ({x : |f(x)| > t}) = 0} (8)

and refer to this as the essential supremum or ∞–norm of the function f . The functions for
which this is finite are called essentially bounded functions. This is perhaps easier to understand
if one notes that an ordinary supremum of a bounded function f could be obtained as

sup |f(x)| = inf {t > 0 : {x : |f(x)| > t} = ∅} .
(In both of these, one uses the convention that inf ∅ = ∞.)

By L∞(X,M, µ) or merely L∞(µ), we denote those measurable real (or complex) functions
defined on X such that ‖f‖∞ < ∞; that is, those functions having a finite ∞–norm. Again, as
usual for function spaces associated with measure theory, we identify functions that are equal
almost everywhere with respect to the underlying measure. Then, since ‖f‖∞ = 0 if and only
if f vanishes almost everywhere, we can consider that ‖f‖∞ = 0 only for the zero function. We
shall check that L∞(µ) is a real (complex) linear space and that ‖f‖∞ is a norm; like the other
Lp spaces, this too is a Banach space.
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In the special case where X = IN and µ is taken as the counting measure, the space L∞

reduces to the sequence space ℓ∞ of bounded sequences with the supremum norm.
Note that the spaces Lp(µ) for p < ∞ depend very much on the underlying measure and

would be sensitive to any changes in µ. The space L∞(µ) depends only on the class of µ–measure
zero sets and not on any values of the measure itself.

The essential supremum norm can be used for continuous functions. In that case, in almost
all settings the usual sup norm and the norm ‖ · ‖∞ would be identical. Certainly, in the case of
Lebesgue measure on the line this is so: thus the collection of bounded continuous functions on
IR is a closed subspace of the space L∞(IR,L, λ).

Theorem 13.6: Let (X,M, µ) be a measure space. Then the space L∞(µ) is a Banach space
furnished with the norm ‖f‖∞.

Proof. It is easy to see that a linear combination of essentially bounded functions remains
essentially bounded, and so the space is linear. It is almost immediate that ‖f‖∞ is a norm on
this space. The triangle inequality, that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞
(which can also be considered as the extension of Minkowski’s inequality to the case p = ∞),
follows from the set inclusion

{x : |f(x) + g(x)| > ‖f‖∞ + ‖g‖∞}
⊂ {x : |f(x)| > ‖f‖∞} ∪ {x : |g(x)| > ‖g‖∞} .

Exercise 13:3.2 shows that each of the sets on the right side of the inclusion has µ–measure zero
and so, too, must the set on the left. This gives the triangle inequality.
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The completeness part of the proof is rather simpler than the completeness proof for the Lp

spaces with 1 ≤ p < ∞. Let {fn} be Cauchy in L∞(µ). Define Ai to be the set of points x in
X for which |fi(x)| > ‖fi‖∞, and define Bj,k to be the set of points x in X for which |fj(x) −
fk(x)| > ‖fk‖∞. All these sets have measure zero by definition. Let E be the totality of all
these points, that is, the union of these sets taken over all integers i, j, k. Then E has measure
zero, and the sequence {fn(x)} converges for every x ∈ X \E, and indeed it converges uniformly
to some bounded function f defined on X \ E. We can extend f to all of X in any arbitrary
fashion [or simply set f(x) = 0 for x ∈ E], and it is easy to see that f ∈ L∞(µ) and that
‖f − fn‖∞ → 0 as n→ ∞. �

13.3.1 Hölder’s inequality for p = 1, q = ∞
We have already indicated that Minkowski’s inequality extends to the case p = ∞, that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
We now extend Hölder’s inequality. Note that we interpret p = 1 and q = ∞ as conjugate
indices by considering that we still have the conjugate relation

1

p
+

1

q
= 1.

Theorem 13.7 (Hölder’s inequality) Let (X,M, µ) be a measure space, consider the conju-
gate indices 1, ∞, and let f ∈ L1(µ), g ∈ L∞(µ). Then the product fg is integrable and∫

X
|fg| dµ ≤ ‖f‖1‖g‖∞.

The inequality is strict except precisely in the case where |g| = ‖g‖∞ µ–a.e.
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Proof. The elementary inequality

|f(x)g(x)| ≤ ‖g‖∞|f(x)|
holds almost everywhere. Just integrate this to obtain the theorem. The final statement of the
theorem is easily checked, too. �

Exercises

13:3.1 Show that a sequence fn converges to a function f in the space L∞(X,M, µ) if and only if there
is a set E ∈ M with µ(E) = 0 so that fn → f uniformly on X \ E.

13:3.2 Show that the infimum in equation (8) is attained, in fact that

µ ({x : |f(x)| > ‖f‖∞}) = 0.

13:3.3 Let (X,M, µ) be a measure space with µ(X) <∞. Show that

lim
p→∞

‖f‖p = ‖f‖∞ for all f ∈ L∞.

13.4 Separability

Let us now look at the question of separability of the ℓp and Lp spaces. Recall that to show
that a metric space is separable we must demonstrate the existence of a countable dense sub-
set of the space. For the ℓp spaces (1 ≤ p < ∞), this presents no challenge. The space ℓ∞ is
not separable, however. Let S denote the family of all sequences of 0’s and 1’s. If x, y ∈ S are
distinct then ‖x − y‖∞ ≥ 1. Since S is an uncountable subset of ℓ∞ and every pair of points in
S is at least a unit distance apart, there can be no countable dense subset of ℓ∞.
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Generally, we would expect similar assertions for the Lp spaces. Normally, L∞ is not sepa-
rable and, normally, Lp (1 ≤ p < ∞) can be seen to be separable. For example, L1([0, 1],L, λ)
is separable: the family of rational linear combinations of the characteristic functions of those
sets that are finite unions of intervals with rational endpoints provides a countable dense sub-
set. More generally, if the underlying space is IRn and µ is a Borel measure, it is not too much
trouble to show that all the spaces Lp (1 ≤ p < ∞) are separable. Here we shall address this
problem more abstractly. What properties of the underlying measure space allow the function
space L1 to be separable?

Let (X,M, µ) be a measure space. Recall (Example 9.12) that we have defined a metric on
equivalence classes of M:

ρ(A,B) = µ(A△B).

The resulting metric space may or may not be separable. Our next result shows that separabil-
ity of L1(X,M, µ) and separability of M coincide.

Theorem 13.8: Let (X,M, µ) be a measure space with µ(X) < ∞. Then the Banach space
L1(X,M, µ) is separable if and only if the space M with metric ρ(A,B) = µ(A△B) is separa-
ble.

Proof. Suppose that M is separable. Let {An} be a countable dense subset of M. We may
assume that {An} is an algebra A, since the algebra generated by {An} is also countable. Let S
denote the family of simple functions of the form

f(x) =
n∑

k=1

ckfk(x), (9)
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where fk = χ
Ak

and ck ∈ Q. The family S is countable, since both Q and A are countable. We
show that S is dense in L1.

It follows from the definition of the integral that the collection of all simple functions is
dense in L1 (Exercise 13:4.3). Since each simple function can be approximated in the L1 norm
by a simple function taking only rational values, we need show only that such functions can be
approximated in the L1 norm by functions in S.

To verify that this is possible, let

g =
n∑

k=1

ckχEk

be a simple function with ck ∈ Q for all k = 1, . . . , n. Let

c = max {|ck| : k = 1, . . . , n} ,
and let ε > 0. We may assume that c 6= 0. By hypothesis, there exist sets A1, A2, . . . , An from
A such that

µ(Ek△Ak) <
ε

2nc
(k = 1, . . . , n). (10)

For each k = 1, . . . , n, let

Bk = Ak \
k−1⋃

j=1

Aj .

The sets Bk are members of A and are pairwise disjoint. Furthermore, for each k ≤ n, Ak ⊂ Bk

and
n⋃

k=1

Bk =
n⋃

k=1

Ak.
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It follows from (10) that

µ

(
X \

n⋃

k=1

Bk

)
<

ε

2c
.

Let

f(x) =

{
ck, if x ∈ Bk;
0, if x ∈ X \⋃n

j=1Bj .

Thus f ∈ S and

µ({x : f(x) 6= g(x)}) <
ε

2c
.

Now ∫

X
|f − g| dµ ≤ 2c

( ε
2c

)
= ε,

so ‖f − g‖ ≤ ε. This completes the proof that L1 is separable.
To prove the converse, we need only note that if L1 is separable then so too is the subset of

characteristic functions of measurable sets. But this space is isometric to the space M (Exam-
ple 9.27). Thus M is separable. �

Exercises

13:4.1 Show that L∞([0, 1],L, λ) is not separable.

13:4.2 Give the details to show that L1([0, 1],L, λ) is separable. [Hint: Check that the family of those
sets that are equivalent to finite unions of intervals with rational endpoints provides a countable
dense subset of the space M of Theorem 13.8.]
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13:4.3 Show that the set of simple functions f =
∑n

i=1 aiχEi
, where each µ(Ei) < ∞, is dense in any

space Lp(µ) (1 ≤ p <∞).

13:4.4 Prove a version of Theorem 13.8 for 1 < p <∞.

13:4.5 When are the spaces ℓp(X) separable? (See Exercise 13:2.1.)

13.5 The Spaces ℓ2 and L2

The spaces ℓ2 and L2 play a very special role in many investigations and are worth looking at
much more closely. This rests entirely on the fact that the conjugate index to p = 2 is q =
2: the spaces are self-dual in a sense that will be made precise in Section 13.6. We examine
now the structure of these spaces and see how they are distinguished from the rest of the scale
of function spaces. This furnishes a brief introduction to the world of Hilbert spaces that the
reader can continue in Chapter 14.

All our functions in this section will be taken to be complex valued, although the real case
is included and is interesting on its own. Now |·| denotes complex modulus rather than absolute
value, and c is the complex conjugate of the complex number c.

Definition 13.9: Let (X,M, µ) be a measure space. We denote by L2(X,M, µ) the set of all
complex-valued functions f defined on X for which∫

X
|f |2 dµ <∞.

As with L1, we are technically dealing with equivalence classes of functions, thus each f ∈ L2

consists of a family of functions each pair of which agree a.e. In the special case X = IN, M =
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P(IN) and µ is counting measure, L2 becomes the space ℓ2 of sequences {xk} of complex num-
bers such that

∑ |xk|2 <∞.

Definition 13.10: By ℓ2, we mean the space of all sequences of complex numbers x =
(x1, x2, x3, . . . ) for which the sum

∞∑

k=1

|xk|2

is finite.

We first check directly that L2 is a linear space. It is clear that if a ∈ C and f ∈ L2 then
af ∈ L2. Suppose now that f, g ∈ L2. Since |fg| ≤ 1

2(|f |2 + |g|2), we see that fg ∈  L1. That
f + g ∈ L2 now follows from integrating the inequality

|f + g|2 ≤ |f |2 + 2|fg| + |g|2.
We now define a scalar function called an inner product or scalar product (f, g) : L2 × L2 →

C by

(f, g) =

∫

X
fg dµ.

It is clear that (f, g) satisfies the following conditions:

13.11: (Properties of the inner product)

1. (f, f) ≥ 0 for all f ∈ L2, with equality if and only if f = 0.

2. (f, g) = (g, f) for all f, g ∈ L2.
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3. (af, g) = a(f, g) for all f, g ∈ L2 and a ∈ C.

4. (f, g1 + g2) = (f, g1) + (f, g2) for all f, g1, g2 ∈ L2.

The inner product can be used to define notions of orthogonality and norm. Two elements
f, g ∈ L2 are said to be orthogonal if (f, g) = 0. We define the norm on L2 by

‖f‖2 =
√

(f, f). (11)

Note that this is the same 2–norm with which we started the chapter. We shall show that this
definition does, in fact, provide a norm. For the moment, ‖f‖2 is only an alternative notation
for
√

(f, f).

Lemma 13.12 (Cauchy–Schwarz inequality) For all elements f, g ∈ L2, the following in-
equality holds:

|(f, g)| ≤ ‖f‖2‖g‖2. (12)

Proof. This is a special case of Hölder’s inequality (Theorem 13.1) with p = q = 2 as con-
jugate indices. Since it is very special, it has a much easier proof that requires only some alge-
braic properties of the inner product. We present that here, although it can be skipped if the
reader has not skipped over Theorem 13.1.

Let us assume first that (f, g) [and so also (g, f)] is real. Consider the polynomial

p(α) = (αf + g, αf + g) = α2(f, f) + 2α(f, g) + (g, g)

= ‖f‖2
2α

2 + 2(f, g)α+ ‖g‖2
2.

The definition of p together with condition (i) of (13.11) implies that p(α) ≥ 0 for all α ∈ IR. It
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follows from the quadratic formula that

(f, g)2 − ‖f‖2
2‖g‖2

2 ≤ 0. (13)

Otherwise, the quadratic p would have two distinct roots and would therefore not be nonnega-
tive. The inequality (12) follows from (13).

Now let f , g be any elements of the space. There is a real θ so that (f, g) = eiθ|(f, g)|. Let
f1 = e−iθf and observe that (f1, g) = |(f, g)|. Since (f1, g) is real, we can obtain from the ar-
gument of the first paragraph that (f1, g) ≤ ‖f1‖2 ‖g‖2. Since ‖f1‖2 = ‖f‖2, the inequality (12)
follows. �

Theorem 13.13: L2 is a normed linear space with the norm given by

‖f‖2 =
√

(f, f).

Proof. It is obvious that conditions (i) and (ii) of the norm definition (Definition 12.1) are
satisfied. It remains only to check the triangle inequality. Note that, for all f, g ∈ L2,

‖f + g‖2
2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)

≤ (f, f) + 2|(f, g)| + (g, g)

≤ ‖f‖2
2 + 2‖f‖2‖g‖2 + ‖g‖2

2 = (‖f‖2 + ‖g‖2)2,

the last inequality following from the Cauchy–Schwarz inequality. Thus

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

establishing the triangle inequality, and the proof is complete. �

The norm has a feature that is available only in this kind of setting and distinguishes inner
product norms from all others.
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Theorem 13.14 (Parallelogram law) The identity

‖f + g‖2
2 + ‖f − g‖2

2 = 2(‖f‖2
2 + ‖g‖2

2) (14)

holds for all pairs f , g.

Proof. To verify this parallelogram law (the sum of the squares of the diagonals of a parallel-
ogram equals the sum of the squares of its sides), note that

‖f + g‖2
2 + ‖f − g‖2

2 = (f + g, f + g) + (f − g, f − g)

= (f, f) + (f, g) + (g, f) + (g, g) + (f, f) − (f, g) − (g, f) + (g, g)

= 2(‖f‖2
2 + ‖g‖2

2).

as required. �

The reader may have observed that in the proof of the Cauchy–Schwarz inequality and in
the verification that L2 is a normed linear space, we made no explicit mention of the integral∫
X |f |2 dµ itself. All our results derived from the fact that ‖f‖2 is defined in terms of the inner

product and that the inner product satisfies conditions 13.11. We have, in fact, shown that if a
linear space X has an inner product defined on it, and one defines

‖x‖ =
√

(x, x),

then the Schwarz inequality

|(x, y)| ≤ ‖x‖2 ‖y‖2

is valid for all x, y ∈ X, and ‖x‖ is a norm on X.
A set X furnished with an inner product is called an inner product space. Some authors use

the term Euclidean space because such spaces are direct extensions of IRn. For example, if X =
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IN, M = P(IN), and µ is counting measure, L2 becomes the space ℓ2 of sequences {xk} of real
or complex numbers such that

∑ |xk|2 <∞. The norm

‖x‖2 =

√√√√
∞∑

k=1

|xk|2

on ℓ2 is just the infinite analog of the usual norm in IRn or Cn.
An inner product space X that is complete (as a metric space) is called a Hilbert space. A

more extended account of the theory of Hilbert space is given in Chapter 14. Our next result
shows that L2 is a Hilbert space.

Theorem 13.15: The space L2(X,M, µ) is complete.

Proof. This can be proved by the methods of Theorem 13.5, where we showed the complete-
ness of all the real Lp spaces. Note that the case p = 2 is only a little simpler, since it can use
the more elementary Cauchy–Schwarz inequality in place of the Minkowski inequality in the
proof, but still needs to employ many basic measure-theoretic tools. �

13.5.1 Continuous linear functionals on L2(X,M, µ)

Let us now characterize the continuous linear functionals on the Hilbert space L2. In fact, this
characterization follows just from the Hilbert space structure itself and requires no special fea-
tures of the underlying measure space. For the space L2, this theorem can be interpreted as
providing the characterization

Γ(f) =

∫

X
fg dµ (f ∈ L2(µ))
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for some unique g ∈ L2(µ) and, for the space ℓ2, as providing the characterization

Γ(x) =
∞∑

i=1

xiyi (x ∈ ℓ2)

for some unique y ∈ ℓ2.

Theorem 13.16: Let Γ : L2(X,M, µ) → C be a continuous linear functional. Then there is a
unique g ∈ L2(X,M, µ) so that

Γ(f) = (f, g) (f ∈ L2(X,M, µ)).

Proof. The proof is omitted since it can be constructed from other material. The argument
for a general Hilbert space is given in Theorem 14.14 and that can be repeated here with only
notational changes. Also, the argument for general Lp spaces 1 < p < ∞ is given in Theo-
rem 13.18 and that, too, could be repeated here with p = 2, where it becomes only slightly
simpler. �

Example 13.17: This example provides an L2 version of Example 12.27. Let K be an L2

function on [a, b] × [a, b]. For f ∈ L2[a, b], consider the integral
∫ b

a
K(x, y)f(y) dy.

By Fubini’s theorem (Theorem 6.6) the function K(x, ·) ∈ L2[a, b] for almost every x ∈ [a, b].
We can thus define an operator A on L2[a, b] by Af = g, where, for f ∈ L2[a, b],

g(x) =

∫ b

a
K(x, y)f(y) dy
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The function g is defined only a.e.
From the Cauchy–Schwarz inequality, we see that, for almost every x,

|g(x)|2 ≤
∫ b

a
|K(x, y)|2 dy

∫ b

a
|f(y)|2 dy,

and hence ∫ b

a
|g(x)|2 dx ≤

(∫ b

a

∫ b

a
|K(x, y)|2 dxdy

)(∫ b

a
|f(y)|2 dy

)
.

It follows that g ∈ L2[a, b] so A maps L2[a, b] into itself. It follows, too, that

‖A‖ ≤
∫ b

a

∫ b

a
|K(x, y)|2 dx dy.

Consider now the Fredholm equation

φ(x) = f(x) −
∫ b

a
K(x, y)f(y) dy. (15)

Given φ ∈ L2[a, b], we seek f ∈ L2[a, b] such that equation (15) holds for almost every x. By
Theorem 12.26, we know that for every such φ there will be a unique solution to (15) provided
that ‖A‖ < 1, and this will be the case in particular when

∫ b

a

∫ b

a
|K(x, y)|2 dx dy < 1.

The solution can then take the form f = φ + Aφ + A2φ + · · · . The difference between this
example and previous examples involving Fredholm equations is that here we are dealing with
L2 functions, rather than with continuous functions.

Incidentally, one can show that the operator A is a compact operator even when ‖A‖ ≥ 1.
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The corresponding assertion in Example 12.27 was easy to verify because of Ascoli’s theorem.
In the present setting of L2, Ascoli’s theorem is not available, and verification of compactness of
A is more delicate. We omit a proof.

Exercises

13:5.1 Write out the Schwarz inequality and the triangle inequality explicitly for L2 using integrals in-
stead of norms and inner products.

13:5.2 Let (X,M, µ) be a measure space with µ(X) < ∞. Prove that L2(X,M, µ) is separable if and
only if the space M of Example 9.12, is separable.

13:5.3 Show that the parallelogram law fails for L1 so that L1 is not a Hilbert space. [Hint: Use X =
[0, 1], f = χ

[0,1/2]
, and g = χ

[1/2,1]
, and calculate ‖f + g‖1 = ‖f − g‖1 = 1 and ‖f‖1 = ‖g‖1 = 1

2 .]

13:5.4 Prove the Pythagorean theorem: If f1, f2, . . . , fn are orthogonal in L2 [i.e., if (fi, fj) = 0 for all
i 6= j], then

‖
n∑

i=1

fi‖2
2 =

n∑

i=1

‖fi‖2
2.

13:5.5 If f1, f2, . . . , fn are orthonormal in L2 [i.e., if (fi, fj) = 0 for all i 6= j and ‖fi‖2 = 1], then

‖
n∑

i=1

cifi‖2
2 =

n∑

i=1

|ci|2.

13.6 Continuous Linear Functionals on Lp(µ)

Our main theorem in this section provides us with a representation for the continuous linear
functionals on Lp(µ) for 1 ≤ p < ∞. This theorem is often called the Riesz representation the-
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orem, too, but that would conflict with our usage of this for the theorem in Section 12.8 that
established the form for the continuous linear functionals on the space C[a, b].

Note that the case p = ∞ is not resolved by our theorem and, indeed, the linear function-
als on L∞(µ) are of a different nature. There is a natural duality implied between the spaces
Lp(µ) and Lq(µ) for conjugate indices p and q, but only for 1 ≤ p < ∞. Continuous linear
functionals on L1(µ) are represented by functions L∞(µ), but we will have no representation for
all the continuous linear functionals on L∞(µ) by functions in L1(µ) . (This is related to Exer-
cise 12:7.6.) Another thing to note is the special case of the conjugate indices p = 2 and q = 2.

The proof of the theorem offers us an interesting application of the Radon–Nikodym theo-
rem. (See Theorem 5.29 and also Exercise 5:12.17 for the complex version.)

Theorem 13.18: Let (X,M, µ) be a σ-finite measure space, and let p, q be conjugate indices
with 1 ≤ p < ∞. Then to each continuous linear functional Γ on Lp(µ) there corresponds a
unique g ∈ Lq(µ) so that

Γ(f) =

∫

X
fg dµ (16)

for all f ∈ Lp(µ) and, moreover, the norm of the functional ‖Γ‖ is exactly ‖g‖q.

Proof. For the proof, we shall assume that µ(X) < ∞. The σ-finite case is sketched in the
exercises; for p > 1, one does not need to assume that µ is σ-finite in fact, although the proof
requires some different details.

We obtain immediately a candidate g for the representation (16) by constructing a (real or
complex) signed measure ν on the space that is absolutely continuous with respect to µ. The
Radon-Nikodym derivative of ν with respect to µ will be our function g.
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For each E ∈ M, write ν(E) = Γ(χ
E

). Since we are assuming that µ is finite, the function
χ

E
is in Lp and so ν is well defined. In fact, ν is a signed measure on M. The linearity of Γ

shows that ν is finitely additive: if A, B are disjoint members of M, then apply Γ to

χ
A∪B

= χ
A

+ χ
B

to obtain

ν(A ∪B) = ν(A) + ν(B).

The continuity of Γ allows us to extend this to countable additivity. For if A1, A2, A3 . . . are
disjoint members of M and E =

⋃∞
1 Ai, Ek =

⋃k
1 Ai, then

‖χ
E
− χ

Ek
‖p

p =

∫

X
|χ

E
− χ

Ek
|p dµ = µ(E \ Ek),

which tends to zero as k → ∞, since E \Ek =
⋃∞

k+1Ai and µ is finite. It follows that χ
Ek

→ χ
E

in the space Lp and so, from the continuity of Γ, Γ(χ
Ek

) → Γ(χ
E

) and hence also
∑k

1 ν(Ai) =

ν(Ek) → ν(E). Finally, we see that ν is absolutely continuous with respect to µ: for if µ(A) =
0, then χ

A
is equivalent to the zero function in Lp and, consequently, ν(A) = Γ(χ

A
) = 0.

The Radon-Nikodym theorem (Theorem 5.29) provides a function g ∈ L1 for which

ν(E) = Γ(χ
E

) =

∫

X
χ

E
g dµ (E ∈ M). (17)

We do not yet know that g ∈ Lq nor that the representation in (16) holds for all functions f ∈
Lp, nor do we have the norm identity ‖Γ‖ = ‖g‖q.

We claim first that the representation in (16) holds for all functions f ∈ L∞ (and our goal
of all functions in f ∈ Lp will come later). First, from (17), we see that the representation holds
for all functions f that are characteristic functions of sets in M. By the linearity of Γ and the
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integral, it follows that the representation holds for all functions f that are simple measurable
functions. But every function f ∈ L∞ is a uniform limit of a sequence fn of simple measurable
functions. If such a sequence fn → f uniformly, then fn → f in Lp, and so Γ(fn) → Γ(f) and
also

∫
X fng dµ →

∫
X fg dµ. This shows that the representation in (16) holds for all functions

f ∈ L∞.
At this stage we wish to show that g ∈ Lq, indeed that

‖g‖q ≤ ‖Γ‖.

The two cases p = 1, q = ∞ and 1 < p, q < ∞ are handled differently. Choose a measurable
function h so that everywhere

|h| = 1 and hg = |g|

(for real functions this is trivial, while for complex functions see Theorem 5.45).
If p = 1, q = ∞, then we show that ‖g‖∞ ≤ ‖Γ‖ by showing that |g(x)| ≤ ‖Γ‖ almost

everywhere. Let En be the set of points x, where |g(x)| ≥ ‖Γ‖ + n−1. Then

‖Γ‖ ‖χ
En

‖1 ≥ |Γ(hχ
En

)| =

∣∣∣∣
∫

X
χ

En
hg dµ

∣∣∣∣ ≥ (‖Γ‖ + n−1)µ(En),

which can happen only if µ(En) = 0. It follows that |g(x)| ≤ ‖Γ‖ almost everywhere, since the
set of points where this is not true is the union of the sequence of zero measure sets {En}.

In the case 1 < p, q < ∞, we use Hölder’s inequality (Theorem 13.1). Let En be the set of
points x where |g(x)| ≤ n, and write

f(x) = χ
En

(x)|g(x)|q−1h(x).
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Then f is bounded, |f |p = |g|q on En, and hence
∫

X
|g|q dµ =

∫

X
fg dµ = Γ(f) ≤ ‖Γ‖

{∫

En

|g|q dµ
}1/p

.

This gives ∫

En

|g|q dµ ≤ ‖Γ‖q

for each integer n. Letting n→ ∞ in this inequality, we obtain∫

X
|g|q dµ ≤ ‖Γ‖q,

and so we have ‖g‖q ≤ ‖Γ‖, as required.
Now consider the two functionals

Γ(f) and Γ1(f) =

∫

X
fg dµ

defined and continuous on Lp. The first of these was given to us and the second, Γ1, is defined
and continuous on Lp because of Hölder’s inequality and the fact that g ∈ Lq. The two func-
tionals agree on the dense subspace L∞ and consequently must agree on the whole of the space
Lp. This proves that the representation in (16) holds for all functions f ∈ Lp.

To complete the proof, note that we already have ‖g‖q ≤ ‖Γ‖. The opposite direction comes
from Hölder’s inequality, since

|Γ(f)| = |Γ1(f)| =

∣∣∣∣
∫

X
fg dµ

∣∣∣∣ ≤ ‖f‖p ‖g‖q

so that ‖g‖q ≥ ‖Γ‖. This completes the proof for the case of a finite measure; the exercises
show how to push the proof to take care of a σ-finite measure space. �
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How can we represent the functionals on L∞, the missing case? We do not have to worry in
general about the spaces Lp for 0 < p < 1 at the extreme low end of our scale because, as it
turns out, there are often no continuous linear functionals at all! (See Section 13.7.) The exact
form for the continuous linear functionals on L∞ would require us to develop an integration
theory for finitely additive measures. Rather than do this, we merely state the theorem and
leave a fuller exploration to the reader.1

Theorem 13.19: Let (X,M, µ) be a measure space. To each continuous linear functional Γ on
L∞(µ) there corresponds a bounded, finitely additive set function φ defined on M and satisfying
the condition |φ|(E) = 0 whenever µ(E) = 0, so that

Γ(f) =

∫

X
f dφ

for all f ∈ L∞(µ).

Exercises

13:6.1 Let L∞[0, 1] be the space of functions on the interval [0, 1] that are essentially bounded with

respect to sets of Lebesgue measure zero. Show that the mapping Γ : f →
∫ 1

0
f(x)g(x) dx is a

continuous linear functional on L∞ for every g ∈ L1[0, 1].

13:6.2 Show that there is a continuous linear functional on L∞[0, 1] that vanishes on the (closed) sub-
space of continuous functions.

13:6.3 Show that there is a continuous linear functional on L∞[0, 1] that is not of the form Γ : f →∫ 1

0
f(x)g(x) dx for any g ∈ L1[0, 1].

1For example, see E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag (1965).
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13:6.4 Interpret Theorem 13.18 as asserting that the spaces (Lp)∗ and Lq are isometrically isomorphic.

13:6.5 Let X be uncountable, let M denote the family of all sets that are at most countable or whose
complements are at most countable, and let µ denote the counting measure on X. Characterize
 L∞(X,M, µ). Describe the continuous linear functionals on  L1(X,M, µ). Show that they can-
not all be represented as integrals using functions in the space  L∞(X,M, µ). Does this contradict
Theorem 13.18?

13:6.6 In Theorem 13.19, suppose that µ(X) = ∞, but the measure space is σ-finite. Show that there is
an everywhere positive function w ∈ L1. Define a measure on M by µ̃(E) =

∫
E
w dµ. Show that

Γ̃(f) = Γ(w1/pf) defines a continuous linear functional on the space Lp(µ̃) with ‖Γ̃‖ = ‖Γ‖.

13:6.7 Continuing the argument of Exercise 13:6.6, determine a function g̃ ∈ Lq(µ̃) so that

Γ̃(f) =

∫

X

fg̃ dµ̃

and define g = w1/q g̃ (in the case q = ∞, just take g = g̃). Show that g satisfies the conclusion of
Theorem 13.19.

13.7 The Lp Spaces (0 < p < 1)

Thus far we have not looked at the other end of the scale of Lp spaces, the lower end (0 < p <
1). In our study we have used frequently and necessarily that the p–norm is a genuine norm; for
p = 1 and p = ∞ this is trivial, for 1 < p < ∞ this is Minkowksi’s inequality, and for 0 < p < 1
this is simply false.

Thus we cannot hope to have a similar theory for the low end of this scale and the spaces
will not be Banach spaces. Even so, there is a linear structure and a metric structure, just not
given by a norm. To find the right metric we need an elementary inequality.
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Lemma 13.20: For 0 < p < 1 and for all nonnegative real a, b, the inequality

(a+ b)p ≤ ap + bp (18)

holds, with equality occurring only if one of a, b is zero.

Proof. To prove the inequality (18), consider the function

φ(t) = (1 + t)p − 1 − tp (t ≥ 0).

One computes φ(0) = 0 and checks that φ′(t) is negative for t > 0. It follows that φ(t) < 0 for
t > 0. Hence, if a and b are not zero, we replace t by a/b and obtain

(
1 +

a

b

)p
− 1 −

(a
b

)p
< 0,

and the lemma follows easily. �

Let (X,M, µ) be a given measure space. It follows from the inequality (18) that the Lp

spaces (0 < p < 1) are linear spaces and that

ρp(f, g) =

∫

X
|f − g|p dµ

is a metric on Lp. It can be shown that the space is a complete metric space.

13.7.1 Day’s Theorem

We must beware of applying Banach space ideas to these spaces. The metric is not defined by a
norm and so, while we may seem to be in a familiar setting (a complete linear metric space), we
do not have certain tools at hand. For example the Hahn–Banach theorem supplies an abun-
dance of continuous linear functionals in any Banach space. The following theorem, due to
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M. M. Day, then is quite strange and illustrates a remarkable difference between Banach spaces
and general linear metric spaces.

Theorem 13.21 (Day) Using Lebesgue measure, the spaces Lp[0, 1] for 0 < p < 1 admit no
continuous linear functionals apart from the zero functional.

Proof. In order to obtain a contradiction, let us suppose that there is a continuous linear
functional Γ on Lp[0, 1] that is not identically zero. There must accordingly be at least one
function f ∈ Lp[0, 1] for which Γ(f) = 1. The mapping x → fχ

[0,x]
is a continuous function

from [0, 1] to Lp[0, 1]. Hence the composition

φ(x) = Γ(fχ
[0,x]

)

is a continuous real-valued map on [0, 1] for which φ(0) = 0 and φ(1) = 1. By the intermediate-
value property, we can choose a point x0 ∈ (0, 1) for which φ(x0) = 1/2. Consider the two
functions g1 = fχ

[0,x0]
and g2 = fχ

[x0,1]
. Since

Γ(g1) + Γ(g2) = Γ(g1 + g2) = Γ(f) = 1

and Γ(g1) = 1/2, it follows that Γ(g2) = 1/2.
But ∫ 1

0
(|g1(x)|p + |g2(x)|p) dx =

∫ 1

0
|f(x)|p dx

so one of the values ‖g1‖p
p and ‖g2‖p

p must be no greater than ‖f‖p
p/2. In particular, then,

‖2gi‖p
p ≤ 2p−1‖f‖p

p
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either for i = 1 or for i = 2. Thus there is a function f1 (taken as either 2g1 or 2g2, whichever is
appropriate) for which

Γ(f1) = 1 and ‖f1‖p
p ≤ 2p−1‖f‖p

p. (19)

A repetition of this argument, applied now to f1 rather than f , would yield a function f2 for
which

Γ(f2) = 1 and ‖f1‖p
p ≤ 2p−1‖f2‖p

p ≤ 22(p−1)‖f‖p
p. (20)

By induction, we arrive at a sequence of functions {fn} in the space Lp[0, 1], and for each n we
have

Γ(fn) = 1 and ‖fn‖p
p ≤ 2n(p−1)‖f‖p

p. (21)

But this last assertion is impossible, since then fn → 0 in Lp[0, 1], and yet Γ(fn) = 1, which
cannot happen for a continuous functional. From this contradiction the theorem follows. �

Exercises

13:7.1 Show that the functions in the Lp[0, 1] spaces (0 < p < 1) are not necessarily integrable.

13:7.2 Show that the Lp spaces (0 < p < 1) are complete.

13:7.3 Show that the “metric”

ρ(f, g) =

(∫

X

|f − g|p dµ
)1/p

does not satisfy the triangle inequality on the Lp spaces for the values 0 < p < 1. Indeed, take two
disjoint measurable sets A and B of positive measure, take f and g as their characteristic func-
tions, and show that

ρ(f, g) ≥ ρ(f, 0) + ρ(0, g),
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an inequality opposite to what one might expect.

13:7.4 In contrast to Theorem 13.21, construct a continuous linear functional on the spaces ℓp (0 < p <
1). [Hint: If y ∈ ℓ∞, then the mapping x→∑

xiyi is continuous.]

13:7.5 The limit of the p–norm is interesting at the lower end, too. Show that if ‖f‖p is finite for some
positive value of p and µ(X) = 1 then ‖f‖q is finite for all 0 < q < p, and

lim
q→0+

‖f‖q = exp

{∫

X

log |f | dµ
}
.

13:7.6 In the Lp[0, 1] spaces (0 < p < 1) are continuous linear functionals the same as bounded lin-
ear functionals? [Hint: yes and no. If you interpret bounded using the metric then no. There is
another way that bounded is usually interpreted though.]

13.8 Relations

We have been studying a scale of spaces without mentioning an obvious question. What hap-
pens as the index of the scale changes? Do we pick up some new functions or do we lose some?
Both can happen. An example from the elementary calculus (the improper integrals) illustrates
this. Consider the existence of the two integrals

∫ 1

0

(
1√
t

)p

dt and

∫ ∞

1

(
1√
t

)p

dt.

The index p = 2 is critical for both integrals, but in a different way. For p < 2, the first integral
exists, while for p > 2, the second integral exists. Once the nature of this, admittedly trivial,
distinction is grasped, there are really no other surprises, and the first two theorems are nearly
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immediate. In general, we do not expect an inclusion Lq(µ) ⊂ Lp(µ) for any values of p and q;
we do obtain some relations of this kind in special cases.

Theorem 13.22: If µ(X) < +∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ) and

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q

for any f ∈ Lp(µ).

Proof. Hölder’s inequality (Theorem 13.1) gives most of this. If q is finite, then the two in-
dices q/p and q/(q − p) are conjugate, since

(q/p)−1 + (q/(q − p))−1 = p/q + (q − p)/q = 1,

and hence

‖f‖p
p =

∫

X
1 · |f |p dµ ≤

(∫

X
|f |p(q/p) dµ

)p/q (∫

X
dµ

)(q−p)/q

On taking the 1/p power of both sides, we obtain the inequality of the theorem. In particular,
since µ(X) is finite, the norm ‖f‖p is finite if ‖f‖q is finite, and so

Lq(µ) ⊂ Lp(µ).

Since

‖f‖p
p =

∫

X
1 · |f |p dµ ≤ ‖f‖p

∞

(∫

X
dµ

)
= ‖f‖p

∞ µ(X),

the case q = ∞ is immediate. �
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Theorem 13.23: If 0 < p < q < r ≤ ∞, then

Lq(µ) ⊂ Lp(µ) + Lr(µ)

[i.e., each f ∈ Lq(µ) can be decomposed into a sum of two functions, f = f1 + f2 where f1 ∈
Lp(µ) and f2 ∈ Lr(µ)].

Proof. Let f ∈ Lq(µ), and split the space X into two parts: A = {x ∈ X : |f(x)| > 1} and
B = {x ∈ X : |f(x)| ≤ 1}. Set f1 = fχ

A
and f2 = fχ

B
. Then f = f1 + f2 and f1 ∈ Lp(µ) and

f2 ∈ Lr(µ). To see this, we merely note that∫

X
|f1|p dµ =

∫

A
|f |p dµ ≤

∫

A
|f |q dµ ≤ ‖f‖q <∞,

and f2 ∈ L∞(µ) since |f2| ≤ 1, while, if r <∞, we can use∫

X
|f2|r dµ =

∫

B
|f |r dµ ≤

∫

B
|f |q dµ ≤ ‖f‖q <∞.

�

Theorem 13.24: If 0 < p < q < r ≤ ∞, then

Lq(µ) ⊃ Lp(µ) ∩ Lr(µ)

and

‖f‖q ≤ (‖f‖p)κ (‖f‖r)1−κ ,

where
1

q
=
κ

p
+

1 − κ

r
.
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Proof. Suppose that f is in both Lp(µ) and Lr(µ). We apply Hölder’s inequality (Theo-
rem 13.1). If r is finite, then the two indices p/(κq) and r/((1 − κ)q) are conjugate since

(
p

κq

)−1

+

(
r

(1 − κ)q

)−1

= q

(
κ

p
+

1 − κ

r

)
= 1,

and hence

‖f‖q
q =

∫

X
|f |κq · |f |(1−κ)q dµ ≤

(∫

X
|f |p dµ

)κq/p(∫

X
|f |rdµ

)(1−κ)q/r

On taking the 1/q power of both sides, we obtain the inequality of the theorem and also that
f ∈ Lq(µ).

The case r = ∞ is immediate, since

‖f‖q
q =

∫

X
|f |q−p · |f |p dµ ≤ ‖f‖q−p

∞

(∫

X
|f |pdµ

)
,

and the norm inequality follows directly. �

For the ℓp spaces (to which Theorem 13.22 cannot apply), we have the following simple the-
orem. Note that the inclusion is proper since all the spaces in this scale are distinct.

Theorem 13.25: For any 0 < p < q ≤ ∞, the inclusion ℓp ⊂ ℓq holds and

‖x‖q ≤ ‖x‖p

for each x ∈ ℓp.

Proof. All the ℓp spaces evidently consist of bounded sequences (indeed, for 0 < p < ∞ all
consist of sequences converging to zero), and so all spaces are contained in ℓ∞. It is also easy to
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check that ‖x‖∞ ≤ ‖x‖p for any sequence x. Now apply Theorem 13.24 with 0 < p < q < r = ∞
and κ = p/q, using the measure space IN with the counting measure; then

‖x‖q ≤ (‖x‖p)(p/q) (‖x‖∞)1−p/q ≤ (‖x‖p)(p/q) (‖x‖p)1−p/q = ‖x‖p,

as required. �

Exercises

13:8.1 Show that all the spaces in the scale ℓp are distinct.

13:8.2 Let 1 ≤ p < q ≤ ∞, and suppose that µ(X) < ∞. Show that the identity mapping from Lp into
Lq is continuous.

13:8.3 If X contains a disjoint sequence of measurable sets {Ei} with 0 < µ(Ei) < 2−i and 0 < p < q ≤
∞, then show that there is a function in Lq that is not in Lp.

13:8.4 If X contains a disjoint sequence of measurable sets {Ei} with 1 ≤ µ(Ei) < ∞ and 0 < p < q ≤
∞ then show that there is a function in Lp that is not in Lq.

13:8.5 Let 0 < p < q ≤ ∞. Show that there is a function in Lp that is not in Lq if and only if X
contains sets of arbitrarily small positive measure.

13:8.6 Let 0 < p < q ≤ ∞. Show that there is a function in Lq that is not in Lp if and only if X
contains sets of arbitrarily large finite positive measure.

13:8.7 Let 1 ≤ p < q ≤ ∞. Show that Lp ∩ Lq is a Banach space when furnished with the norm
‖f‖ = ‖f‖p + ‖f‖q.

13:8.8 Let 1 ≤ p < κ < q ≤ ∞. Show that the identity mapping from Lp ∩ Lq into Lκ is continuous
(when Lp ∩ Lq is furnished with the norm ‖f‖ = ‖f‖p + ‖f‖q).
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13.9 The Banach Algebra L1(IR)

In this section we investigate the structure of the space L1(IR) more closely. For this purpose
we take the functions now as complex valued. L1(IR) is a complex linear space furnished with a
norm that makes it a Banach space. It is also a Banach algebra when an appropriate multipli-
cation operation is defined. In Section 12.4 we saw that the operators on a Banach space form
such a structure. Let us recall the definition here of a Banach algebra.

Definition 13.26: A Banach algebra is a Banach space A on which is defined a multiplication
operation that satisfies the following conditions:

1. The multiplication operation is associative; that is,

x(yz) = (xy)z.

2. The multiplication operation is distributive; that is,

x(y + z) = xy + xz , (x+ y)z = xz + yz.

3. Scalar multiplication operation associates with the multiplication operation; that is,

(λx)y = λ(xy) = x(λy).

4. The norm satisfies ‖xy‖ ≤ ‖x‖ ‖y‖.

The appropriate multiplication operation in L1(IR) is defined by convolution:

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− y)g(y) dy.
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Lemma 13.27: The convolution

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− y)g(y) dy (22)

is defined for all f , g ∈ L1(IR), the function (f ⋆ g) is an element of L1(IR) and ‖f ⋆ g‖1 ≤
‖f‖1 ‖g‖1.

Proof. We give a proof without worrying about the measurability problem that arises. In the
exercises we allow the reader to take on this worry.

Assume first that f , g as given are nonnegative. Then, since they are measurable, the func-
tion

F (x, y) = f(x− y)g(y)

is a measurable function with respect to two-dimensional Lebesgue measure in IR2. (Is it?)
Thus we can apply Tonelli’s theorem (Theorem 6.7) to obtain

∫ ∫

IR2
F =

∫

IR

(∫

IR
f(x− y)g(y) dy

)
dx

=

∫

IR
g(y)

(∫

IR
f(x− y) dx

)
dy =

(∫

IR
g(y) dy

)(∫

IR
f(x) dx

)
.

We have also used the translation invariance of the integral in one of these computations. It
follows from this that the function

x→
∫

IR
f(x− y)g(y) dy
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is almost everywhere finite and integrable and that
∫

IR
(f ⋆ g)(x) dx =

(∫

IR
g(y) dy

)(∫

IR
f(x) dx

)

for nonnegative functions. Thus ‖f ⋆ g‖1 = ‖f‖1 ‖g‖1 for such functions. Then we use
∫

IR
|f ⋆ g| dx ≤

∫

IR
|f | ⋆ |g| dx = ‖f‖1 ‖g‖1

for the general case. �

Theorem 13.28: L1(IR) is a Banach algebra when multiplication is defined by convolution.

Proof. Lemma 13.27 supplies part of this. The only part that is not completely direct is to
show that the multiplication is associative, that is f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h. This is an interesting
exercise in the use of the Fubini–Tonelli theorems:

(f ⋆ g) ⋆ h(x) =

∫

IR

∫

IR
f(y)g(x− z − y)h(z) dy dz

=

∫

IR

∫

IR
f(y)g(x− y − z)h(z) dz dy = f ⋆ (g ⋆ h)(x).

�

A major point of investigation for Banach spaces is to determine the nature of the contin-
uous linear functionals, that is the continuous mappings from the space into C that preserve
the linear structure. For Banach algebras, this program requires us to focus on mappings that
preserve also the multiplicative structure.
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Definition 13.29: A mapping φ : B → C from a Banach space into the complex field is a com-
plex homomorphism if φ is a linear functional preserving multiplication, that is, for which

φ(λ1x+ λ2y) = λ1φ(x) + λ2φ(y) , φ(xy) = φ(x)φ(y)

for all complex numbers λ1, λ2 and all x, y ∈ B.

We are interested only in continuous homomorphisms. It is rather curious that all complex
homomorphisms on a Banach algebra are continuous in any case.

Theorem 13.30: If φ is a complex homomorphism on a Banach algebra B, then φ is continu-
ous.

Proof. We show that the norm of φ as a linear functional is at most 1 so that |φ(x)| ≤ ‖x‖
for all x ∈ B, and continuity is evident.

Suppose not. Then there exists an element x0 ∈ B for which |φ(x0)| > ‖x0‖. Let x =
(1/φ(x0))x0. Then

‖x‖ = |1/φ(x0)|‖x0‖ < 1

and

φ(x) = φ([1/φ(x0)]x0) = 1.

The series
∑∞

i=1 x
n must converge in the Banach space to an element z. Note that x+x (

∑∞
i=1 x

n) =
y so that y = x+ xy. Consequently,

φ(y) = φ(x+ xy) = φ(x) + φ(x)φ(y),

and so φ(y) = 1 + φ(y), which is impossible. �

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 13.9. The Banach Algebra L1(IR) 923

We now turn to a most natural and most important problem: to determine all the complex
homomorphisms on the Banach algebra L1(IR). Since we already know the nature of all con-
tinuous linear functionals on L1(IR) it is enough to examine these to see which are also com-
plex homomorphisms. The special form of the answer is given in equation (23), called a Fourier
transform.

Theorem 13.31: Associated with every nonzero complex homomorphism on the Banach alge-
bra L1(IR) there is a unique real number t so that

φ(f) =

∫ ∞

−∞
f(x)e−ixt dx. (23)

Proof. We know from Theorem 13.18 that there is a function h ∈ L∞(IR) for which

φ(f) =

∫ ∞

−∞
f(x)h(x) dx, (24)

so we have merely to show that h(x) = e−ixt for some t. We obtain this directly from Exer-
cise 13:9.13 by showing that h is a nonzero, bounded, complex-valued continuous function on IR
that everywhere satisfies the functional equation

h(x+ y) = h(x)h(y).

Since φ is a homomorphism on L1(IR), we know that

φ(f ⋆ g) = φ(f)φ(g).
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We apply (24) to both sides of this equation to get a relation involving h. First,

φ(f ⋆ g) =

∫

IR
f ⋆ g(x)h(x) dx

=

∫

IR
h(x) dx

∫

IR
f(x− y)g(y) dy

=

∫

IR
g(y) dy

∫

IR
fy(x)h(x) dx

=

∫

IR
g(y)φ(fy) dy,

where we have used the notation fy(x) = f(x− y) and have applied (24) twice. Also,

φ(f)φ(g) = φ(f)

∫

IR
g(y)h(y) dy,

so, putting these together, we have∫

IR
g(y)φ(f)h(y) dy =

∫

IR
g(y)φ(fy) dy

for every g ∈ L1(IR). This can happen only if

φ(f)h(y) = φ(fy) (25)

for almost every real y. There is no harm in redefining h on a set of measure zero so that (25)
holds everywhere, and so we now know precisely what h is in terms of φ.

The functions y → fy and φ are both continuous (see Exercise 13:9.11), and so h is contin-
uous. We know already that h cannot be identically zero, and we know that h is bounded. We
now wish to show that it satisfies the functional equation h(x + y) = h(x)h(y). Using (25), we
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have

φ(f)h(x+ y) = φ(fx+y) = φ((fx)y)

and, using (25) twice more,

φ((fx)y) = φ(fx)h(y) = φ(f)h(x)h(y),

so h(x + y) = h(x)h(y) as required. It follows from Exercise 13:9.13 that h(x) = e−ixt for some
t, and the proof is complete. �

A final note: in the study of the Fourier transform many formulas simplify if Lebesgue mea-
sure on IR is rescaled by a factor of 1/

√
2π, and so the reader will often see the Fourier trans-

form in a slightly different form than this theorem provides with that factor in front of the inte-
gral sign.

Exercises

13:9.1 Let f , g ∈ L1(IR). Show that f ⋆ g = g ⋆ f at every point where one of the two functions is
defined.

13:9.2 Let f ∈ L1(IR) and g ∈ Lp(IR), 1 < p < ∞. Show that the convolution f ⋆ g is defined, that the
function (f ⋆ g) is an element of Lp(IR), and ‖f ⋆ g‖p ≤ ‖f‖1 ‖g‖p.

[Hint: Use ideas from the proof of Lemma 13.27 along with Hölder’s inequality.]

13:9.3 Let f , g ∈ L1(IRn). Define what should be meant by the convolution f⋆g and extend Lemma 13.27
to this setting.

13:9.4 Show that the algebra L1(IRn) has no unit element [i.e., there is no function u ∈ L1(IRn) so that
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f ⋆ u = u ⋆ f = f for all f ∈ L1(IRn)]. [Hint: Take a function f = χ
[0,1]

and show that

f(x) =

∫ ∞

−∞
u(t)f(x− nt) dt,

but that f(x− nt) → 0 everywhere as n→ ∞, and the dominated convergence theorem applies.]

13:9.5 Are any of the Lp spaces Banach algebras if multiplication is defined pointwise; that is, (fg)(x) =
f(x)g(x)? [Hint: Are the spaces closed under such an operation?]

13:9.6 In the proof of Lemma 13.27, why would it not have been enough merely to say that f(x − y)
and g(y) are integrable and hence so is the product.

13:9.7 Handle the measurability problem in Lemma 13.27. Let F1(x, y) = f(x). Show that F1 is a mea-
surable function in IR2. Consider the transformation T : (ξ, η) → (x, y) = (ξ − η, ξ + η). Show that
the composition

F (ξ, η) = F1 ◦ T (ξ, η) = F1(ξ − η, ξ + η) = f(ξ − η)

is measurable.

13:9.8 Avoid the measurability problem in Lemma 13.27. Argue that f and g can be replaced by Borel
functions f0 and g0 that are almost everywhere equal and so the integrals do not change. Is the
function F0(x, y) = f0(x− y)g0(y) a Borel function in IR2?

13:9.9 Let 1 ≤ p ≤ ∞. Prove that the convolution

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− y)g(y) dy

is defined for all f ∈ L1(IR) and g ∈ Lp(IR), that the function (f ⋆ g) is an element of Lp(IR), and
that ‖f ⋆ g‖p ≤ ‖f‖1 ‖g‖p.
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13:9.10 Let 1 ≤ p, q ≤ ∞ (not necessarily conjugate) such that

r−1 = p−1 + q−1 − 1 ≥ 0.

Prove that the convolution

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− y)g(y) dy

is defined for all f ∈ Lp(IR) and g ∈ Lq(IR), that the function (f ⋆ g) is an element of Lr(IR), and
that ‖f ⋆ g‖r ≤ ‖f‖p ‖g‖q.

13:9.11 Let f ∈ L1(IR) and y ∈ IR. Define the translate fy by fy(x) = f(x− y). Show that the mapping
y → fy is a continuous map of IR into L1(IR). [Hint: First approximate f by a continuous function
g that vanishes outside some interval.]

13:9.12 Show that
(f ⋆ g)y = fy ⋆ g = f ⋆ gy,

where the notation is as in Exercise 13:9.11.

13:9.13 Let h be a nonzero, bounded, complex-valued continuous function on IR that everywhere satis-
fies the functional equation

h(x+ y) = h(x)h(y).

Show that h = e−itx for some t. [Hint: Show first that h(0) = 1. Choose δ > 0 so that
∫ δ

0
h(x) dx =

c 6= 0, and show that ch(x) =
∫ x+δ

x
h(y) dy. Conclude that h is differentiable. Obtain that

h′(x) = h′(0)h(x) and hence that h(x) = eh′(0)x. You will need to remember that h is bounded.]

13.10 Weak Sequential Convergence

Let (X,M, µ) be a measure space, and let p, q be conjugate indices with 1 ≤ p < ∞. A se-
quence of functions {fn} converges in the sense of the norm in Lp(µ) to a function f if ‖fn −
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f‖p → 0; that is, if

∫

X
|fn − f |p dµ→ 0.

Often we must work with a weaker version of convergence in these spaces.

Definition 13.32: A sequence of functions {fn} converges weakly in Lp(µ) to a function f if∫

X
fng dµ→

∫

X
fg dµ

for all g ∈ Lq(µ).

By using Theorem 13.19, we see that this is the requirement that Γ(fn) → Γ(f) for all con-
tinuous linear functionals Γ on Lp(µ).

One of the most useful applications of this notion of weak convergence is in compactness ar-
guments. A sequence may be bounded in Lp(µ) and yet have no convergent subsequence (with
convergence interpreted in the norm sense). This would seem to imply that we are unable to
use any kind of compactness arguments when dealing with bounded sets in Lp(µ). But if we
can be satisfied with weak convergence, a convergent subsequence can be found.
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Theorem 13.33 (Weak sequential compactness) Suppose that (X,M, µ) is a σ-finite mea-
sure space, let 1 < p < ∞, and suppose that Lq(X,M, µ) is separable, where q is the conjugate
index to p. Suppose that {fn} is a sequence of functions with

‖fn‖p ≤M

for some M . Then there is a function f ∈ Lp(µ) with

‖f‖p ≤M

and a subsequence {fnk
} that converges weakly in Lp(µ) to f .

Proof. Fix an element g1 ∈ Lq. We show how to determine a subsequence so that

lim
k→∞

∫

X
fnk

g1 dµ (26)

exists. By Hölder’s inequality, we know that
∣∣∣∣
∫

X
fng dµ

∣∣∣∣ ≤M‖g‖q <∞,

and so this sequence of real (complex) numbers is bounded. Thus a subsequence for which the
limit (26) exists can be found merely from the Bolzano–Weierstrass theorem.

Fix elements g1, g2, . . . , gm ∈ Lq. We can determine a subsequence so that

lim
k→∞

∫

X
fnk

gi dµ (27)

exists for each i = 1, 2, 3, . . .m. We just apply the same argument for each i and pass to subse-
quences of subsequences.
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Finally, and much more generally, let g1, g2, . . . be an infinite sequence of elements of Lq

that forms a dense subset. Once again we can determine a subsequence so that

lim
k→∞

∫

X
fnk

gi dµ (28)

exists for each i = 1, 2, 3, . . . . We cannot quite use a “subsequence of a subsequence” argu-
ment indefinitely, but we can use a Cantor diagonalization argument to get a single subsequence
{fnk

} that works for each gi (Exercise 13:10.6).
Define a functional Γ on Lq by first writing

Γ(gi) = lim
k→∞

∫

X
fnk

gi dµ (29)

for each gi in our dense set and then extending to all of Lq by continuity. By Hölder’s inequal-
ity applied to (29), we have

|Γ(gi) − Γ(gj)| ≤M‖gi − gj‖,
and so Γ is uniformly continuous on the dense subset, allowing therefore a unique extension to
a continuous functional. We claim that Γ is linear. It is certainly linear on the dense subset
formed from the {gi} because of its definition as an integral in (29). This linearity is preserved
in the limit, too, when extended to all of Lq. Note as well that ‖Γ‖ ≤M .

We apply Theorem 13.18 to obtain an element f ∈ Lp so that

Γ(g) =

∫

X
fg dµ

for all g ∈ Lq. It is easy to see now that f is precisely the element of Lp that we want, that
fnk

→ f weakly, and that ‖f‖p ≤M . �
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Exercises

13:10.1 Give an example of a sequence in ℓp for (1 < p < ∞) that converges weakly but not in norm.
Check that your example does not converge weakly in ℓ1.

13:10.2 As a project, find and present a proof of the following theorem.

Theorem (Shur) A weakly convergent sequence in ℓ1 is necessarily also norm conver-
gent.

13:10.3 Let 1 < p < ∞, and suppose that {fn} is a bounded sequence in Lp[0, 1]. Show that if fn → f
almost everywhere then fn → f weakly in Lp[0, 1].

13:10.4 Let 1 < p < ∞, and suppose that {fn} is a sequence in Lp[0, 1]. Show that fn → f weakly in
Lp[0, 1] if and only if {fn} is bounded and

∫
E
fn(x) dx converges to

∫
E
f(x) dx for every measur-

able subset of [0, 1].

13:10.5 Let 1 < p < ∞, and suppose that {fn} is a sequence in Lp[0, 1]. Show that fn → f weakly in
Lp[0, 1] if and only if {fn} is bounded and fn → f in measure. (What if p = 1?)

13:10.6 In the proof of Theorem 13.33 we left out some details involving “subsequences of subsequences.”
How might these be provided?

13.11 Closed Subspaces of the Lp Spaces

In this section we prove a property of closed subspaces of the Lp spaces as an interesting appli-
cation of the closed graph theorem from Section 12.14. The theorem is due to A. Grothendieck.
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Theorem 13.34: Let (X,M, µ) be a finite measure space and let W be a closed subspace of
Lp(µ) consisting of essentially bounded functions [i.e., W ⊂ L∞(µ)]. Then W is finite dimen-
sional.

Proof. For our application of the closed graph theorem, the reader need recall only that, if
the map Γ : W → L∞ defined by Γ(f) = f (i.e., the identity injection) has a closed graph, then
it is continuous. To see that the graph is closed, consider a sequence {fn} in W so that fn → f
in W and Γ(fn) = fn → g in L∞: then f = g a.e. and this shows that the graph of Γ is closed.
Hence, by a basic property of continuous operators,

‖f‖∞ ≤M‖f‖p (for all f ∈W ). (30)

Here we are considering W as a Banach space itself using the Lp–norm; since W is a closed sub-
set of Lp, this is justified. This is the only use made of the hypothesis that W is closed.

We need to sharpen our inequality (30) to obtain

‖f‖∞ ≤M1‖f‖2 (for all f ∈W ), (31)

thus allowing us to use some special features of L2. If 1 ≤ p ≤ 2, then (31) is immediate with
M1 = M , since then

‖f‖p ≤ ‖f‖2.

If 2 < p < ∞, then, since µ(X) is finite and f is essentially bounded, we can obtain (31) with
an appropriate M1 by integrating the inequality

|f |p ≤ (‖f‖∞)p−2 |f |2

and using (30).
Now that we have placed W inside L2, we can use special features of the latter space to

show that W must be finite dimensional. Let {f1, f2, . . . , fn} be a linearly independent set in
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W ; without loss of generality, we can assume that these are orthonormal in L2 (by applying the
elementary Gram–Schmidt process for example). Thus

∫

X
fifj dµ

is 0 or 1 depending on i 6= j or i = j. Our goal is to show that n cannot be too big, in fact, that
n ≤M2

1µ(X).
For each choice of rational numbers c = (c1, c2, . . . , cn) with

∑n
i=1 |ci|2 ≤ 1, define a function

Fc =
n∑

i=1

cifi.

Note that Fc ∈W and that

‖Fc‖2 = ‖
n∑

i=1

cifi‖2 =
n∑

i=1

|ci|2 ≤ 1

follows from the Pythagorean theorem (Exercise 13:5.4). Consequently, by (31),

‖Fc‖∞ ≤M1‖Fc‖2 ≤M1.

Thus there is a set of measure zero Ec such that
∣∣∣∣∣

n∑

i=1

cifi(x)

∣∣∣∣∣ ≤M1
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for all x ∈ X \ Ec. Let E denote the intersection of the countable family of all sets Ec taken
over rational numbers c = (c1, c2, . . . , cn) with

∑n
i=1 |ci|2 ≤ 1. Then we have

∣∣∣∣∣

n∑

i=1

cifi(x)

∣∣∣∣∣ ≤M1

for all x ∈ X \ E and any choice of rational numbers (c1, c2, . . . , cn) with
n∑

i=1

|ci|2 ≤ 1.

By continuity, this same inequality holds for all real numbers c = (c1, c2, . . . , cn) with
∑n

i=1 |ci|2 ≤
1. But, at any x for which this is true, we must have

n∑

i=1

|fi(x)|2 ≤M2
1 .

This inequality holds almost everywhere on X, and so an integration [remember that
∫
X |fi(x)|2 dµ =

1] gives us

n ≤M2
1µ(X)

as required to complete the proof. �

We should not leave this theorem without constructing a closed infinite-dimensional proper
subspace of an Lp space that lies in some later Lq space (but not in L∞ because of the theo-
rem). This also proves interesting for us because it exploits some of the basic tools in the sub-
ject (Hölder’s inequality, Cauchy sequences) and previews some ideas from trigonometric series
that are to reappear in a fuller light in Chapter 15.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 13.11. Closed Subspaces of the Lp Spaces 935

Theorem 13.35: Let L1 be the space of Lebesgue integrable functions on the interval [−π, π].
Then there is an infinite-dimensional closed subspace of L1 that forms a closed subspace of L4.

Proof. The computations are simpler if we use the measure

µ = (2π)−1λ,

that is, Lebesgue measure divided by 2π. This makes the family {eijt} orthonormal in the L2–
norm, and combinations can be used to form our subspace. Let E be the set of integers 2k for
k = 1, 2, 3, . . . . The only significant feature for us is that E is infinite and that no integer can
be written as a sum of members of E in more than one way. Define W1 to be the vector space
of all functions of the form

f(eit) =
∞∑

j=1

cje
ijt,

where cj = 0 if j 6∈ E. Let W be the closure in L1[−π, π] of W1. It is obvious that W is closed
and infinite dimensional; we must show that every function in W is also from L4 and that W is
also closed in L4.

Let

f(eit) =
∞∑

j=1

cje
ijt,

where cj = 0 if j 6∈ E be any member of W1. Then squaring, we have

f2(eit) =
∑

j

c2je
2ijt +

∑

j 6=k

cjcke
i(j+k)t.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



936 The Lp spaces Chapter 13

Under our assumptions on E, we see that a nonzero coefficient for the term ei(j+k)t can occur
only once as cjck for j, k ∈ E. Thus, using the Pythagorean theorem (Exercise 13:5.5),

∫

[−π,π]
|f2|2 dµ =

∑

j

|cj |4 + 2
∑

j 6=k

|cj |2|ck|2

≤ 2


∑

j

|cj |2



2

= 2

(∫

[−π,π]
|f2| dµ

)2

.

Consequently, ‖f‖4
4 ≤ 2‖f‖4

2 or ‖f‖4 ≤ 21/4‖f‖2.
To improve this estimate, we need to relate it to the L1-norm. Use Hölder’s inequality and

the conjugate indices p = 3, q = 3/2 to obtain∫

[−π,π]
|f |2 dµ =

∫

[−π,π]
|f |4/3 · |f |2/3 dµ

≤
(∫

[−π,π]

(
|f |4/3

)3
dµ

)1/3(∫

[−π,π]

(
|f |2/3

)3/2
dµ

)2/3

,

and so

‖f‖2
2 ≤ ‖f‖4/3

4 ‖f‖2/3
1 .

If we combine this with the inequality

‖f‖4 ≤ 21/4‖f‖2

obtained above, we have (after some arithmetic) that

‖f‖4 ≤ 23/4‖f‖1.
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This shows that every L1-Cauchy sequence in the set W1 is also an L4-Cauchy sequence. It fol-
lows that the L1-closure W must be a subset of L4. Since it is closed by definition in the L1-
norm and in general we have ‖f‖1 ≤ ‖f‖4, we see that W is closed in L4. �

Exercises

13:11.1 In the proof of Theorem 13.34, go through the computations necessary to establish (31): for
2 < p <∞ show that

‖f‖∞ ≤Mp/2‖f‖2 (for all f ∈W ).

13.12 Additional Problems for Chapter 13

13:12.1 Show that if f ∈  Lp(X,M, µ) then

lim
t→∞

tpµ ({x ∈ X : |f(x)| > t}) = 0.

13:12.2 Let 1 < p < ∞. A necessary and sufficient condition that a function F on [0, 1] be an indefinite
integral of a function f ∈ Lp[0, 1] is that

sup

n∑

i=1

F (xi) − F (xi−1)

(xi − xi−1)p−1
<∞

where the supremum is taken over all partitions

0 = x0 < x1 < x2 < · · · < xn = 1

of the interval [0, 1]. What are the appropriate characterizations for the cases p = 1 and p = ∞?
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13:12.3 Let 1 < p < ∞. A sequence {ξn} converges weakly to ξ in ℓp(X) if and only if supn ‖ξn‖ < ∞
and ξn(x) → ξ(x) for every x ∈ X. (See Exercise 13:2.1 for the terminology.)

13:12.4 Show that the sequence of functions

fn(x) = nχ
(0,1/n)

converges a.e. and in measure on [0, 1], but not weakly in Lp[0, 1].

13:12.5 Let f ∈ Lp(X,M, µ), and define the function

Ff (t) = µ ({x ∈ X : |f(x)| > t}) .

(a) Show that Ff is a nondecreasing function on (0,∞) and continuous on the right.

(b) If |f | ≤ |g| almost everywhere, then show that Ff ≤ Fg everywhere.

(c) Show that ∫

X

|f |p dµ = −
∫ ∞

0

tp dFf (t) = p

∫ ∞

0

tp−1Ff (t) dt.

13:12.6 Let 1 ≤ p, q ≤ ∞ be conjugate indices, and suppose that f ∈ Lp(IR) and g ∈ Lq(IR). Show that
f ⋆ g(x) exists everywhere, that f ⋆ g is bounded and continuous on IR, and that

‖f ⋆ g‖∞ ≤ ‖f‖p ‖g‖q.

[Hint: Consider ‖(f ⋆ g)y − f ⋆ g‖∞.]

13:12.7 Prove Steinhaus’s theorem:

Theorem (Steinhaus) Let E ⊂ IR be a measurable set of positive measure. Then the
set

E − E = {x− y : x, y ∈ E}
contains an interval (−δ, δ).
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[Hint: Show that φ = χ
E
⋆ χ

E
is continuous and that φ(0) > 0. Then φ(x) > 0 on some interval

(−δ, δ), and so for each x in that interval there is a t with χ
E

(t)χ
E

(t− x) > 0.]
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Chapter 14

HILBERT SPACES

The spaces that we study in this chapter have been named in honor of David Hilbert (1861–
1943), by folklore, the last of the great universal mathematicians. To be sure there are today
and will be tomorrow great algebraists, great analysts, great topologists, and others, but Hilbert
is considered by many to be the end of the line of the great universal mathematicians that con-
tains such important figures as Gauss, Euler, and Riemann.

It seems to have been F. Riesz who first named Hilbert spaces this way (un espace Hilber-
tien) in his study of the sequence space ℓ2 of square summable sequences. Hilbert himself did
not use the term space in his studies or use any explicit geometric language, but the methods
that he developed in investigations of infinite systems of linear equations, infinite quadratic
forms, and integral equations we would certainly consider as Hilbert space methods. The theory
came into its own as a recognizable subject by the 1920s when John von Neumann (1903–1957)
showed that these spaces were fundamental to an understanding of quantum mechanics.

The basic underlying idea goes back as far as Gauss and Legendre in the familiar method

940
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of least squares. It was not, however, until the twentieth century that this was placed in the
context of infinite-dimensional spaces and the theory developed in the direction we see now.

Hilbert spaces are very special Banach spaces. Indeed they are extraordinary in many ways.
The geometry is more transparent, the proofs easier and more beautiful, and the results farther
reaching. The study of Banach spaces is much messier and less organized. The fundamental
reason is that Hilbert spaces are self-adjoint; that is, the space of continuous linear functionals
on a Hilbert space is the space itself. This relation is described by an inner product that, along
with the linear structure, carries the full structure of the space.

Our chapter is only an introduction. Many long treatises have been written on this subject,
and the reader here will see only the fundamentals and a few highlights. The basic theory of
orthogonal series is covered. A few ideas related to weak sequential convergence appear, and
a version of the spectral theorem for compact operators is given. This is more than enough to
give the flavor of Hilbert space and provides all the basic tools of the subject.

14.1 Inner Products

We shall insist that our Hilbert spaces use complex scalars, although real Hilbert spaces are
of use. The reason for this is similar to the situation in elementary algebra: to study real n ×
n matrices requires exploring their eigenvalues, and eigenvalues even of real matrices are fre-
quently complex numbers. It is better at the outset of such a study to investigate complex n×n
matrices.

Let X be first of all a complex linear space. As before, we use 0 to denote the origin. Rather
than place a norm on X directly, we shall assume that X is equipped with an inner product;
from the inner product we will derive a norm so that X is then furnished with a norm struc-
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ture, too.

Definition 14.1: A scalar function (f, g) : X ×X → C (or IR if X is a real linear space) is said
to be an inner product or scalar product if it satisfies the following conditions:

1. (f, f) ≥ 0 for all f ∈ X, with equality if and only if f = 0.

2. (f, g) = (g, f) for all f, g ∈ X.

3. (af, g) = a(f, g) for all f, g ∈ X and a ∈ C (or IR).

4. (f1 + f2, g) = (f1, g) + (f2, g) for all f1, f2, g ∈ X.

We say that X is an inner product space if X is a linear space equipped with an inner prod-
uct. We will see, in due course, that

‖f‖ =
√

(f, f)

is a norm on X. Thus an inner product space is also a normed linear space and inherits all the
terminology of Chapter 12. In particular, it can be a Banach space too: if so, we shall say that
X is a Hilbert space. Specifically, then, a Hilbert space is an inner product space that is com-
plete as a metric space when furnished with the norm ‖f‖ =

√
(f, f). It will be clear from the

context whether a real or a complex Hilbert space is intended; assume the latter in most cases.
For the rest of this section we discuss only the most rudimentary properties. Notice first the

linearity of an inner product in the first variable:

(λ1f1 + λ2f2, g) = λ1(f1, g) + λ2(f2, g).
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There is a kind of linearity in the second variable, but complex conjugation enters in:

(f, λ1g1 + λ2g2) = λ1(f, g1) + λ2(f, g2).

If the space is real, then, the form is linear in each variable.
We define a norm on X by

‖f‖ =
√

(f, f). (1)

We shall show that this definition does, in fact, provide a norm. For the moment, ‖f‖ is only
an alternative notation for

√
(f, f).

Lemma 14.2 (Cauchy–Schwarz inequality) Let f, g be elements of an inner product space
X. Then the following inequality holds:

|(f, g)| ≤ ‖f‖ ‖g‖ (2)

with equality if and only if f and g are linearly dependent in X.

Proof. We can repeat the proof of Lemma 13.12 here since that proof did not use any special
features of the space L2 that are not also true in a general inner product space.

First, suppose that X is a real inner product space. Consider the polynomial

p(α) = (αf + g, αf + g) = α2(f, f) + 2α(f, g) + (g, g)

= ‖f‖2α2 + 2(f, g)α+ ‖g‖2.

The definition of p, together with the fact that (αf + g, αf + g) must be nonnegative, implies
that p(α) ≥ 0 for all α ∈ IR. It follows from the quadratic formula that

(f, g)2 − ‖f‖2‖g‖2 ≤ 0. (3)
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Otherwise, the quadratic p would have two distinct roots and would therefore not be nonnega-
tive. The inequality (2) follows from (3).

Now suppose that the space is a complex inner product space and fix f , g. There is a real
θ so that (f, g) = eiθ|(f, g)|. Let f1 = e−iθf , and observe that (f1, g) = |(f, g)|. Since (f1, g)
is real, we can obtain from the argument of the first paragraph that (f1, g) ≤ ‖f1‖ ‖g‖. Since
‖f1‖ = ‖f‖, the inequality (2) follows. �

We verify that ‖f‖ as given in (1) is actually a norm on X. It is obvious that ‖f‖ = 0 if and
only if f = 0 and ‖af‖ = |a|‖f‖ for all a ∈ C. It remains to check the triangle inequality.

Lemma 14.3: For all f, g in an inner product space X,

‖f + g‖ ≤ ‖f‖ + ‖g‖.

Proof. For all f, g ∈ X,

‖f + g‖2 = (f + g, f + g)

= (f, f) + (g, f) + (f, g) + (g, g)

≤ (f, f) + 2|(f, g)| + (g, g)

≤ ‖f‖2 + 2‖f‖‖g‖ + ‖g‖2 = (‖f‖ + ‖g‖)2,

the last inequality following from the Cauchy–Schwarz inequality. Thus

‖f + g‖ ≤ ‖f‖ + ‖g‖.
This establishes the triangle inequality. �

The next theorem is usually called the parallelogram law because of its geometric interpre-
tation: the sum of the squares of the diagonals of a parallelogram is the sum of the squares of
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the sides. This characterizes the norm in a Hilbert space. If a normed linear space has a norm
that satisfies the parallelogram law, then there is an inner product on the space that expresses
this norm (see Exercises 14:1.4 and 14:1.8).

Theorem 14.4 (Parallelogram law) In any inner product space the identity

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2) (4)

holds for all pairs f , g.

Proof. A direct computation yields

‖f + g‖2 + ‖f − g‖2 = (f + g, f + g) + (f − g, f − g)

= 2(‖f‖2 + ‖g‖2)

as required. �

Orthogonality in an inner product space or a Hilbert space is defined as in IRn. Two ele-
ments f, g are orthogonal if (f, g) = 0. By this definition, the zero element is orthogonal to
every element, but is the only such element. A family of elements is said to be orthonormal if
every pair of members is orthogonal and all elements have unit length. The reader should re-
call that this is precisely how orthogonality and orthonormality in Euclidean spaces are defined.
Thus there should be no surprise that a Pythagorean theorem is available.

Theorem 14.5 (Pythagorean theorem) If f1, f2, . . . , fn are pairwise orthogonal elements
of an inner product space, then ∥∥∥∥∥

n∑

i=1

fi

∥∥∥∥∥

2

=
n∑

i=1

‖fi‖2 .
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Proof. This is an entirely elementary computation starting with
∥∥∥∥∥

n∑

i=1

fi

∥∥∥∥∥

2

= (
n∑

i=1

fi,
n∑

j=1

fj)

and continuing in the obvious manner, making use of the fact that (fi, fj) = 0 for i 6= j. �

Here is another variant of the Pythagorean theorem.

Corollary 14.6: If f1, f2, . . . fn are orthonormal elements of an inner product space, then
∥∥∥∥∥

n∑

i=1

cifi

∥∥∥∥∥

2

=
n∑

i=1

|ci|2.

We conclude this section with some standard examples of Hilbert spaces. In fact, these are
the only examples of Hilbert spaces: any other Hilbert spaces that might be differently given
will turn out to be identical to one of these.

Example 14.7: (Euclidean space) The spaces IRn and Cn are examples of real and complex
Hilbert spaces. The inner product is the familiar (x, y) =

∑n
i=1 xiyi in the real case and (x, y) =∑n

i=1 xiyi in the complex case. In both cases, the norm is

‖x‖ =
√

(x, x) =

√√√√
n∑

i=1

|xi|2.

Since these spaces are complete, they are Hilbert spaces.
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Example 14.8: (The space ℓ2) The space ℓ2 has been defined as the collection of all sequences
{xk} of real or complex numbers such that

∑ |xk|2 < ∞. The inner product is the infinite-
dimensional analog of that for the spaces IRn and Cn and just substitutes an infinite sum for a
finite one: (x, y) =

∑∞
i=1 xiyi in the real case and (x, y) =

∑∞
i=1 xiyi in the complex case. In

both cases, the norm is

‖x‖ =
√

(x, x) =

√√√√
∞∑

i=1

|xi|2.

Since ℓ2 is complete, it is a Hilbert space. (See also Section 13.5.)

Example 14.9: (The space ℓ2(I)) Let I be any nonempty set. We can generalize both of the
preceding examples by defining ℓ2(I) to be the collection of all real or complex functions x on I
such that

∑
i∈I |xi|2 <∞. The inner product is defined to be

(x, y) =
∑

i∈I

xiyi

in the real case and

(x, y) =
∑

i∈I

xiyi

in the complex case. In both cases, the norm is

‖x‖ =
√

(x, x) =

√∑

i∈I

|xi|2.

The space ℓ2(I) can be shown to be complete and so is a Hilbert space. Note that already this
includes the preceding examples for different index sets either by using I = {1, 2, 3, . . . , n} or
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I = IN.
To interpret this example, the reader must be informed as to the meaning of infinite, un-

ordered sums of the form A =
∑

i∈I ai. The meaning is taken that for every ε > 0 there is a
finite set F ⊂ I so that

|A−
∑

i∈F ′

ai| < ε

for every finite set F ′ with F ⊂ F ′ ⊂ I.

Example 14.10: (The space L2(X,M, µ)) The special space studied in Section 13.5 is a Hilbert
space. Recall that the inner product is taken as

(f, g) =

∫

X
fg dµ

and the norm as

‖f‖ =
√

(f, f) =

√∫

X
|f |2 dµ.

In fact, this space will also turn out to be identical with ℓ2 or ℓ2(I) for some appropriate index
set I.

Exercises

14:1.1 If fn → f and gn → g, show that (fn, gn) → (f, g).

14:1.2 Show that the mapping f → (f, g) for a fixed g ∈ H is a continuous linear functional on H and
that its norm (as a linear functional) is precisely ‖g‖.
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14:1.3 Show that the parallelogram law fails for L1, and thus there is no choice of inner product giving
that norm. [Hint: For X = [0, 1], f = χ

[0,1/2]
, and g = χ

[1/2,1]
, calculate ‖f + g‖1 = ‖f − g‖1 = 1

and ‖f‖1 = ‖g‖1 = 1
2 .]

14:1.4♦ Show that if the parallelogram law (4) is valid for a real normed linear space X then

(f, g) =
1

4
(‖f + g‖2 − ‖f − g‖2)

is a real inner product on X that gives rise to the norm via (1).

14:1.5 Show that the spaces Lp and ℓp are inner product spaces if and only if p = 2.

14:1.6♦ Give a converse to Theorem 14.5 in a real inner product space: if

‖f1 + f2‖2 = ‖f1‖2 + ‖f2‖2,

then f1 and f2 are orthogonal.

14:1.7♦ (Polarization identity) For any f , g in a complex inner product space,

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2.

14:1.8♦ Show that if the parallelogram law (4) is valid for a complex normed linear space X then there
is an inner product on X that gives rise to the norm (cf. Exercises 14:1.4 and 14:1.7).

14:1.9♦ Let {fn} be an orthogonal sequence in a Hilbert space H. Show that the series
∑∞

i=1 fi con-
verges in H if and only if

∑∞
i=1 ‖fi‖2 <∞.

14:1.10 For any set S in an inner product space P , write

S⊥ = {f ∈ H : (f, g) = 0 for all g ∈ S}
so that S⊥ is the set of all elements of the space orthogonal to each element of S. Possibly S⊥

may consist of just the zero vector, but often it is much more. Let A and B be nonempty subsets
of an inner product space. Prove the following:
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(a) A⊥ is a closed subspace.

(b) If A ⊂ B, then B⊥ ⊂ A⊥.

(c) If A ⊂ B, then (A⊥)⊥ ⊂ (B⊥)⊥.

(d) (A⊥)⊥ is the smallest closed subspace containing A.

(e) A⊥⊥⊥ = A⊥⊥. [Here A⊥⊥⊥ means ((A⊥)⊥)⊥.]

(f) A⊥ ∩A is either empty or {0}.

(g) {0}⊥ is the entire space P and P⊥ = {0}.

(h) If A is dense in P , then A⊥ = {0}.

14:1.11 Let E be a linear subspace of a Hilbert space H.

(a) Show that E⊥⊥ = E, the closure of E.

(b) Show that if E is closed then E⊥⊥ = E.

(c) Show that E⊥ = {0} if and only if E is dense in H.

(d) Show that if E is closed and E⊥ = {0} then E = H.

14:1.12 In quantum mechanics the inner product (f, g) would be written instead as < g|f >. Change
the axioms so that they work for this notation.

14.2 Convex Sets

A set E in a vector space is said to be convex if the line segment joining any pair of points in E
is itself in E. In algebraic terms, this merely requires that whenever f , g ∈ E and 0 < t < 1 the
point tf + (1 − t)g is in E. In particular, subspaces are always convex.
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We now prove an interesting and useful, but elementary property of convex sets in a Hilbert
space. This arises from a best-approximation problem: given a subset E of a normed linear
space and an element x of the space, is there a nearest point in E to x? Recall we have used
the notation dist(x,E) in a general metric space to represent the distance from a point x to a
set E. Here in a normed space

dist(x,E) = inf {‖x− y‖ : y ∈ E} .
A closest approximation to x from E would be an element xa ∈ E with

‖xa − x‖ = dist(x,E).

Even in one or two dimensions, it is easy to see that closest approximations need not exist and,
if they do, they need not be unique. It is natural to ask for E to be closed, but even then a
nearest point in E may not be found. In a Hilbert space, we require only that E be closed and
convex in order for a completely satisfactory solution of the problem to be found; in a Banach
space, this is not generally true. What is most remarkable about the following theorem is that
the proof requires very little more than the parallelogram law; this also shows why we might
not expect such a statement in an arbitrary Banach space.

Theorem 14.11: Let C be a closed, nonempty convex set in a Hilbert space H, and let f ∈ H.
Then there exists a unique point g in the set C such that

dist(f, C) = ‖f − g‖.

Proof. We can assume that f = 0 (by replacing C by C − f). Let

c = dist(0, C) = inf{‖g‖ : g ∈ C}.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



952 Hilbert Spaces Chapter 14

For any g1, g2 ∈ C, the parallelogram law yields
1
4‖g1 − g2‖2 = 1

2‖g1‖2 + 1
2‖g2‖2 − ‖1

2(g1 + g2)‖2,

and from this inequality and the fact that 1
2(g1 + g2) must also be in the convex set C, we ob-

tain

‖g1 − g2‖2 ≤ 2‖g1‖2 + 2‖g2‖2 − 4c2. (5)

Uniqueness in the statement of the theorem is immediate from (5), for if ‖g1‖ = ‖g2‖ = c, then
‖g1 − g2‖ = 0.

There is a sequence gn ∈ C with ‖gn‖ → c. From (5) we have

‖gn − gm‖2 ≤ 2‖gn‖2 + 2‖gm‖2 − 4c2, (6)

which shows that {gn} is a Cauchy sequence. Since H is a Hilbert space, gn converges to some
element fa and, since C is closed, fa ∈ C. But

|‖gn‖ − ‖fa‖| ≤ ‖gn − fa‖ → 0,

so ‖fa‖ = c, as required for our closest approximation. �

Corollary 14.12: Every closed, convex set in a Hilbert space has a unique element of smallest
norm.

Let us think for a moment about what this theorem says if E is a closed subspace of a Hilbert
space H and we want (and we frequently do) a closest approximation to an element f by some
member from E. Since subspaces are convex, the theorem applies to show that there is a unique
element fa ∈ E closest to f , that is with dist(f,E) = ‖f − fa‖. Consider the geometry here: in
a finite-dimensional space, we would expect the nearest element to be the orthogonal projection
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onto the subspace. Is there a similar statement in any Hilbert space, too? For any g ∈ E, g 6= 0
we can check the inner product (f − fa, g). Let fp = f − fa and λ be a scalar. Since E is a
subspace,

‖fp − λg‖2 = ‖f − (fa + λg)‖2 ≥ dist(f,E)2 = ‖f − fa‖2.

We can write this as inner products and obtain

−λ(fp, g) − λ(g, fp) + |λ|2(g, g) ≥ 0.

Inserting λ = (fp, g)/(g, g), we can conclude that |(fp, g)|2 ≤ 0 and hence that (fp, g) = (f −
fa, g) = 0.

This shows that we have obtained a decomposition f = fa + fp, where fa is the nearest
element in the subspace E, and fp is orthogonal to every element in E. In short, exactly the
same geometric picture can be used here in a general Hilbert space as we are accustomed to in
finite-dimensional spaces. Nearest points and orthogonal projections are intimately related. We
can express this as a theorem. The uniqueness part of the statement is left as an exercise.

Theorem 14.13: Let H be a Hilbert space and E a closed subspace. Then every element f of
H can be written uniquely in the form

f = fa + fp,

where fa ∈ E and fp is orthogonal to each element of E. Moreover, ‖f‖2 = ‖fa‖2 + ‖fp‖2.

Exercises

14:2.1 In the statement of Theorem 14.11, show that we can take H as an inner product space (not
necessarily complete), provided that we insist that C is complete and not merely closed.
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14:2.2 Give examples in IR2 showing that in Theorem 14.11 there may be no nearest point, or, if there
is, it is not unique in the case where C is not convex or is not closed.

14:2.3 Show that the representation f = fa + fp in Theorem 14.13 is unique.

14:2.4 Let E be a bounded, convex set in a Hilbert space H, and suppose that ‖fn‖ → dist(0, E). Show
that {fn} is convergent, but not necessarily to an element of E.

14.3 Continuous Linear Functionals

Our main theorem showing that the inner product supplies all the continuous linear functionals
on a Hilbert space is due to Maurice Fréchet and F. Riesz.

Theorem 14.14 (Fréchet–Riesz) Suppose that Γ is a continuous linear functional on a
Hilbert space H. Then there exists a unique element g ∈ H so that Γ(f) = (f, g) for all f ∈ H.

Proof. If Γ is the zero functional, then the choice of g is easy, the zero function. Otherwise,
let E be the set of all f ∈ H for which Γ(f) = 0. This set E forms a subspace (since Γ is
linear), and it is closed (since Γ is continuous). There must be an element g1 that is not in
the closed subspace E (since Γ is not identically zero) and hence, by Theorem 14.13, there is
an element g2 that is not in E and is orthogonal to every element of E. We can assume that
‖g2‖ = 1. Let λ = Γ(g2) and g = λg2.

It remains only to verify that this element g satisfies Γ(f) = (f, g) for all f ∈ H. Let f ∈ H
be arbitrary, and write h = Γ(f)g2 − Γ(g2)f . We can check that

Γ(h) = Γ(f)Γ(g2) − Γ(g2)Γ(f) = 0,
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which means that h must belong to E and is thus orthogonal to g2. Consequently, since ‖g2‖ =
1,

0 = (h, g2) = (Γ(f)g2 − Γ(g2)f, g2)

= Γ(f)(g2, g2) − Γ(g2)(f, g2) = Γ(f)(g2, g2) − λ(f, g2)

= Γ(f) − (f, λg2) = Γ(f) − (f, g),

and so Γ(f) = (f, g), as required.
The uniqueness part of the proof is easy enough to be left as an entertainment (Exercise 14:3.1).

�

This theorem shows us that every continuous linear functional is of a very special, easily un-
derstood type. In the language of Banach spaces, we can say more. If the reader has mastered
the language of the dual spaces (Section 12.3), then the following more precise formulation can
be understood. The dual of a Hilbert space H (or any Banach space in fact) is written H∗ and
defined as the linear space of all continuous linear functionals on H, furnished with the usual
operator norm. By the theory we that know so far, H∗ will be a Banach space; if we find the
correct inner product then, it is also a Hilbert space.

Theorem 14.15: Let H be a Hilbert space. Then the conjugate space H∗ is also a Hilbert
space.

Proof. We can associate with every element Γ ∈ H∗ a unique element g ∈ H so that Γ(f) =
(f, g) for every f ∈ H. This defines a mapping Φ : H → H∗ by

Φ(g)(f) = (f, g).
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The mapping Φ is evidently, by Theorem 14.14, both one-one and onto. One might have hoped
at this stage to see what to do, but this is hampered a bit by the fact that this mapping is not
quite linear: a quick check reveals that

Φ(c1f1 + c2f2) = c1Φ(f1) + c2Φ(f2). (7)

With that in mind, the inner product on H is easily lifted over to H∗. Define for any pair Γ1,
Γ2 ∈ H∗,

(Γ1,Γ2) = (Φ−1Γ2,Φ
−1Γ1)

and the rest of the proof is just computational. We need to show that this is indeed an inner
product on H∗ and that this inner product is associated with the norm that we usually use on
the dual space. The details are left to the reader. �

Finally, we can see that H and H∗ are identical as structures, justifying the loose statement
that a Hilbert space is its own dual. The mapping that connects the two spaces preserves all
elements of the structure except that it is not linear, but rather conjugate-linear, meaning that
it satisfies the relation (7). We remember that an isometry is norm preserving; this is all that
remains to be checked (Exercise 14:3.2) to justify the following theorem.

Theorem 14.16: Let Φ be the mapping from H to H∗ defined by

Φ(g)(f) = (f, g)

for all f ∈ H. Then Φ is a conjugate-linear isometry of H onto H∗.

Exercises

14:3.1♦ Let Γ be a continuous linear functional on a Hilbert space H. Show that the representation
Γ(f) = (f, g) (f ∈ H) in Theorem 14.14 is unique.
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14:3.2♦ Let Φ be the mapping from a Hilbert space H to its dual H∗ defined by Φ(g)(f) = (f, g) for all
f ∈ H. Show that ‖Φ(g)‖ = ‖g‖.

14:3.3♦ (Compare with Exercise 14:1.9.) Let {fn} be an orthogonal sequence in a Hilbert space H.
Show that the series

∑∞
i=1 fi converges in H if and only if the series of numbers

∑∞
i=1(fi, g) con-

verges for every g ∈ H. [Hint: Define

Γn(g) =
n∑

i=1

(fi, g)

and apply the uniform boundedness principle (Section 12.11) to the sequence {Γn}.]

14:3.4 In the language of Exercise 12:7.6, show that every Hilbert space is reflexive.

14.4 Orthogonal Series

In finite-dimensional vector spaces, one quickly learns the utility of the notion of a basis for the
space. In the special spaces IRn or Cn, all computations and geometric notions become even
simpler if that basis is an orthonormal system; that is, the vectors are mutually orthogonal and
have unit length. Most of these ideas can be lifted to Hilbert space. Here, however, the con-
cepts cannot be purely algebraic because infinite sums must frequently be used. Even so, much
of our work is merely algebraic and very familiar.

We need to recall what is meant by a linearly independent set in a linear space. A set is lin-
early independent if no finite linear combination of the elements (other than a zero combina-
tion) can produce the zero element. An orthogonal system in an inner product space consists of
pairwise orthogonal elements. An orthogonal system containing no zero elements is linearly in-
dependent. An orthonormal system consists of pairwise orthogonal elements each of unit length.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



958 Hilbert Spaces Chapter 14

An orthonormal system is always linearly independent. The well known Gram–Schmidt process
of elementary algebra allows one to take any linearly independent sequence {f1, f2, f3, . . . } in
an inner product space and produce from it an orthonormal system {g1, g2, g3, . . . } so that the
linear span of the set {f1, f2, f3, . . . , fn} is precisely the linear span of the set {g1, g2, g3, . . . , gn}
for each n.

By Zorn’s lemma, there is always a maximal orthonormal system in any Hilbert space H.
This is usually said to be an orthonormal basis for the space. We will check that this maximal
system is countable and so forms a sequence if and only if H is separable. Since nearly all im-
portant examples of Hilbert spaces arising in applications are separable, there will always be
a maximal orthonormal sequence available in most studies. Indeed, it turns out, as the main
theorem in this section shows, that all such spaces are identical with ℓ2 even if the definition
obscures this.

Theorem 14.17: A maximal orthonormal system in a Hilbert space H is countable if and only
if H is separable.

Proof. Certainly, if S is a maximal orthonormal system in H and S is not countable, then H
cannot be separable. For if f , g are distinct elements of S, then

‖f − g‖2 = ‖f‖2 + ‖−g‖2 = 2

so that ‖f − g‖ =
√

2. There is no hope then of a countable set approximating each member of
S.

On the other hand, if S is countable, then the linear span of S is dense in H and so, too, is
the set of all finite rational combinations. This latter is countable and so is a countable dense
set as needed to show that H is separable. To check that the linear span of S is dense in H, we
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use the maximality of S. If W is the span of H and it is not dense, then W is a closed, proper
linear subspace of H. Take an element f of H with ‖f‖ = 1 that is orthogonal to all of W (us-
ing Theorem 14.13). Then S ∪ {f} is now a larger orthonormal set than S, contradicting the
maximality of S. �

Example 14.18: A natural orthonormal sequence that is maximal in ℓ2 is given by the se-
quence {e1, e2, . . . }, where

ej = (0, 0, 0, . . . , 0, 1, 0, . . . )

and the solitary 1 occurs in the jth position in the sequence.
It is an easy enough exercise to check that this sequence is both orthonormal and maximal.

This sequence is very useful in studying properties of the space ℓ2 .

Example 14.19: (Trigonometric functions) The sequence of functions{
1√
2π
eint

}
(n = 0,±1,±2, . . . )

is a maximal, orthonormal sequence in  L2[0, 2π]. It is an easy exercise in integration to check
that this sequence is orthonormal, but it is by no means obvious that it is maximal (see Sec-
tion 15.11). It is fundamental to the study of Fourier series that this be so. Indeed, this exam-
ple is the inspiration for many of the ideas that now follow, and we shall label some of them
with Fourier’s name. The full development of these ideas comes only in Chapter 15.

For the real Hilbert space  L2[0, 2π] one would use the real and imaginary parts of the se-
quence

{
1/
√

2π eint
}

and discover that the functions

1√
2π

sinnt,
1√
2π

cosnt (n = 0, 1, 2, . . . )
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comprise a maximal orthonormal sequence.

Example 14.20: (Laguerre functions) The functions

φn(x) =
1

n!
e−x/2Ln(x),

where

Ln(x) = ex
dn

dxn

(
xne−x

)
,

are called the Laguerre polynomials. The sequence of functions φ0, φ1, φ2, . . . forms an orthonor-
mal basis for L2[0,∞). This basis plays a role in many studies in applied mathematics.

Example 14.21: (Legendre functions) The functions

φn(x) =

√
2n+ 1

2
Pn(x),

where

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
,

are called the Legendre polynomials. The sequence of functions φ0, φ1, φ2, . . . forms an or-
thonormal basis for L2[−1, 1].

If f is an element of a Hilbert space that is in the span of a collection

{f1, f2, f3, . . . , fn}
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forming an orthonormal system, then the coefficients are particularly easy to deduce (as stu-
dents of elementary linear algebra will quickly recall). Let

f =
n∑

j=1

λjfj ,

and then take the inner product of both sides with each fi. The linearity of the inner product
allows us to handle the sum immediately to obtain λj = (f, fj) for each j. These numbers
are called the Fourier coefficients of f with respect to the orthonormal system. The term is
taken from the study of trigonometric series, where the theory is formally identical. The same
argument applies to infinite sums as well by taking limits. Thus, if {f1, f2, f3, . . . } forms an or-
thonormal system and

f =

∞∑

j=1

λjfj ,

then, in fact,
f =

∞∑

j=1

(f, fj)fj ,

which is often referred to as a Fourier series or perhaps a generalized Fourier series.

14.4.1 Best approximation

This addresses the situation in which an element f is to be expressed exactly as a (possibly in-
finite) linear combination of elements of some orthonormal system. Now we consider how best
to approximate f by such a finite combination. This leads to better insight into the nature of
these Fourier series.
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14.22 (Best approximation) Suppose that

{f1, f2, f3, . . . , fn}
is an orthonormal system in a Hilbert space H, and let f ∈ H. Then the minimum value of the
expression ∥∥∥∥∥∥

f −
n∑

j=1

λjfj

∥∥∥∥∥∥
(8)

is obtained by setting λi = (f, fi). Moreover, that minimum value can be obtained from
∥∥∥∥∥∥
f −

n∑

j=1

(f, fj)fj

∥∥∥∥∥∥

2

= ‖f‖2 −
n∑

j=1

|(f, fj)|2 . (9)

Proof. Take any linear combination of the {fj}, and compute
∥∥∥∥∥∥
f −

n∑

j=1

αjfj

∥∥∥∥∥∥

2

= (f −
n∑

j=1

αjfj , f −
n∑

j=1

αjfj)

= ‖f‖2 − (
n∑

j=1

αjfj , f) − (f,
n∑

j=1

αjfj) +
n∑

j=1

|αj |2

= ‖f‖2 −
n∑

j=1

αj |(fj , f)|2 +

n∑

j=1

αj |(fj , f) − αj |2.
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From this computation, the minimum of the expression (8) is easily deduced: it occurs precisely
when each αj = (fj , f) and the value of that minimum is as stated in (9). �

14.4.2 Bessel’s inequality

As a corollary, we obtain immediately an inequality for the sum of the squares of the Fourier
coefficients that was obtained originally for the trigonometric system by Freidrich Bessel (1784–
1846).

14.23 (Bessel’s inequality) Let {f1, f2, f3, . . . , fn} be an orthonormal system in a Hilbert
space H, and let f ∈ H. Then

n∑

j=1

|(f, fj)|2 ≤ ‖f‖2

Proof. This follows from (8) since the left-hand side is nonnegative. �

14.4.3 Parseval’s identity

From this theorem we can also derive Parseval’s identity, which can be viewed as an infinite
form of the Pythagorean theorem, as well as a condition under which equality holds in Bessel’s
inequality.

14.24 (Parseval’s identity) Let {f1, f2, f3, . . . , } be an orthonormal system in a Hilbert
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space H, and let f ∈ H. Then
∞∑

j=1

|(f, fj)|2 = ‖f‖2

if and only if

lim
n→∞

∥∥∥∥∥∥
f −

∞∑

j=1

(f, fj)fj

∥∥∥∥∥∥
= 0;

that is, if the series
∑∞

j=1(f, fj)fj converges to f in the Hilbert space.

Proof. This is an immediate consequence of (8). �

14.4.4 Maximal orthonormal systems in a separable Hilbert space

This convergence condition gives away our program: we wish to know precisely when we can
write f =

∑∞
j=1(f, fj)fj for an orthonormal system and any element f of the Hilbert space.

Parseval’s identity is part of a larger answer. We make one major simplifying assumption: our
Hilbert space is assumed to be separable. The reason for this is that if we hope for such a rep-
resentation then evidently the space must have a countable dense set: the set of finite rational
combinations of elements of the system {f1, f2, f3, . . . , }. This assumption can be avoided by
working with orthonormal systems {fi}i∈I over some larger index set I and then undertaking
to interpret infinite sums of the form

∑
j∈I(f, fj)fj . This extension does not present any really

fundamental problems, but obscures some of the presentation; thus we prefer the simpler set-
ting.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 14.4. Orthogonal Series 965

Theorem 14.25: Let {f1, f2, f3, . . . } be an orthonormal system in a separable Hilbert space H.
Then the following assertions are equivalent:

(Maximality) The orthonormal system {f1, f2, f3, . . . } is maximal.

(Denseness) The set of finite linear combinations from the collection

{f1, f2, f3, . . . }
is dense in H.

(Parseval’s identity) For every f ∈ H,
∞∑

j=1

|(f, fj)|2 = ‖f‖2.

(Convergence of the Fourier series) The series
n∑

j=1

(f, fj)fj

converges to f in the Hilbert space; that is,

lim
n→∞

∥∥∥∥∥∥
f −

n∑

j=1

(f, fj)fj

∥∥∥∥∥∥
= 0.

(Parseval’s identity: polar version) For every f , g ∈ H,
∞∑

i,j=1

(f, fj)(g, fi) = (f, g).
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Proof. Let us note first that the two versions of Parseval’s identity are equivalent. One direc-
tion is trivial: just substitute f = g in the polar version and we obtain the ordinary version. In
the other direction, we compute the norms of f + g, f − g, f + ig, and f − ig using Parseval’s
identity and then use the relation

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2

from Exercise 14:1.7 to complete the proof.
We already know from assertion 14.24 that Parseval’s identity is equivalent to the conver-

gence of the Fourier series.
The fact that the maximality of a system is equivalent to the denseness statement is ad-

dressed now. Let W be the linear span of the maximal orthonormal sequence {f1, f2, f3, . . . }.
If this is not dense, then W is a closed, proper linear subspace of H. Take an element f of H
with ‖f‖ = 1 that is orthogonal to all of W (using Theorem 14.13); then f can be added to
the sequence {f1, f2, f3, . . . } to form a larger orthonormal sequence, contradicting the assumed
maximality. Conversely, if the collection {f1, f2, f3, . . . } is not maximal, then there is a nonzero
element f orthogonal to each of these, and f cannot be in the closure of the linear span of the
{f1, f2, f3, . . . }. This is because the set {g ∈ H : (f, g) = 0} is closed and contains all members
of the sequence.

Finally, the convergence of the Fourier series is equivalent to the denseness. If f ∈ H and
ε > 0 and

‖f −
N∑

i=1

αifi‖ < ε,
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then also

‖f −
N∑

i=1

(f, fi)fi‖ < ε

by our best approximation result (assertion 14.22). Thus, if the denseness condition, holds the
Fourier series converges. Conversely, if the convergence of the Fourier series holds, then every
element in the space can indeed be approximated by a finite linear combination from the se-
quence {f1, f2, f3, . . . }, that is, by the sum

∑m
i=1(f, fi)fi for m sufficiently large. �

Exercises

14:4.1 Let F = {f1, f2, f3, . . . , fn} be an orthonormal system in a Hilbert space H. Show that the set of
all finite linear combinations from F is a closed subspace.

14:4.2 Let E be a closed subspace of a Hilbert space H, and let f ∈ H. Show that the set of all linear
combinations λf + g for g ∈ E and λ ∈ C is a closed subspace.

14:4.3 Show that a subset S of a Hilbert space is dense if and only if the only element of H orthogonal
to every element of S is the zero element.

14:4.4 Define inductively the Gram–Schmidt orthonormalization process: given any linearly indepen-
dent sequence {f1, f2, f3, . . . } in an inner product space, produce from it an orthonormal system

{g1, g2, g3, . . . }
so that the linear span of the set {f1, f2, f3, . . . , fn} is precisely the linear span of the set {g1, g2, . . . , gn}
for each n. [Hint: Start with g1 = ‖f1‖−1f1 and use Theorem 14.13 to obtain a nonzero element in
the span of {f1, f2} that is orthogonal to g1.]
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14:4.5 Develop the theory of this section for nonseparable Hilbert spaces. [Hint: You will need to know
how to interpret a sum

∑
i∈I xi for arbitrary index sets I. See Example 14.9.]

14:4.6 Show that if H is an infinite-dimensional separable Hilbert space then H is isometrically isomor-
phic to ℓ2.

14.5 Weak Sequential Convergence

For many applications in Hilbert space, the norm convergence asks too much. For example,
bounded sequences {fn} need not have convergent subsequences {fnk

} if by convergence we
mean that

‖fnk
− f‖ → 0

as k → ∞. But if we require much less, then such a statement is true and, more importantly,
extremely useful.

Definition 14.26: A sequence {fn} in a Hilbert space H is said to be weakly convergent to f
if

(fn, g) → (f, g)

for every element g ∈ H.

We have seen weak convergence before in a special setting in Section 13.10. It is easy to
see that a norm convergent sequence is also weakly convergent, but the converse does not hold.
Note that the definition could be rephrased (because of Theorem 14.14) as the requirement that
Γ(fn) → Γ(f) for every continuous linear functional on H. This is the usual definition of weak
convergence supplied in normed linear spaces where there is no inner product.
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We shall obtain some immediate and easy results for the notion of weak convergence. Some
of this holds in general normed linear spaces, too, but with different proofs. The first result can
be called a weak sequential compactness result: from a bounded sequence a convergent subse-
quence is found, much as in the original Bolzano–Weierstrass theorem.

Theorem 14.27: A bounded sequence {fn} in a Hilbert space H has a weakly convergent sub-
sequence.

Proof. Let us first assume that the space is separable. (We use an argument similar to that
for Theorem 13.33; if the reader has studied that proof, it would be best to read no further, but
try constructing one independently.)

Fix an element g1 ∈ H. We show how to determine a subsequence so that

lim
k→∞

(fnk
, g1) (10)

exists. We know that

|(fn, g)| ≤M‖g‖ <∞,

where M = supn ‖fn‖, and so this sequence of complex numbers is bounded. Thus a subse-
quence for which the limit (10) exists can be found merely from the Bolzano–Weierstrass theo-
rem.

Fix element g1, g2, . . . , gm ∈ H. We can determine a subsequence so that

lim
k→∞

(fnk
, gi) (11)

exists for each i = 1, 2, 3, . . . ,m. We just apply the same argument for each i and pass to subse-
quences of subsequences.
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Finally, and much more generally, let g1, g2, . . . be an infinite sequence of elements of H
that forms a dense subset. Once again we can determine a subsequence so that

lim
k→∞

(fnk
, gi) (12)

exists for each i = 1, 2, 3, . . . . We cannot quite use a “subsequence of a subsequence” argu-
ment indefinitely, but we can use a Cantor diagonalization argument to get a single subsequence
{fnk

} that works for each gi.
Define a functional Γ on H by first writing

Γ(gi) = lim
k→∞

(fnk
, gi) (13)

for each gi in our dense set and then extending to all of H by continuity. By the Cauchy–Schwarz
inequality applied to (13), we have

|Γ(gi) − Γ(gj)| ≤M‖gi − gj‖,
and so Γ is uniformly continuous on the dense subset, allowing therefore a unique extension to
a continuous functional. We claim that Γ is linear. It is certainly linear on the dense subset
formed from the {gi} because of its definition using the inner product in (13). This linearity
is preserved in the limit, too, when extended to all of H. Note, as well, that ‖Γ‖ ≤M .

We apply Theorem 14.14 to obtain an element f ∈ H so that

Γ(g) = (g, f)

for all g ∈ H. It is easy to see now that f is precisely the element of H that we want, that
fnk

→ f weakly, and that ‖f‖ ≤M .
This completes the proof in a separable Hilbert space. In a general nonseparable Hilbert

space, a maximal orthonormal system {gα}α∈A forming a basis for the space can be found. For
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each fn there are only countably many {gα} for which (f, gα) 6= 0 (this follows, for example,
from Bessel’s inequality). If we collect these indices together, we obtain a countable set A1 ⊂ A
and a closed subspace H1 ⊂ H for which {gα}α∈A1 forms a basis. H1 is a separable Hilbert
space, and if we apply the first part of our argument to obtain a subsequence {fnk

} converging
weakly in H1, that same subsequence will evidently converge weakly in H as required. �

Norm convergence in a Hilbert space of a sequence fn to an element f requires that ‖fn − f‖ →
0. This implies, in particular, that ‖fn‖ → ‖f‖ and that f is in the closure of the set of ele-
ments of the sequence {fn}. For weak convergence, we get somewhat less.

Theorem 14.28: Suppose that the sequence {fn} converges weakly to an element f in a Hilbert
space H. Then the following assertions are true:

1. sup ‖fn‖ <∞.

2. f is in the closure of the subspace spanned by the sequence {fn}.

3. ‖f‖ ≤ lim infn→∞ ‖fn‖.

Proof. Define a sequence of bounded linear functionals on H by writing

Γn(g) = (g, fn − f) (g ∈ H).

Note that Γn(g) = (g, fn − f) → 0 as n→ ∞ so that, in particular,

sup
n

|Γn(g)| <∞.
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Applying the uniform boundedness principle (Section 12.11), we obtain

sup
g∈H

sup
n

|Γn(g)| <∞

and hence that supn ‖fn − f‖ <∞. It follows that supn ‖fn‖ <∞, as required for (i).
To prove (ii), suppose that f is not in the closure of the subspace spanned by the sequence

{fn}. Then, by Theorem 14.13, there must be an element g ∈ H orthogonal to each member of
{fn}, but not orthogonal to f . But (fn, g) → (f, g), and yet (fn, g) = 0 for all n and (f, g) 6= 0.
This is a contradiction, and so (ii) follows.

For (3), we can find a subsequence {fnk
} so that

lim
k→∞

‖fnk
‖ = lim inf

n→∞
‖fn‖ = M.

We know that

|(f, g)| = lim
k→∞

|(fnk
, g)| ≤ lim

k→∞
‖fnk

‖ ‖g‖ ≤M‖g‖.

But the inequality |(f, g)| ≤ M‖g‖ holding for all g ∈ H implies that ‖f‖ ≤ M too, as required.
�

When does weak convergence suffice to ensure that, in fact, the convergence is taking place
in the norm sense? One extra condition on the norms is sufficient.

Theorem 14.29: Suppose that the sequence {fn} converges weakly to an element f in a Hilbert
space H. If, in addition,

‖f‖ = lim
n→∞

‖fn‖,
then {fn} converges to f in H.
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Proof. We assume that (fn, g) → (f, g), and hence it is also true that (g, fn) → (g, f). Then
from the identity

‖f − fn‖2 = (f − fn, f − fn) = ‖f‖2 + ‖fn‖2 − (f, fn) − (fn, f)

along with the extra assumption that ‖f‖ = limn→∞ ‖fn‖, we get

lim
n→∞

‖f − fn‖2 = ‖f‖2 + ‖f‖2 − (f, f) − (f, f) = 0,

as required. �

Finally, let us conclude with one more result of this type. A series can certainly converge
weakly without converging in norm; but if it is an orthogonal series, then the two notions are
equivalent. The proof has appeared in Exercises 14:1.9 and 14:3.3.

Theorem 14.30: Suppose that {fn} is a sequence of pairwise orthogonal elements of a Hilbert
space H. Then the following are equivalent:

1.
∑∞

i=1 fi is convergent in H.

2.
∑∞

i=1 ‖fi‖2 <∞.

3.
∑∞

i=1(fi, g) converges for every element g ∈ H.

Exercises

14:5.1 In the proof of Theorem 14.27, replace the “subsequence of a subsequence” argument by a formal
Cantor diagonalization argument.

14:5.2 Find a sequence converging weakly to zero in ℓ2 but not convergent.
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14:5.3 Suppose that the sequence {fn} converges weakly to an element f in a Hilbert space H. Show
that there is a subsequence {fnk

} such that the means

σk =
fn1

+ fn2
+ · · · fnk

k

converge to f in H.

14:5.4 (The unit sphere is weakly dense in the unit ball.) For every f in a Hilbert space H for which
‖f‖ ≤ 1, there exists a sequence {fn} for which ‖fn‖ = 1 that converges weakly to f in H.

14.6 Compact Operators

We begin by recalling some information about linear operators on normed linear spaces for
readers who have skipped Chapter 12 or who may be in need of a review. In the next few sec-
tions we shall find a way of seeing precisely how certain operators can be realized.

A mapping from a Hilbert space into itself is called a linear operator if it preserves the lin-
ear structure. Thus T : H → H must satisfy

T (λ1f1 + λ2f2) = λ1T (f1) + λ2T (f2).

Naturally, we wish it to preserve the rest of the structure. The most obvious condition to im-
pose is continuity: if fn → f , then T (fn) → T (f). This condition is precisely equivalent to a
boundedness property of the mapping: T is continuous if and only if T maps bounded sets in
H into bounded sets. This allows us to define a norm on the operator that it inherits from the
space:

‖T‖ = sup

{‖T (f)‖
‖f‖ : f 6= 0

}
.
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We should remember how to prove that boundedness is equivalent to continuity. If ‖T‖ < ∞,
then

‖T (fn − f)‖ ≤ ‖T‖‖fn − f‖
so that clearly if fn → f in H it follows that T (fn) → T (f) in H. Hence boundedness im-
plies continuity. If T is continuous and yet not bounded, we can obtain a contradiction. There
must be a sequence {fn} with ‖T (fn‖ > n‖fn‖. Set gn = (n−1‖fn‖)fn; then gn → 0 and yet
‖T (gn‖ > 1, which is not possible if T is continuous.

The study of general continuous linear operators on a Hilbert space is of fundamental im-
portance, but a bit too ambitious for us to tackle. Instead, we will ask more of the operators
and seek to determine the structure of what are called compact operators. An operator is called
compact if not only does

T (fn) → T (f)

for every sequence for which fn → f in norm, but in fact for every sequence for which fn → f
weakly. (Note the distinction between the two modes of convergence: we require that

‖T (fn) − T (f)‖ → 0

whenever fn → f weakly.) There are more weakly convergent sequences than convergent se-
quences, and so this demands very much more of the operator. Every compact operator is con-
tinuous, but not all continuous operators are compact.

A continuous operator maps convergent sequences to convergent sequences, while a com-
pact operator maps weakly convergent sequences to convergent sequences. It is not immediately
clear that a continuous operator maps weakly convergent sequences to weakly convergent se-
quences. We prove this now.

The proof will also give us an excuse to introduce an important idea in the study of oper-
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ators on a Hilbert space, the notion of the adjoint operator. For this proof, it enters only as a
notational convenience. A continuous functional Γg can be defined on H by

Γg(f) = (T (f), g) (f ∈ H)

for any fixed g ∈ H. It is easy to check that Γg is continuous and linear. Thus Γg(f) = (f, g1)
for some g1 ∈ H. So for every g ∈ H there is an element g1 for which (T (f), g) = (f, g1). This
mapping is written as g1 = T ∗(g), so T ∗ is a mapping from H to itself for which

(T (f), g) = (f, T ∗(g)) (14)

holds for all f , g ∈ H. We will explore this in more detail later, but for now we might mention
that T ∗ is a linear operator, it is continuous and its operator norm is the same as the operator
norm for T itself; that is, ‖T‖ = ‖T ∗‖.

Theorem 14.31: A continuous linear operator on a Hilbert space maps weakly convergent
sequences to weakly convergent sequences.

Proof. Suppose that fn → f weakly. We must show that

T (fn) → T (f)

weakly if T is a continuous linear operator on a Hilbert space H. The adjoint notation just in-
troduced allows us to prove our theorem. We observe, using two applications of (14) and the
weak convergence of fn → f , that, for all g ∈ H,

lim
n→∞

(T (fn), g) = lim
n→∞

(fn, T
∗(g)) = (f, T ∗(g)) = (T (f), g),

and so T (fn) → T (f) weakly as required. �
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The next result shows that compact operators map bounded sets into relatively compact
ones (i.e., sets whose closures are compact). If {fn} is a bounded sequence and T is a contin-
uous linear operator, then {T (fn)} is also a bounded sequence and so has a weakly convergent
subsequence {T (fnk

)}, but it may not have a convergent subsequence in the norm sense. To de-
mand that of T is precisely to ask that T be compact, as this theorem now shows.

Theorem 14.32: Let T be a continuous linear operator on a Hilbert space H. Then T is a
compact operator if and only if for every bounded sequence {fn} there is a subsequence {T (fnk

)}
that is convergent in the norm sense.

Proof. Suppose that {fn} is bounded. Then, by Theorem 14.27, there is a subsequence and
an element f ∈ H so that fnk

→ f weakly. By definition, since T is a compact operator
T (fnk

) → T (f), with convergence in the norm sense.
Conversely, suppose that T has the stated property and yet, contrary to the theorem, there

is a bounded sequence {fn} for which there is no subsequence {T (fnk
)} that is convergent in

the norm sense. Using Theorem 14.27 and passing to a subsequence if necessary, we may as-
sume that in fact there is a an element f ∈ H so that fn → f weakly. By our assumptions,
there must be ε > 0 and n1 < n2 < n3 < . . . so that

‖T (fnk
) − T (f)‖ ≥ ε, (15)

even though we do know (Theorem 14.31) that T (fnk
) → T (f) weakly.

By our assumptions on T , we know that there is a further subsequence T (fnkm
) that is norm

convergent to an element g ∈ H. But T (fnkm
) converges weakly to T (f); this is possible only if

T (f) = g. Thus we have a subsequence T (fnkm
) that is norm convergent to T (f) in contradic-

tion to (15). This contradiction proves the assertion. �
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Exercises

14:6.1 Show that every linear operator on a finite-dimensional Hilbert space is compact.

14:6.2 If f , g are nonzero elements of a Hilbert space, show that there is a compact operator T for
which T (f) = g.

14:6.3 Show that the identity map on ℓ2 is a continuous linear operator, but is not a compact operator.

14:6.4 Show that the identity map on any Hilbert space H is compact if and only if H is finite dimen-
sional.

14:6.5 Let T be a linear operator on a Hilbert space H such that

(T (f), g) = (f, T (g))

for all f , g ∈ H. Then T is continuous. [Hint: If fn → 0, then T (fn) → 0 weakly. Use the closed
graph theorem: if fn → f , T (fn) → g, and h ∈ H, then (T (fn − f), h) → 0, so (T (f), h) =
lim(T (fn), h) = (g, h).]

14:6.6 Show that the adjoint notion introduced in Theorem 14.31 has the following properties. If T1, T2

are continuous linear operators on a Hilbert space, then

(a) ‖T ∗
1 T1‖ = ‖T1‖2,

(b) (α1T1 + α2T2)∗ = α1T
∗
1 + α2T

∗
2 ,

(c) (T1T2)∗ = T ∗
2 T

∗
1 , and

(d) (T ∗
1 )∗ = T1.
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14:6.7♦ If T1 and T2 are self-adjoint operators on a Hilbert space, then the product T1T2 is also self-
adjoint if and only if the operators commute.

14:6.8 Show that if T is a compact operator on a Hilbert space then the adjoint T ∗ is also compact.

14:6.9 Show that the limit (in the sense of the operator norm) of a convergent sequence of compact op-
erators is compact. [Hint: If Tn → T and ‖fn‖ ≤ 1, construct a convergent subsequence {T (fnk

)}
by finding first a convergent subsequence {T1(fnk

)} and continue using subsequences of subse-
quences followed by a diagonal argument.]

14:6.10♦ Show that if T1, T2 are compact linear operators on a Hilbert space then so too is their prod-
uct and any linear combination.

14:6.11 Show that if T1, T2 are continuous linear operators on a Hilbert space and one of them is com-
pact then T1T2 and T2T1 are compact.

14:6.12 Let f1, f2, f3, . . . be an orthonormal basis for a Hilbert space H, let α1, α2, α3, . . . be a se-
quence of scalars converging to zero. Show that the map

T (f) =

∞∑

i=1

αi(f, fi)fi

defines a compact linear operator on H.

14.7 Projections

The simplest operators on a Hilbert space are the projections. It is easy to see what a pro-
jection is doing, and projections manipulate quite naturally. Often in analysis one finds that
complicated objects can be expressed in terms of simpler ones; this suggests that more compli-
cated linear operators might be analyzed in some way that expresses them as combinations of
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the simpler projections. This is one of our goals. To start on that goal let us first examine pro-
jections rather closely.

Let E be a closed subspace of a Hilbert space H. Theorem 14.13 shows that every element
f in the space has a decomposition

f = fa + fp,

where fa ∈ E and fp is orthogonal to each element of E. We call fa the orthogonal projection of
f onto E, and the mapping f → fa is denoted PE and is called the projection operator onto the
subspace E. We use the notation

E⊥ = {f ∈ H : (f, g) = 0 for all g ∈ E}

to denote the orthogonal complement of E. This, too, is a closed subspace of H and the decom-
position f = fa + fp shows that every vector in H can be written uniquely as the sum of two
vectors, one from E and one from E⊥. Our theorem summarizes all the elementary information
we can extract from these notions.
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Theorem 14.33: Let E be a closed subspace of a Hilbert space H, and let P = PE denote the
projection onto E. The operator P has the following properties:

1. P is a linear operator.

2. P (f) = f for all f ∈ E, and P (g) = 0 for all g ∈ E⊥.

3. P is self-adjoint in the sense that (P (f), g) = (f, P (g)) for all f , g ∈ H.

4. P 2 = P .

5. (P (f), f) = ‖P (f)‖2 ≤ ‖f‖2.

6. E = range of P = {f ∈ H : P (f) = f}.

7. E⊥ = null space of P = {f ∈ H : P (f) = 0}.

Proof. Each of these assertions follows almost immediately from definitions and obvious con-
siderations. We prove only the assertion that P is self-adjoint in the sense that (P (f), g) =
(f, P (g)) for all f , g ∈ H. Recall from the proof of Theorem 14.31 that this means that P is
its own adjoint; that is, P ∗ = P .

Let

f = fa + fp and g = ga + gp,

where fa, ga ∈ E and fp, gp ∈ E⊥. Then P (f) = fa, P (g) = ga,

(P (f), g) = (fa, ga + gp) = (fa, ga) + (fa, gp) = (fa, ga),
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and

(f, P (g)) = (fa + fp, ga) = (fa, ga) + (fp, ga) = (fa, ga),

from which the identity (P (f), g) = (f, P (g)) follows. �

Projections can also be characterized by these elementary properties. We know from the
theorem that a projection P must be self-adjoint and that P 2 = P . Conversely, any such op-
erator is a projection onto some closed subspace. Readers with more algebraic than geometric
insight will appreciate that projections are simply the idempotents in the algebra of operators.

Theorem 14.34: Let P be a self-adjoint linear operator on Hilbert space H for which P 2 = P .
Then P is a projection.

Proof. Let us show first that such an operator P is bounded, indeed that ‖P (f)‖ ≤ ‖f‖ for
all f ∈ H so that ‖P‖ ≤ 1. This follows from the inequality

‖P (f)‖2 = (P (f), P (f)) = (f, P 2(f)) = (f, P (f)) ≤ ‖f‖ ‖P (f)‖
in which we have used the Cauchy–Schwarz inequality and the hypotheses of the theorem.

Let E = {P (f) : f ∈ H} be the range of the operator P . Since P is linear, E is a sub-
space. We claim that E is also a closed subspace. To see this, suppose that {gn} is a sequence
of points in E with gn → g. Then there are {fn} with P (fn) = gn, and so also

P (gn) = P 2(fn) = P (fn) = gn.

Since P is continuous, we can take limits in this identity and obtain P (g) = g so that g ∈ E, as
required to show that E is closed.

Let f ∈ E and g ∈ E⊥. We show that

P (f) = f and P (g) = 0.
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It will follow that P = PE , the projection onto the subspace E, and the proof is complete.
Since f ∈ E, there is a P (f1) = f , and so also P (f) = P 2(f1) = P (f1) = f , as required.
Since g ∈ E⊥, we know that (g, g1) = 0 for all g1 ∈ E, so (g, P (g2)) = 0 for all g2 ∈ H. Thus
(g, P (g2)) = (P (g), g2) = 0 for all g2 ∈ H. But this can only happen if P (g) = 0, again as
required. �

Exercises

14:7.1 Prove each of the parts of Theorem 14.33. If this is too tedious, at least prove that P is linear
and check the inequality

(P (f), f) = ‖P (f)‖2 ≤ ‖f‖2.

14:7.2 Let E1 and E2 be closed subspaces of a Hilbert space. Show that E1 ⊥ E2 if and only if PE1
PE2

=
PE2

PE1
= 0.

14:7.3 Let E1 and E2 be closed subspaces of a Hilbert space. Show that the sum PE1
+ PE2

is again a
projection if and only if E1 ⊥ E2. (This is harder than Exercise 14:7.2.)

14:7.4 Let E1 and E2 be closed subspaces of a Hilbert space. Show that the product PE1
PE2

is again a
projection if and only if PE1

PE2
= PE2

PE1
. If PE1

PE2
is a projection, what is its range?

14:7.5 Let E1 and E2 be closed subspaces of a Hilbert space H. Show that the following three asser-
tions are equivalent:

(a) E1 ⊂ E2.

(b) PE2
PE1

= PE1
PE2

= PE1
.

(c) (PE1
(f), f) ≤ (PE2

(f), f) for all f ∈ H.

14:7.6 When is a projection operator compact? [Hint: Use Theorem 12.16.]
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14.8 Eigenvectors and Eigenvalues

One of the most successful and applicable of the results one learns in elementary linear algebra
is that of characterizing the n × n matrices in terms of their eigenvalues. The reader should
recall (fondly) that every symmetric real or complex Hermetian n×n matrix M has a full set of
eigenvalues that allows a representation as a sum of multiples of projection matrices

M =
∑

j

λjPEλj
, (16)

where PEλj
is the projection operator taking Cn onto the eigenspace Eλj corresponding to the

eigenvalue λj . Put another way, there is an orthonormal basis for the space consisting solely of
eigenvectors, and this basis permits a “diagonalization” of the matrix M .

This theory has been generalized to higher dimensions. One considers, naturally enough, an
n × n matrix M = (αij) to be a linear operator on the Euclidean space Cn and notes that M
has the important and familiar property αij = αji precisely when the operator is self-adjoint.
Eigenvalues and eigenvectors are defined for linear operators on a Hilbert space in much the
same way as in matrix theory, and we find that eigenvalues and eigenvectors do exist for com-
pact, self-adjoint operators. In this special case, a theory emerges that is very close to the finite-
dimensional situation. For noncompact operators, a different theory is required, one that we do
not develop here.

The set of eigenvalues of an operator forms part of what is known as the spectrum of the
operator. The theory is then called spectral theory, and representations similar to or analo-
gous to (16) are called spectral representations. We pursue these ideas only within the setting
of eigenvalues, eigenvectors and eigenspaces, which terms we now define.
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Definition 14.35: Let T be a linear operator on a Hilbert space H. If there exist λ ∈ C and a
nonzero f ∈ H for which

T (f) = λf,

then λ is said to be an eigenvalue for T , and f to be a corresponding eigenvector. If λ is an
eigenvalue for T then

Eλ = {f ∈ H : T (f) = λf}
is called the eigenspace corresponding to λ.

It is easy to see that Eλ is a nonzero subspace of H whenever λ is an eigenvalue. If T is also
continuous, then it is easy to see that the eigenspace Eλ must be closed. If, moreover, T is com-
pact and λ 6= 0, then the eigenspace Eλ must be finite-dimensional (Exercise 14:8.1).

We are interested in operators that are both compact and self-adjoint in the sense of the
next definition, since without these assumptions there may be no nonzero eigenvalues, and hope
for a kind of spectral decomposition must follow some other plan. (Exercise 14:8.2 exhibits a
compact operator and Exercise 14:8.3 exhibits a self-adjoint operator neither of which has any
nonzero eigenvalues.)

Definition 14.36: A linear operator T on a Hilbert space H is said to be self-adjoint if

(T (f), g) = (f, T (g))

for all f , g ∈ H.

In elementary linear algebra, this idea corresponds to symmetric matrices (in the real case)
or Hermetian matrices (in the complex case). For Fredholm operators with L2 kernels, as in Ex-
ample 13.17, this corresponds to the equality K(x, y) = K(y, x) a.e. for the kernel function.
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We have seen the notion of the adjoint concept arise in Theorem 14.31, but here we do not need
to use anything beyond the simple property expressed in the definition. The mere fact that a
linear operator is self-adjoint is enough to ensure that it is continuous; we shall not insist on
this result, however (which is proved in Exercise 14:6.5 using the closed graph theorem of Chap-
ter 12), and so we add an unnecessary hypothesis to the theorem.

Theorem 14.37: Let T be a continuous linear operator on a Hilbert space H, and suppose that
T is self-adjoint. Then the following are true:

1. (T (f), f) is real for all f ∈ H.

2. ‖T‖ = sup{(T (f), f) : ‖f‖ = 1}.

3. All eigenvalues of T are real numbers contained in the interval [−‖T‖, ‖T‖].

4. Eigenspaces Hλ1,Hλ2 corresponding to distinct eigenvalues λ1, λ2 are orthogonal.

5. If Pλ denotes the projection onto the eigenspace Hλ corresponding to an eigenvalue λ,
then

λPλ = TPλ = PλT.

Proof. To prove the first assertion, we merely use the self-adjoint assumption to obtain

(T (f), f) = (f, T (f)) = (T (f), f),

so that (T (f), f) must be real.
For the second assertion, let M = sup{(T (f), f) : ‖f‖ = 1}. It is clear that M ≤ ‖T‖ since,
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if ‖f‖ = 1, then
|(T (f), f)| ≤ ‖T (f)‖ ‖f‖ ≤ ‖T‖‖f‖2 = ‖T‖.

The other direction takes more computations. Note first that, for any f ,

|(T (f), f)| ≤M‖f‖2. (17)

Let ‖f‖ = ‖g‖ = 1, and suppose that (T (f), f) is real. We first compute

(T (f), g) = 1
4 [(T (f + g), f + g) − (T (f − g), f − g)

+ i(T (f + ig), f + ig) − i(T (f − ig), f − ig)].

Noting that all terms here are real, we have

(T (f), g) = 1
4 [(T (f + g), f + g) − (T (f − g), f − g)] .

From (17) and the parallelogram law, we obtain then

(T (f), g) ≤ 1
4M

(
‖f + g‖2 + ‖f − g‖2

)
= 1

4M
(
2‖f‖2 + 2‖g‖2

)
= M,

which, with f = g, is precisely what is needed. This proves the second assertion of the theorem.
For assertion (iii), let λ be an eigenvalue for T and f a corresponding eigenvector. Then g =

f/‖f‖ is also an eigenvector, and

λ = λ(g, g) = (λg, g) = (T (g), g),

which we know, by assertion (i), is real.
For assertion (iv), suppose that λ1 and λ2 are eigenvalues with corresponding eigenspaces

Hλ1 ,Hλ2 , and suppose that f1 ∈ Hλ1 and f2 ∈ Hλ2 . Then

λ1(f, g) = (λ1f, g) = (T (f), g) = (f, T (g)) = (f, λ2g) = λ2(f, g),

since λ2 must be real. Since λ1 6= λ2, it follows that (f, g) = 0, which is the required orthogo-
nality condition.
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For the final assertion, we note first that, because the eigenspaces are closed, the projection
operator is well defined. Now let f , g be arbitrary members of H. Then

(λPλ(f), g) = (TPλ(f), g) = (PλT (f), g) (18)

because λPλ(f) = T (Pλ(f)) and because

(λPλ(f), g) = (f, λPλ(g)) = (f, T (Pλ(y)))

= (T (f), Pλ(y)) = (Pλ(T (f)), y).

But if (18) holds for all f , g, then

λPλ = TPλ = PλT,

as required. �

Before carrying on, let us suppose we are in a situation where a continuous linear operator
T : H → H permits an orthonormal basis for H consisting of a sequence {f1, f2, f3, . . . } of
eigenvectors corresponding to eigenvalues {λ1, λ2, λ3, . . . } (not necessarily distinct). Then any
f ∈ H can be written f =

∑∞
i=1(f, fi)fi, and so

T (f) = T

(
∞∑

i=1

(f, fi)fi

)
=

∞∑

i=1

(f, fi)T (fi) =

∞∑

i=1

λi(f, fi)fi

merely using linearity, the eigenvalue relation, and continuity. This seems to suggest that

T =

∞∑

i=1

λiPλi ,

where Pλi is the projection onto the one-dimensional subspace of H spanned by fi. There are
still some problems with claiming this. First, how can we be assured of enough eigenvectors to
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form a basis for the space? Second, how can we interpret the expression of T as an infinite sum
of operators?

The first problem is addressed by showing that an operator that is both compact and self-
adjoint does have an abundance of eigenvalues; one nonzero eigenvalue is enough for a start.
The next section shows how to interpret infinite sums of operators and how to obtain the sug-
gested representation in general.

Theorem 14.38: Let T be a nonzero, continuous linear operator on a Hilbert space H, and
suppose that T is both compact and self-adjoint. Then T has a nonzero eigenvalue.

Proof. The eigenvalues will be real if there are any. We look for the largest (in absolute value).
Remember that the eigenvalues must occur in the interval [−‖T‖, ‖T‖]. We shall find an eigen-
value at one end or other of this interval.

Let

λ1 = sup{(T (f), f) : ‖f‖ = 1}
and

λ2 = inf{(T (f), f) : ‖f‖ = 1}.
By Theorem 14.37, we know that either ‖T‖ = λ1 or else ‖T‖ = −λ2. One of these two values
is an eigenvalue of T depending on which of these two assertions is true. The cases are similar.
Let us handle just the case ‖T‖ = λ1 and show that this is an eigenvalue. There must be a
sequence {fn} with ‖fn‖ = 1 and

(T (fn), fn) → λ1 = ‖T‖.
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By passing to a subsequence if necessary, we can assume that the norm limit

lim
n→∞

T (fn)

exists in H. This uses the fact that T is compact.
We claim that

‖T (fn) − λ1fn‖ → 0,

which is sometimes taken as the definition of an approximate eigenvector. This follows from the
identity

‖T (fn) − λ1fn‖2 = ‖T (fn)‖2 + λ2
1 − 2λ1(T (fn), fn)

≤ ‖T‖2 + λ2
1 − 2λ1(T (fn), fn)

and the fact that

(T (fn), fn) → λ1 = ‖T‖.
In this particular case, we see that λ1 is in fact an eigenvector. Write g = limn→∞ T (fn) and
check that

fn = λ1
−1 (T (fn) − (T (fn) − λ1fn)) → λ1

−1g.

Thus T (fn) → g and fn → λ1
−1g so that

g = λ1
−1T (g) or T (g) = λ1g.

This is exactly what we wanted to prove, and so the proof is complete. �

Exercises

14:8.1♦ Show that if T is a compact operator on a Hilbert space and λ 6= 0 is an eigenvalue of T then
the eigenspace Eλ must be finite-dimensional. [Hint: Use Theorem 12.16 or, more simply, assume
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that there is an infinite orthonormal sequence in Eλ.]

14:8.2 Define the operator T : ℓ2 → ℓ2 so that if x = (x1, x2, x3, . . . ) then T (x) = (0, x1,
1
2x2,

1
3x3, . . . ).

Show that T is a compact linear operator and that T has no nonzero eigenvalues. Does this con-
tradict Theorem 14.38?

14:8.3 Define the operator T : L2[0, 1] → L2[0, 1] so that if g = T (f) then g(x) = xf(x) a.e.. Show
that T is a continuous and self-adjoint linear operator and that T has no eigenvalues. Does this
contradict Theorem 14.38?

14:8.4 Let T be a self-adjoint operator on Cn, and suppose that T has exactly n distinct eigenvalues
{λ1, λ2, λ3, . . . , λn}. Use the material of this section to prove that

T =

n∑

i=1

λiPλi
,

where Pλi
is the projection onto the eigenspace associated with the eigenvalue λi.

14:8.5 Let T be a compact operator on a Hilbert space, and let ε > 0. Show that there are only finitely
many eigenvalues λ of T with ε < |λ| ≤ ‖T‖. [Hint: If there is a distinct sequence ε < |λn| ≤ ‖T‖
with eigenvectors {fn}, ‖fn‖ = 1, then, by passing to subsequences, one can assume that λn →
λ 6= 0 and T (fn) → g. Show that ‖fn − fm‖ → 0, which cannot happen for an orthonormal
sequence.]

14.9 Spectral Decomposition

We are now in a position to obtain the promised spectral decomposition for compact self-adjoint
operators on a Hilbert space. This reveals that every such operator has a transparent form if
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viewed in the correct light. Because operators of this kind occur in many applications, this rep-
resentation offers an important and useful tool in their study. It is also important to study op-
erators that are not compact or not self-adjoint. In that case, however, one finds that eigenval-
ues and eigenvectors do not provide the means for such a representation and, indeed, that no
representation as an infinite sum is available. One needs more general spectral ideas and much
heavier machinery, which we do not develop. More advanced texts such as the classic of Dun-
ford and Schwartz1 should be consulted.

Theorem 14.39: Let T be a continuous, nonzero linear operator on a Hilbert space H, and
suppose that T is both compact and self-adjoint. Then the set of nonzero eigenvalues of T can
be arranged into a finite or infinite sequence of elements {λn} with

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · |λn| ≥ · · · ,
and the operator T can be expressed as

T =
∑

j

λjPλj ,

where Pλj is the projection operator taking H onto the eigenspace Hλj corresponding to the
eigenvalue λj.

Proof. If there are infinitely many eigenvalues, then the convergence of the series of projec-
tions is interpreted in the strongest sense, that is, in the sense of the operator norm

lim
n→∞

∥∥∥∥∥∥
T −

n∑

j=1

λjPλj

∥∥∥∥∥∥
= 0.

1 N. Dunford and J. T. Schwartz, Linear Operators, Wiley (1971).
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We define the sequence of eigenvalues and eigenspaces inductively. Start with T1 = T ,
choose the largest eigenvalue λ1 of T1 (largest in absolute value) and let P1 = Pλ1 be the pro-
jection onto the eigenspace Hλ1 associated with λ1. Set T2 = T1 − T1P1, repeat the process by
choosing the largest eigenvalue λ2 of T2 (again largest in absolute value), and let P2 = Pλ2 be
the projection onto the eigenspace Hλ2 associated with λ2. Set T3 = T2 − T2P2 and continue the
process inductively. In this way we arrive at a sequence of distinct eigenvalues {λn}, operators
{Tn}, and projections {Pn} onto the eigenspaces Hλn such that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · |λn| → 0, (19)

‖Tn‖ = |λn|, (20)

and

Tn+1 = Tn − λnPn = T −
n∑

i=1

λiPi. (21)

If Tn+1 = 0 at some stage, then the process stops, and (21) expresses T as a finite combination,
as required. If the process continues indefinitely, then (19), (20), and (21) show that

‖T −
n∑

i=1

λiPi‖ → 0

as n→ ∞ and expresses T as an infinite sum, exactly as required.
This plan seems simple enough, but will require a great deal of checking to see if it goes

through as described. We can apply Theorem 14.38 at the first stage to select an eigenvalue
λ1 of T1 with |λ1| = ‖T1‖, because T1 = T is compact and self-adjoint. To continue the process
will require us to check that each T2, T3, . . . is also compact and self-adjoint. At each stage, we
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select an eigenvalue λn of Tn, but we do not know that λn is also an eigenvalue of the original
operator T , as we hope. We do not know that the eigenvalues are distinct as claimed. Finally,
we do not know that |λn| → 0.

This gives us quite a few details to check, but the structure of the proof is now clear. First,
let us look more closely at the initial stage of the construction, where we apply Theorem 14.38
to select an eigenvalue λ1 of T . We know that we can select this so that ‖T1‖ = |λ1|. If P1

is the projection onto the corresponding eigenspace and T2 = T1 − λ1P1, then, using Theo-
rem 14.37, we have

T2 = T1 − λ1P1 = T1(I − λ1P1) = (I − λ1P1)T1 (22)

and

λ1P1 = T1P1 = P1T1. (23)

The identity (22) along with Exercises 14:6.7 and 14:6.10 show that T2 must be compact and
self-adjoint. This applies inductively to show that each operator Tn in the sequence is compact
and self-adjoint, and thus, unless Tn = 0 (in which case the process stops), Theorem 14.38 can
be used at each stage to select an eigenvalue λn of Tn so that ‖Tn‖ = |λn|.

The next step is to show that the sequence of eigenvalues is distinct. We show that λ1 can-
not be an eigenvalue of T2; it follows inductively that at each stage we have chosen a value λn

differing from all λk (k < n). Suppose that T2(f) = λ1f ; we show that f = 0 so that λ1 cannot
be an eigenvalue. By (22) and (23),

T2(f) = T1(f) − λ1P1(f) = λ1f, (24)

and so

P1(T1(f)) − λ1P1(f) = P1(λ1f),
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which, using (23) once again, shows that

λ1P1(f) − λ1P1(f) = λ1P1(f) = 0.

Together with (24), this shows that T1(f) = λ1f . But this means that f is in the eigenspace for
T1 and the eigenvalue λ1, so f = P1(f) = 0, as required.

Our next task is to show that, although we choose each λn as an eigenvalue for Tn, it is
nonetheless true that each λn is an eigenvalue for the original operator T and that the eigenspaces
are identical. To do this, it is enough to show that any eigenvalue λ 6= 0 for T2 is also an eigen-
value for T and that the eigenspaces are identical. Suppose that T2(f) = λf and f 6= 0. Then

T1(I − P1)(f) = λf

and hence, also,

(I − P1)T1(I − P1)(f) = (I − P1)(λf).

But the left side of this is

(I − P1)T1(I − P1)(f) = T1(I − P1)(I − P1)(f) = T1(I − P1)(f) = λf,

and so we have

(I − P1)(λf) = λf

or f = (I − P1)(f), from which we deduce that

T (f) = T (I − P1)(f) = T2(f) = λf,

which is exactly what we need. We see that λ is an eigenvalue of T as well as of T2 and that f
is also an eigenvector for T as well as for T2.

We still do not know that all λ-eigenvectors for T are also λ-eigenvectors for T2, and this we
prove now. Since λ is an eigenvalue for T2, it cannot be equal to λ1. Thus, if f is a λ-eigenvector
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for T , it is orthogonal to the eigenspace for λ1 and hence P1(f) = 0. Thus

T2(f) = (T1 − λ1P1)(f) = T1(f) = T (f) = λf,

and so f is a λ-eigenvector for T2, as we wished to show.
We can now turn to the proof of (19). It is certainly true, by the way in which we have con-

structed the sequence, that {|λn|} forms a nonincreasing sequence. But we do not know yet
that λn → 0. If Tn = 0 at some stage, there is nothing to prove. Let us suppose that, con-
trary to what we wish to prove, there is an ε > 0 so that infn |λn| ≥ ε. For each n, choose an
eigenvector fn of T associated with λn and T and with ‖fn‖ = 1. Since the sequence {fn} is
bounded and the operator T is compact, there is a subsequence with {T (fnk

)} convergent in
norm. But, using the Pythagorean theorem (Corollary 14.6), we find that

‖T (fnk
) − T (fnj )‖2 = ‖λnk

fnk
− λnjfnj‖2 = |λnk

|2 + |λnj |2 ≥ 2ε2

for all j, k, which is impossible if {T (fnk
)} converges. From this contradiction, it follows that

|λn| decreases to zero and so (19) is proved.
Having checked all the problematical details raised in the third paragraph of our proof, we

see that the representation is shown to be valid. There remains one problem, because the state-
ment of our theorem claimed rather more than this; the alert reader will spot this before at-
tempting Exercise 14:9.1. �

Exercises

14:9.1♦ We did not check that the process in the proof of Theorem 14.39 picks up all the nonzero eigen-
values of T . Use the representation of T to show that there are no more eigenvalues other than the
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{λn} listed or a zero eigenvalue.

14:9.2 An operator T on a Hilbert space H is said to be finite-dimensional if the range of T is a finite-
dimensional subspace of H. Show that a compact self-adjoint operator is finite-dimensional if and
only if it has a finite number of eigenvalues.

14:9.3 Show that an operator that is both compact and self-adjoint on an infinite-dimensional Hilbert
space cannot be invertible.

14:9.4 Show that an operator that is both compact and self-adjoint on an infinite-dimensional Hilbert
space cannot map H onto itself.

14:9.5 Show that a self-adjoint operator on a Hilbert space is compact if and only if there is a sequence
of finite-dimensional, self-adjoint operators {Tn} with ‖Tn − T‖ → 0.

14.10 Additional Problems for Chapter 14

14:10.1 Let f1, f2, f3, . . . be any orthonormal sequence in a Hilbert space H. Show that there is a
unique linear operator T on H (called the shift operator) such that T (fn) = fn+1.

(a) Show that T is continuous and compute its norm.

(b) Describe the null space and range of T .

(c) Characterize the adjoint T ∗.

(d) What are the null space and range of T ∗?

(e) Show that T ∗T = I, but that neither T nor T ∗ is invertible.

14:10.2 To clarify Exercise 14:10.1 (e) show that in a finite-dimensional Hilbert space a left inverse of an
operator is also a right inverse.
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14:10.3 A self-adjoint operator T on a Hilbert space H is said to be positive if

(T (f), f) ≥ 0

for all f ∈ H. Show that every eigenvalue of a positive operator is nonnegative.

14:10.4 Show that if T is a positive, self-adjoint operator on a Hilbert space H then

|(T (f), g)| ≤ (T (f), f) (T (g), g)

for all f , g ∈ H.

14:10.5 Show that If T is a continuous, linear operator on a Hilbert space H then TT ∗ and T ∗T are
self-adjoint and positive.

14:10.6 Show that every continuous, linear operator T on a Hilbert space H can be expressed as a lin-
ear combination of self-adjoint transformations. [Hint: For a start, 1

2 (T + T ∗) is self-adjoint.]

14:10.7 An ordering for self-adjoint operators T1, T2 on a Hilbert space H can be defined by writing
T1 � T2 if

(T1(f), f) ≤ (T2(f), f)

for all f ∈ H. Show that this is a partial order on the collection of self-adjoint operators on H.

14:10.8 Let T be a continuous linear operator on a Hilbert space. Show that the following conditions
are equivalent:

(a) TT ∗ = T ∗T = I.

(b) T−1 exists and (f, g) = (T (f), T (g)) for all f , g ∈ H.

(c) T−1 exists and ‖f‖ = ‖T (f)‖ for all f ∈ H.

(Operators satisfying these conditions are said to be unitary . The class of such operators forms a
group.)
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14:10.9 Let T be a continuous linear operator on a Hilbert space. A number λ is said to be an approxi-
mate eigenvalue for T if for any ε > 0 there is a vector f with ‖f‖ = 1 for which ‖T (f) − λf‖ <
ε. Prove the following:

(a) Every eigenvalue is an approximate eigenvalue, but not conversely.

(b) If λ is an approximate eigenvalue, then

|λ| ≤ sup{|(T (f), f)| : ‖f‖ ≤ 1} ≤ ‖T‖.
(c) A necessary and sufficient condition that T have an approximate eigenvalue λ with |λ| = ‖T‖

is that

sup{|(T (f), f) : ‖f‖ ≤ 1} = ‖T‖.
(d) If T is also self-adjoint, then every approximate eigenvalue is real.

(e) If T is also self-adjoint, then one of the values ‖T‖ or −‖T‖ is an approximate eigenvalue.

(f) If T is an isometry and λ is an approximate eigenvalue of T , then |λ| = 1.

(g) If T is normal and λ is an approximate eigenvalue of T , then λ is an approximate eigenvalue
of T ∗. (An operator T is said to be normal if TT ∗ = T ∗T .)

[Hint: See the proof of Theorem 14.38 for ideas.]

14:10.10 Theorem 14.39 can be made the basis for an “operator calculus” as first observed by F. Riesz
in greater generality. Suppose that T is a continuous linear operator on a Hilbert space H with
the representation

T =

∞∑

j

λjPλj
,

where Pλj
is the projection operator taking H onto the eigenspace Hλj

corresponding to the eigen-
value λj of T .
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(a) Show that T 2 =
∑∞

j=1(λj)2Pλj
.

(b) If T is positive, compact, and self-adjoint, then it has a square root,

T 1/2 =
∞∑

j=1

√
λjPλj

.

(Use Exercise 14:10.3.)

(c) Show that Tn =
∑∞

j=1(λj)nPλj
for every positive integer n.

(d) Assume that T is invertible (it cannot be compact then unless H is finite-dimensional). Show
that T−n =

∑∞
j=1(λj)−nPλj

for every positive integer n.

(e) Show that eT =
∑∞

j=1 e
λjPλj

where, by definition,

eT =
∞∑

n=0

1

n!
Tn.

(f) How might these ideas generalize?
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Chapter 15

FOURIER SERIES

This chapter presents a short introduction to the theory of trigonometric series and Fourier se-
ries. The choice of topics is mostly directed by a wish to illustrate various applications of the
analytic tools developed so far in this text: measure, integral, convergence, derivatives, metric
space, Baire category, the Lp–spaces, and Banach spaces. The reader may have (we hope will
have) encountered some of the ideas of Fourier analysis in more elementary courses where the
more sophisticated and powerful tools we now have were not available. If so, the impression
should be that the theory becomes clearer and more lucid, the methods more delicate and ex-
act, and the results start to form a more meaningful picture.

The origins of the subject go back to the middle of the eighteenth century. Certain prob-
lems in mathematical physics seemed to require that an arbitrary function f with a fixed period

1001
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(taken here as 2π) be represented in the form of a trigonometric series

f(t) = 1
2a0 +

∞∑

j=1

(aj cos jt+ bj sin jt), (1)

and such mathematicians as Daniel Bernoulli, d’Alembert, Lagrange, and Euler had debated
whether such a thing should be possible. Bernoulli maintained that this would always be possi-
ble, while Euler and d’Alembert argued against it.

If we remember that Newton and Leibnitz were alive in the early 1700s it is remarkable to
realize that such a discussion could take place as early as the middle of that century, and we
can surely forgive them for their misconceptions as to the nature of “arbitrary” functions.

Joseph Fourier (1768–1830), as much a physicist and an egyptologist as a mathematician,
saw the utility of these representations. Although he did nothing to verify his position other
than to perform some specific calculations, in 1807 he accepted that the representation in (1)
would be available for every function f and gave the formulas

aj =
1

π

∫ π

−π
f(t) cos jt dt and bj =

1

π

∫ π

−π
f(t) sin jt dt

for the coefficients. (These were exactly the formulas Euler had advanced in 1777 should the
series representation be possible.)

Fourier’s presentations were received with no less scepticism on the part of the professional
mathematicians of the day. Nonetheless, the many methods he gave to mathematical physics
and the vision that he had has let his name survive on this representation: the numbers aj , bj
are called the Fourier coefficients, and the series itself is called a Fourier series.

Fourier series are of very great importance in physics, applied mathematics, and engineer-
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ing. For analysts they are, perhaps, even more important. Many of the great mathematicians of
the nineteenth century attacked problems in the subject. More than any other line of research,
this program started by Fourier has led to a clarification of the concepts of function and con-
vergence, major advances in the study of the integral (first by Riemann and then by Lebesgue),
and ultimately to the creation of many fields of mathematical research. Even Cantor’s set the-
ory was developed by him in order to study the sets of uniqueness of trigonometric series.

We cover most of what may be considered a standard short introduction to the subject, in-
cluding applications of the Dirichlet and Fejér kernels, some of the basics of pointwise conver-
gence, and an account of Fourier series in the Hilbert space L2[−π, π]. In addition, we have in-
cluded some topics from the general theory of trigonometric series since they give a different
flavor and have their own charm. Any account of this subject pasted onto the end of a begin-
ning graduate text in real analysis will be inadequate to convey the wide range of ideas, tech-
niques, and applications of harmonic analysis: even a casual trip to a good mathematics library
will lead the reader to a wealth of deeper reading. Above all, do not pass over Zygmund’s mon-
umental Trigonometric Series1 or Bari’s A Treatise on Trigonometric Series.2

15.1 Notation and Terminology

We shall express our Fourier series in the language of complex exponentials rather than as sums
of sines and cosines. This requires only a small effort of will in order to become accustomed to
the notation and pays back considerably in ease of computation and manipulation. In addition,
this language is used in more modern theories and helps to frame a natural connection with

1A. Zygmund, Trigonometric Series, Cambridge University Press (1959).
2 N. Bari, A Treatise on Trigonometric Series, Pergamon Press (1964).
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certain problems in complex analysis.
Thus the expression ∑

|j|≤n

cje
ijt

is said to be a trigonometric polynomial, and the expression

∞∑

j=−∞

cje
ijt

is called a trigonometric series. Here cj are real or complex constants. The degree of a trigono-
metric polynomial is the highest exponent entering in the sum. We say that

∑
|j|≤n cje

ijt has
degree n provided that cn and c−n are not both zero.

The domain of definition of all functions is taken to be the real interval T = (−π, π]. In
fact, we think of T as being the real line modulo the equivalence relation x ∼ y if x − y is a
multiple of 2π. Thus T can be taken as any interval of length 2π with this understanding, and
the endpoints are identified with each other. In this way, T is actually a compact set and has
the structure of an additive group under addition.

The more usual interpretation of T is to consider it as the circle group or the one-dimensional
torus group: the set of complex numbers with unit modulus under the group operation of multi-
plication and given the usual metric as a subset of C. The mapping t → eit is a continuous iso-
morphism that identifies points in T with points in the circle group. This more algebraic view-
point is needed when one wishes to undertake a generalization of Fourier analysis to different
settings; it is not much needed here, other than perhaps to explain why our interval is labeled T
(for torus).
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Given a trigonometric polynomial

P (t) =
∑

|j|≤n

cje
ijt (t ∈ T ),

there is a way to determine the coefficients of the polynomial from the values of P . Indeed,
since this is a finite sum of continuous (complex) functions, we have

cj =
1

2π

∫

T
P (t)e−ijt dt (|j| ≤ n).

We would obtain precisely the same formulas for the coefficients of a trigonometric series f(t) =∑∞
j=−∞ cje

ijt, provided that some meaning is attached to the sum of the series and the integra-
tion may be performed by integrating each term in the sum (as would be the case with uniform
convergence or dominated convergence, for example).

This suggests a way of associating a trigonometric series with any integrable function with-
out any regard to the question (at least for now) of whether the series in any way sums back
to the function. We use L1(T ) to denote the space of complex-valued functions defined and in-
tegrable on T ; since we wish to allow T to represent any interval of length 2π, we can consider
L1(T ) to be the space of complex-valued, 2π-periodic functions defined on IR and integrable on
each finite interval.

In general, Lp(T ) (1 ≤ p < ∞) represents the usual spaces of pth power integrable functions
on T , again interpreted as complex-valued, 2π-periodic functions defined on IR. For norm we
shall use

‖f‖p =

(
1

2π

∫

T
|f(t)|p dt

)1/p

,

which is the usual norm adjusted by a constant factor that simplifies many formulas. The space
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L∞(T ) has its usual essential supremum norm ‖f‖∞ (not needing any such adjustment) and is,
as the reader may recall from Section 13.3, the limiting value of ‖f‖p as p→ ∞.

Definition 15.1: A Fourier series is a trigonometric series
∑

j cje
ijt for which there is some

function f ∈ L1(T ) so that

cj = cj(f) =
1

2π

∫

T
f(t)e−ijt dt

for all j. The constants cj = cj(f) are called the Fourier coefficients of f , and the relation be-
tween f and the associated series is denoted as

f ∼
∑

j

cje
ijt.

The distinction between a Fourier series and a trigonometric series is easy but must be grasped.
A trigonometric series is merely a series

∑
j cje

ijt considered formally with no claims to con-
vergence. A Fourier series is a trigonometric series again considered formally with no claims
to convergence but associated with some function f ∈ L1(T ) in the sense that the coefficients
have been determined from f . We rather hope for a closer connection between a function and
its Fourier series: in some way the series is intended to “represent” the function. But investigat-
ing this representation problem will take some time and effort.

We have now embarked on a program that is part of the subject of harmonic analysis. The
first part is solved. Given a function f , we know how to resolve it into its “components” in each
of the “directions” eijt. The second part of the program, the more difficult part, is the “synthe-
sis” problem: given the components, how can we reconstruct f from the components? We hope
that somehow the Fourier series can be summed to recover f .
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Summing a Fourier series or a general trigonometric series will always follow this conven-
tion: we form the symmetric partial sums

sn(t) =
∑

|j|≤n

cje
ijt

and investigate the limit of the sequence sn, interpreted in several senses. This sequence {sn(t)}
is called the sequence of partial sums of the trigonometric series. If

∑
j cje

ijt is the Fourier se-
ries of a function f , then it is useful to indicate this by the notation

sn(f, t) =
∑

|j|≤n

cje
ijt.

This sequence {sn(f, t)} is called the sequence of partial sums of the Fourier series. Much of our
concern in what follows is how to obtain f from the sequence sn(f).

Exercises

15:1.1 Obtain the orthogonality relations; that is, determine

1

2π

∫

T

eikte−ijt dt

for k = j and for k 6= j. Do this too for the real versions:

1

2π

∫

T

sin(kt) sin(jt) dt,
1

2π

∫

T

cos(kt) sin(jt) dt,

and
1

2π

∫

T

cos(kt) cos(jt) dt.
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15:1.2 Show that the integrals
∫

T
f(t)e−ijt dt exist for any f ∈ L1(T ). [Equivalently, show that the

integrals ∫ 2π

0

f(t) cos jt dt and

∫ 2π

0

f(t) sin jt dt

exist.]

15:1.3 Given a trigonometric polynomial P (t) =
∑

|j|≤n cje
ijt, show that

cj =
1

2π

∫

T

P (t)e−ijt dt

for each |j| ≤ n.

15:1.4 Given that the limit f(t) = limn→∞ sn(t) holds uniformly where

sn(t) =
∑

|j|≤n

cje
ijt,

show that

cj =
1

2π

∫

T

f(t)e−ijt dt

for each |j| ≤ n.

15:1.5 Given that the limit f = limn→∞ sn holds in the sense of the L1(T ) norm [where again sn(t) =∑
|j|≤n cje

ijt] for a function f ∈ L1(T ), show that

cj =
1

2π

∫

T

f(t)e−ijt dt

for each |j| ≤ n.
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15:1.6 Given that the limit f = limn→∞ sn holds in the sense of the Lp(T ) norm for a function f ∈
Lp(T ) and some 1 < p <∞, show that

cj =
1

2π

∫

T

f(t)e−ijt dt

for each |j| ≤ n.

15:1.7 Suppose that the limit f = limn→∞ sn holds in the sense that

lim
n→∞

∫ π

−π

u(t)sn(t) dt =

∫ π

−π

u(t)f(t) dt

for every infinitely differentiable, 2π-periodic function u. Show that

cj =
1

2π

∫

T

f(t)e−ijt dt

for each |j| ≤ n.

15:1.8 The reader who wishes occasionally to see Fourier series in the familiar real form from elemen-
tary applications can check the details of the following. If f is real-valued, integrable, and 2π-
periodic then c0(f) is real, c−j(f) is the complex conjugate of cj(f), and

sn(f, t) =
∑

|j|≤n

cje
ijt = c0 +

n∑

j=1

(
cje

ijt + c−je
−ijt

)

= c0 +

n∑

j=1

(cj + c−j) cos jt+ i (cj − c−j) sin jt

= 1
2a0 +

n∑

j=1

aj cos jt+ bj sin jt,
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where aj = (cj + c−j) and bj = i (cj − c−j). In this case,

aj =
1

π

∫

T

f(t) cos jt dt bj =
1

π

∫

T

f(t) sin jt dt.

15:1.9♦ If the function f ∈ L1(T ) is real and even [i.e., if f(t) = f(−t)], then show that the Fourier
series assumes the form

f ∼ 1
2a0 +

∞∑

j=1

aj cos jt

where

aj =
2

π

∫ π

0

f(t) cos jt dt.

If the function f ∈ L1(T ) is real and odd [i.e., if f(t) = −f(−t)] what is the appropriate form?

15:1.10 What are the exponential functions
{
eijt
}

that play such a key role in this study? Show that
they are precisely the continuous group characters of T . [A function χ : T → C such that χ(s+t) =
χ(s)χ(t) is called a group character. We want only continuous, 2π-periodic functions: show that
χ(0) = 1, χ(−t) = χ(t)−1, |χ(t)| = 1,

∫ h

0

χ(s+ t) dt = χ(s)

∫ h

0

χ(t) dt =

∫ s+h

s

χ(t) dt,

and χ′(t) = (−iχ′(0))χ(t). Compare this with Exercise 13:9.13.]
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15.2 Dirichlet’s Kernel

In any study of trigonometric series, some attention must be given to the partial sums of the
series. In the case of the partial sums of the Fourier series of a function

sn(f, x) =
∑

|j|≤n

cje
ijx,

the cj are determined by an integral, and naturally one can replace each cj by that integral and
obtain

sn(f, x) =
∑

|j|≤n

(
1

2π

∫

T
f(t)e−ijt dt

)
eijx

=
1

π

∫

T
f(t)


1

2

∑

|j|≤n

eij(x−t)


 dt =

1

π

∫

T
f(t)Dn(x− t) dt,

where we are writing

Dn(t) =
1

2

∑

|j|≤n

eijt dt.

Since these are just finite sums, these manipulations are not deep, and the resulting expression,

sn(f, x) =
1

π

∫

T
f(t)Dn(x− t) dt, (2)

is a trivial rewriting of sn(f, x). It suggests, though, that any study of the convergence proper-
ties of Fourier series must address properties of the functions Dn(t), and this is so.

In memory of Peter Gustav Lejeune-Dirichlet (1805–1859) the function Dn(t) is called the
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Dirichlet kernel of order n. Dirichlet was the first to obtain any rigorous results on the conver-
gence behavior of Fourier series. (His 1829 theorem asserts that a function with at most finitely
many simple discontinuities and only a finite number of maxima and minima has a Fourier se-
ries that converges everywhere, to the function at the points of continuity and to the average
between the left and right limits at a discontinuity.)

We collect in a theorem all the properties of these kernels that are needed for our subse-
quent study.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.2. Dirichlet’s Kernel 1013

Theorem 15.2 (Properties of the Dirichlet kernel) The function

Dn(t) =
1

2

∑

|j|≤n

eijt

is called the Dirichlet kernel of order n, and the numbers

Ln =
1

π

∫

T
|Dn(t)| dt = 2‖Dn‖1

are called the Lebesgue constants. The following properties hold for these concepts:

1. Each Dn(t) is a real-valued, continuous, 2π-periodic function. For n ≥ 1 each function
Dn(t) assumes both positive and negative values.

2. Each Dn(t) is an even function.

3. For each n,
1

π

∫

T
Dn(t) dt =

2

π

∫ π

0
Dn(t) dt = 1.

4. For each n,

Dn(t) =
sin
(
n+ 1

2

)
t

2 sin 1
2 t

.

5. For each n, Dn(0) = n+ 1
2 .

6. For each n and all t, |Dn(t)| ≤ n+ 1
2 .

7. For each n and 0 < |t| < π,

|Dn(t)| ≤ π

2|t| .

8. Ln → ∞ as n→ ∞.
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Proof. Items (i), (ii), (iii), (v), and (vi) are almost immediate from the definition of the Dn.
Item (iv) requires only some elementary manipulations. Since the sum defining Dn is a geomet-
ric series, we have

Dn(t) =
1

2
e−int

(
ei(2n+1)t − 1

eit − 1

)
,

and some mildly tedious applications of the standard formula

eiθ = cos θ + i sin θ

will produce (iv).
Use the simple inequality

2θ

π
≤ sin θ

for 0 < θ < π/2 (draw a picture) to obtain that

1

2 sin 1
2 t

≤ π

2|t|
for all 0 < t < π. From this (vii) follows.

Finally, we wish to show that (viii) holds. In fact, one can prove that Ln asymptotically ap-
proaches

4 lnn

π2

as n→ ∞. We require only to know that Ln → ∞. We use the elementary inequality

| sin θ| ≤ |θ|
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Figure 15.1. Dirichelet kernel Dn(t) for n = 1, 3, and 7.

to obtain

Ln =
1

π

∫

T
|Dn(t)| dt ≥ 2

π

∫ π

0

sin
(
n+ 1

2

)
t

|t/2| dt,

and a change of variables shows that this is

4

π

∫ (n+1/2)π

0

| sin τ |
τ

dτ ≥ 4

π

n∑

j=1

1

jπ

∫ jπ

(j−1)π
| sin τ | dτ =

4

π2

n∑

j=1

1

j
.

This series diverges, hence the numbers Ln grow without bound. This proves (viii). �

Some of the features of the Dirichlet kernel can be seen in Figure 15.1. The symmetry is
certainly apparent (Dn is even) and that the graph oscillates above and below the horizon-
tal axis is evident. The value of the function is small except close to 0 where the function is
large, and as n increases this feature becomes more pronounced. The total area remains fixed
always at π because of the cancelations: if the area is taken without cancelations (i.e., the area
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under |Dn| is computed), then this gets large with increasing n. This last fact plays a role in
Section 15.9, where we show that the Fourier series of a continuous function need not converge.
Item (vii) is interesting for us only in the fact that we cannot improve it. In contrast, we shall
see that the Fejér kernel of the next section has a better upper estimate, which can be exploited.

Exercises

15:2.1 Check the representation

sn(f, x) =
1

π

∫

T

f(x+ t)Dn(t) dt

=
1

π

∫ π

0

(f(x+ t) + f(x− t))Dn(t) dt.

15:2.2♦ Check the representation

sn(f, x0) − s =
1

π

∫ π

0

(f(x0 + t) + f(x0 − t) − 2s)Dn(t) dt

for any real number s.

15.3 Fejér’s Kernel

A study of the convergence properties of the Fourier series will evidently require handling the
Dirichlet kernel. In the preceding section we collected some of the properties of that kernel in
anticipation of solving convergence problems.

We would hope to use these ideas to determine that the Fourier series of a reasonable func-
tion converges pointwise to that function. Let us confess immediately, though, to the difficulties
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of this task. Pointwise convergence of Fourier series is a subtle and occasionally elusive pursuit.
This leaves us at the beginning of our study with a major nuisance: we do not know how to re-
cover a function from its Fourier series. Indeed, the Fourier series of an integrable function may
diverge (everywhere!), and there would seem to be no hope of “summing” the series to obtain
the function.

A simple idea comes to the rescue. Average the sums. If the sequence sn(f, x) will not re-
cover f(x), consider instead the averages

σn(f, x) =
s0(f, x) + s1(f, x) + s2(f, x) + · · · + sn(f, x)

n+ 1
.

The idea of forming averages for divergent series goes back over two centuries, but received its
first formal study by Ernesto Cesàro (1859–1906) in 1890. A young Hungarian mathematician
Leopold Fejér (1880–1959) first applied it in 1900 to the study of Fourier series and obtained
the results we now study. The averages σn(f, x) are called the Cesàro means of the Fourier se-
ries, and this method of summing a series that may possibly be divergent is called Cesàro (C,1)
summation. It is developed a bit further in the exercises. There are many summability meth-
ods, of which the Cesàro method is but one.

We obtain a simple formula for the averages σn(f, x), just as we did for the partial sums
themselves. Using the Dirichlet kernel itself we have

σn(f, x) =
s0(f, x) + s1(f, x) + s2(f, x) + · · · + sn(f, x)

n+ 1

=
1

π

∫

T
f(t)Kn(x− t) dt,

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



1018 Fourier Series Chapter 15

where we are writing

Kn(t) =
1

n+ 1

n∑

j=0

Dj(t).

This representation can, with some minor computations, be written in the form

σn(f, x) =
1

π

∫

T

1

2
(f(x+ t) + f(x− t))Kn(t) dt

or in the equivalent form

σn(f, x) =
1

π

∫ π

0
(f(x+ t) + f(x− t))Kn(t) dt. (3)

The function Kn(t) is called the Fejér kernel of order n. We collect in a theorem all the
properties of these kernels that are needed for our study in a way that parallels Theorem 15.2
cataloging the properties of the Dirichlet kernel. The reason why this method of summing a
Fourier series has better properties than ordinary partial sums can be seen by comparing these
two theorems. The reason is easy to spot: the Fejér kernel is nonnegative.
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Theorem 15.3 (Properties of the Fejér kernel) The function

Kn(t) =
1

n+ 1

n∑

j=0

Dj(t)

is called the Fejér kernel of order n and enjoys the following six properties:

1. Each Kn(t) is a real-valued, nonnegative, continuous function.

2. Each Kn(t) is an even function.

3. For each n,
1

π

∫

T
Kn(t) dt =

2

π

∫ π

0
Kn(t) dt = 1.

4. For each n,

Kn(t) =
1

2(n+ 1)

(
sin
(

1
2(n+ 1)t

)

sin 1
2 t

)2

.

5. For each n, Kn(0) = 1
2(n+ 1).

6. For each n and 0 < |t| < π,

0 ≤ Kn(t) ≤ π

(n+ 1)t2
.

Proof. Items (i), (ii), (iii), and (v) are almost immediate from the definition of the Kn. That
Kn(t) ≥ 0 follows from (iv). Item (iv) requires elementary manipulations once again, summing
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Figure 15.2. Fejér kernel Kn(t) for n = 1, 2, 3, 4, and 5.

a geometric series and using trigonometric identities. The details are not interesting and nowa-
days can be checked on a computer in any case. Again, use the simple inequality 2π−1θ ≤ sin θ
for 0 < θ < π/2 on the expression in the denominator of (iv) to obtain (vi). �

Some of the features of the Fejér kernel can be seen in Figure 15.2 and should be compared
and contrasted with the picture for the Dirichlet kernel. Again the symmetry is certainly ap-
parent (Kn is even), but the graph here does not oscillate above and below the horizontal axis,
but remains always on or above. As before, the value of the function is small except close to 0
where the function is large, and as n increases, this feature becomes more pronounced. The to-
tal area under the graph remains fixed always at π, but this is not because of any cancelations.
This last fact is the reason why the Cesàro means of the Fourier series of a continuous function
can converge even though the series itself diverges. From these properties of the Fejér kernel we
can, in the next section, obtain a number of convergence facts for the Cesàro means of a Fourier
series.
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Exercises

15:3.1 A series
∑∞

j=1 cj of real or complex numbers can often be summed by taking averages. Let sn =∑n
j=1 cj denote the usual partial sums of the series, and let σn = (1/n)

∑n
j=1 sj be the Cesàro

means. The series is said to be (C,1)-summable to a value s if limn→∞ σn = s. If the series is con-
vergent to s in the usual sense (i.e., if limn→∞ sn = s), show that the series is also (C,1)-summable
to the same value s. (Is the converse true?) [Hint: This exercise can also be done within the con-
text of summability methods (Section 12.12).]

15:3.2 The series
∑∞

j=0 z
j diverges for all z on the unit circle |z| = 1. Determine the (C,1)–sum.

15:3.3 If a series of positive terms is (C,1)-summable to s (0 ≤ s ≤ ∞) then, in fact, limn→∞ sn = s.

15:3.4 [Hardy’s Tauberian theorem] If a series
∑∞

j=1 cj is (C,1)-summable to s and {jcj} is bounded
then in fact limn→∞ sn = s. (A theorem that asserts that, in the presence of some additional hy-
pothesis, a sequence that is summable by some method must be convergent is called a Tauberian
theorem after Alfred Tauber, who proved a very simple theorem of this type.)

15:3.5 Check the representation in (3) using appropriate properties of Kn from the theorem.

15:3.6♦ Show that

σn(f, x) =
∑

|j|≤n

(
1 − |j|

n+ 1

)
cje

ijx,

where cj = cj(f).

15.4 Convergence of the Cesàro Means

We begin with the basic theorem first proved by Fejér and then give some variants that can be
obtained by essentially the same methods.
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Theorem 15.4 (Fejér) Let f ∈ L1(T ), and let σn(f, x) denote the Cesàro means of the
Fourier series of f . If the limits f(x0 + 0) and f(x0 − 0) both exist at a point x0, then

lim
n→∞

σn(f, x0) = 1
2 (f(x0 + 0) + f(x0 − 0)) .

If, moreover, f is continuous at each point of an interval [a, b], then σn(f, x) → f(x) uniformly
for x ∈ [a, b].

Proof. Recall that f(x0 +0) and f(x0−0) are our notations for the right- and left-hand limits
of f at x0. We may assume that

f(x0) = 1
2 (f(x0 + 0) + f(x0 − 0)) .

This one change in the value of f does nothing to the Fourier series, and so we are allowed this.
If f is continuous, then this step can be skipped.

Let ε > 0, and choose δ > 0 so that

|f(x0 + t) + f(x0 − t) − 2f(x0)| < ε

for every 0 ≤ t ≤ δ. We note that

2

π

∫ π

0
f(x0)Kn(t) dt = f(x0)

[by using property (iii) of Theorem 15.3] and so from our representation of σn(f, x) in (3) we
have

|σn(f, x0) − f(x0)| ≤ 1

π

∫ π

0
|f(x0 + t) + f(x0 − t) − 2f(x0)|Kn(t) dt

≤ I1 + I2,
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where I1 is the integral taken over [0, δ] and I2 is the integral taken over [δ, π]. Since Kn is non-
negative, we did not need to keep it inside the absolute value in the integral. (It is here where
we first see how this feature, lacking in the Dirichlet kernel Dn, can be used.)

The part I1 will be small (for all n) because the expression in the absolute values is small
for t in the interval [0, δ]. The part I2 will be small (for large n) because of the bound on the
size of Kn for t away from zero in Theorem 15.3. Here are the details: for I1 we have, using
Theorem 15.3 (iii),

I1 ≤ ε

π

∫ δ

0
Kn(t) dt ≤ ε.

For I2, let

κn = sup{Kn(t) : δ ≤ t ≤ π},

and note that Theorem 15.3 (vi) supplies us with the fact that κn → 0 as n→ ∞. Now we have

I2 ≤ κnε

π

∫ π

δ
(|f(x0 + t)| + |f(x0 − t)| + 2|f(x0)|) dt

so that for large n we can make I2 as small as we please. It follows, since ε is arbitrary, that

lim
n→∞

σn(f, x0) = f(x0),

as required.
If, moreover, f is continuous at each point of an interval [a, b], then these arguments apply

uniformly throughout so that σn(f, x) → f(x) uniformly for x ∈ [a, b]. �
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15.4.1 Almost everywhere convergence of the Cesàro means

A more modern version of the Fejér theorem is proved in somewhat the same way. Here we
note that points of continuity can be replaced by the weaker notion of a Lebesgue point (see
Section 7.7) and still convergence can be proved.

Theorem 15.5 (Fejér–Lebesgue) Let f ∈ L1(T ), and let σn(f, x) be the Cesàro means of the
Fourier series of f . Then

lim
n→∞

σn(f, x) = f(x)

at every Lebesgue point of f . (Since almost every point is a Lebesgue point, this occurs almost
everywhere.)

Proof. The proof is similar in its strategy to that given for Theorem 15.4, but the arguments
are more delicate because a weaker assumption is made. The details will be better understood
if the reader attempts a proof first along the lines of Theorem 15.4 and discovers where the dif-
ficulties arise.

Let x0 be a Lebesgue point and write

F (t) =

∫ t

0
|f(x0 + τ) + f(x0 − τ) − 2f(x0)| dτ.

The function F is absolutely continuous and

F ′(t) = |f(x0 + τ) + f(x0 − τ) − 2f(x0)|
for a.e. value of t. The integral ∫

T
|F ′(t)| dt = M <∞
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and, since x0 is a Lebesgue point for f , we know that F (t)/t→ 0 as t→ 0+.
As before, the representation of σn(f, x) in (3) allows us to write

|σn(f, x0) − f(x0)| ≤ 1

π

∫ π

0
F ′(t)Kn(t) dt (4)

and we show that this is small for large n by splitting the integral over [0, π] into integrals over
three subintervals

[0, n−1], [n−1, n−1/4], and [n−1/4, π].

In our earlier proof the intervals chosen were independent of n, but a more delicate version of
this argument is now needed.

The integral ∫ π

n−1/4

F ′(t)Kn(t) dt

is small for large n because, using property (vi) of Theorem 15.3, it is smaller than

π

n+ 1

∫ π

n−1/4

F ′(t)t−2 dt ≤ Mπ

(n+ 1)(n−1/4)2
,

and certainly this tends to zero as n→ ∞.
The integral ∫ n−1

0
F ′(t)Kn(t) dt

is small for large n because, using using property (v) of Theorem 15.3, it is smaller than

n+ 1

2

∫ n−1

0
F ′(t) dt =

n+ 1

2
F (n−1),
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and this tends to zero as n→ ∞ since, as noted, F (t)/t→ 0 as t→ 0+.
Finally, the integral

∫ n−1/4

n−1

F ′(t)Kn(t) dt (5)

can be seen to be small for large n after some computations. First, using property (vi) of Theo-
rem 15.3 and an integration by parts, we see it is smaller than

π

n+ 1

∫ n−1/4

n−1

F ′(t)t−2 dt

=
π

n+ 1

(
F (n−1/4)

(n−1/4)2
− F (n−1)

(n−1)2

)
+

2π

n+ 1

∫ n−1/4

n−1

F (t)

t
t−2 dt.

Both of the terms

F (n−1/4)

(n+ 1)(n−1/4)2
and

F (n−1)

(n+ 1)(n−1)2

tend to zero as n → ∞ because F (t)/t → 0 as t → 0+. The term involving the integral can be
handled by noting that

∫ n−1/4

n−1

F (t)

t
t−2 dt

≤
(∫ n−1/4

n−1

t−2 dt

)
sup

{
F (t)/t : t ∈

[
n−1, n−1/4

]}
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and the integral ∫ n−1/4

n−1

t−2 dt ≤
∫ ∞

n−1

t−2 dt = n.

Again,
sup{F (t)/t : t ∈ [n−1, n−1/4]}

is small for large n because F (t)/t → 0 as t → 0+. Putting these together, we find that (5)
tends to zero for n→ ∞ as required.

These three integrals have now been handled. We conclude that the expression in (4) also
tends to zero for n→ ∞ and the proof is complete. �

15.4.2 Uniform convergence of the Cesàro means

The same methods show that the convergence can be taken as uniform if the function is contin-
uous on all of T and 2π-periodic.

Theorem 15.6 (Fejér) Let f be continuous and 2π-periodic. Then

lim
n→∞

σn(f, x) = f(x)

uniformly.

Exercises

15:4.1♦ Let f ∈ L1(T ). Prove that for limn→∞ σn(f, x0) = s it is necessary and sufficient that for some
δ > 0 it is true that

lim
n→∞

1

n

∫ δ

0

(f(x0 + t) + f(x0 − t) − 2s)
sin2( 1

2nt)

t2
dt = 0.
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(Compare this with Corollary 15.14.)

15:4.2 Write up a formal proof of Theorem 15.6.

15.5 The Fourier Coefficients

We are now in a technical position to establish some facts concerning the Fourier coefficients.
While the Fourier series of an arbitrary function f ∈ L1(T ) need not converge, there is still
something that can be said about the series: the terms go to zero. This was first proved by Rie-
mann for some integrable functions and then extended by Lebesgue to all integrable functions.
The proof is quite elementary once we know that the trigonometric functions are dense in C(T ).
Even so, it is a most useful result about the Fourier coefficients and should be remembered.

Theorem 15.7 (Riemann–Lebesgue) Let f ∈ L1(T ), and let

cj = cj(f)

denote the Fourier coefficients of f . Then

lim
|j|→∞

cj = 0.

Proof. Let ε > 0. There is a trigonometric polynomial P ∈ L1(T ) so that ‖f − P‖ < ε. If N
is the degree of the polynomial P , then certainly

1

2π

∫

T
P (t)e−ijt dt = 0
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for all |j| > N . Consequently,

|cj | =
1

2π

∣∣∣∣
∫

T
f(t)e−ijt dt

∣∣∣∣ =
1

2π

∣∣∣∣
∫

T
(f(t) − P (t)) e−ijt dt

∣∣∣∣

≤ 1

2π

∫

T
|f(t) − P (t)| dt = ‖f − P‖ < ε

for all |j| > N , and this proves the theorem. �

In the exercises we shall ask the reader to carry through on some computations needed in
applications of the Riemann–Lebesgue theorem. In particular, we need to obtain zero limits for
expressions such as

∫ b

a
f(t) sin(n+ 1

2)t dt

as occur in using the Dirichlet kernel.
Having obtained the Riemann–Lebesgue theorem, we ask now whether a converse is avail-

able. Let
∑

j cje
ijt be a given trigonometric series. In order that this be the Fourier series of

some function, then certainly, because of the Riemann–Lebesgue theorem, a necessary condition
is that the coefficients tend to zero. This is not sufficient: there must exist many such sequences
that are not the Fourier coefficients of a function in L1(T ). An interesting proof of this can be
based on the open mapping principle of Section 12.13, and we present this in Theorem 15.9.

First, we dispense with a uniqueness problem in this regard. Can two functions have the
same Fourier series? If the two functions agree almost everywhere, then certainly the Fourier
series are identical. The next theorem asserts that only in this case can this happen.
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Theorem 15.8: Let f , g ∈ L1(T ), and let

f ∼
∑

j

cje
ijt and g ∼

∑

j

dje
ijt

be the two Fourier series. If, for all j, cj = dj, then f = g almost everywhere [i.e., f = g in the
space L1(T )].

Proof. To prove the theorem, it is enough to subtract f and g and obtain a function h all of
whose Fourier coefficients are zero. Let σn(h, x) be the Cesàro means for the Fourier series of h.
Then, by Theorem 15.12, σn(h, x) converges to h in L1(T ). But since all the coefficients vanish,
so too does σn(h, x), and consequently h is the zero element of L1(T ), as required. �

15.5.1 The mapping f → f̂

To place our next theorem in the setting of Banach spaces, consider the mapping f → f̂ , where
f ∈ L1(T ) and f̂ is the function defined on the integers Z by

f̂(j) = cj(f),

so f̂ is the just the sequence of Fourier coefficients of f . The space c0(Z) of all complex se-
quences c = {cj}∞−∞ with cj → 0 as |j| → ∞ is a Banach space with its usual supremum
norm

‖c‖∞ = sup
j

|cj |.

The open mapping theorem applied to an appropriate mapping on these spaces shows that
there must exist sequences in c0(Z) that are not the Fourier coefficients of any integrable func-
tion.
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Theorem 15.9: The mapping f → f̂ from L1(T ) into c0(Z) is a continuous, one-one linear
mapping that is not onto.

Proof. If Γ denotes the mapping taking f → f̂ , it is trivial to verify that the mapping is
linear since it is defined by an integration. We verify first that ‖Γ‖ = 1. The constant function
f0(t) = 1 provides an example of a function with ‖f0‖ = 1 and ‖f̂‖∞ = 1, since f̂(0) = 1 and
f̂(j) = 0 if j 6= 1. This shows that ‖Γ‖ ≥ 1. On the other hand, for all j ∈ Z,

|f̂(j)| =

∣∣∣∣
1

2π

∫ π

−π
f(t)e−ijt dt

∣∣∣∣ ≤ ‖f‖1

so that ‖Γ‖ ≤ 1. That Γ is one-one is precisely the content of Theorem 15.8, just proved.
Finally, we show that Γ is not onto by invoking the open mapping theorem (Theorem 12.53).

If, contrary to what we claim, Γ is onto, then the inverse exists and is continuous. The sequence
Dn of Dirichlet kernels can be used to see that this is impossible. Each Dn ∈ L1(T ). For each
n the sequence D̂n of Fourier coefficients is in the unit ball of c0(Z): an obvious computation
shows that each of the Fourier coefficients of Dn is either 1/2 or 0. The inverse Γ−1, if it did ex-
ist, would have to map that unit ball into a bounded set, which it cannot do because ‖Dn‖1 →
∞ (Theorem 15.2). �

Exercises

15:5.1 Let f ∈ L1(T ). Show that, for any interval [a, b],

lim
|j|→∞

∫ b

a

f(t)e−ijt dt = 0.

[Hint: If [a, b] ⊂ [−π, π], apply the Riemann–Lebesgue theorem to the function fχ
[a,b]

.]
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15:5.2 Let f ∈ L1(T ). Show that

lim
n→∞

∫ b

a

f(t) sinnt dt = lim
n→∞

∫ b

a

f(t) cosnt dt = 0.

15:5.3♦ Let f ∈ L1[a, b]. Show that

lim
n→∞

∫ b

a

f(t) sin(n+ 1
2 )t dt = 0.

[Hint: Try some trigonometric identities.]

15:5.4♦ Let 0 < δ < π and f ∈ L1[δ, π]. Show that

lim
n→∞

∫ π

δ

f(t)Dn(t) dt = 0.

[Hint: The function csc(t/2) is bounded on this interval, and so f(t) csc(t/2) is integrable there.]

15.6 Weierstrass Approximation Theorem

Fejér’s theorem allows us to conclude that the trigonometric polynomials are dense in most of
the spaces with which we are concerned. This is a good excuse for us to pause to harvest some
results. Also, it is useful to draw a parallel between the denseness of the trigonometric polyno-
mials and the famous Weierstrass approximation theorem asserting that continuous functions
on a compact interval can be uniformly approximated by ordinary polynomials. The reader will
have seen other proofs of this, for example in Section 9.13. The proof we present here shows a
rather nice connection between approximations using trigonometric polynomials and approxi-
mations using ordinary polynomials.
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Theorem 15.10: Let f be a continuous, 2π-periodic, complex-valued function, and let ε > 0.
Then there is a trigonometric polynomial g(x) so that

|f(x) − g(x)| < ε

for all x.

Proof. If f is a continuous, 2π-periodic complex-valued function, then, by Theorem 15.6, for
large enough n the Cesàro means σn(f) are uniformly close to f . Thus not only can we approx-
imate f by a trigonometric polynomial, we can even do it explicitly (although we have not de-
termined the degree). �

To obtain the Weierstrass theorem from trigonometric polynomial approximation takes only
a few ideas, interesting in themselves.

Theorem 15.11 (Weierstrass approximation) Let f be a continuous function on an inter-
val [a, b], and let ε > 0. Then there is a polynomial

g(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0

so that

|f(x) − g(x)| < ε

for all x ∈ [a, b].

Proof. There is nothing special about the interval [a, b] for the purposes of the theorem, since
an affine transformation can take [a, b] into any interval, and polynomials transform into poly-
nomials. There is something special about [0, 1] for our proof, so we take it instead.
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Let f be a continuous, real or complex function on [0, 1], let ε > 0, and write F (t) = f(| cos t|).
Then F is a continuous, 2π-periodic function and can be approximated by a trigonometric poly-
nomial within ε. Since F is even [i.e., F (t) = F (−t)] we can figure out what form that trigono-
metric polynomial may take: we can find a0, a1, a2, . . . an so that

∣∣∣∣∣F (t) −
n∑

0

aj cos jt

∣∣∣∣∣ < ε (6)

for all t. Each cos jt can be written using elementary trigonometric identities as Tj(cos t) for
some jth order (ordinary) polynomial Tj , and so, by setting x = cos t for any x ∈ [0, 1], we have

∣∣∣∣∣f(x) −
n∑

0

ajTj(x)

∣∣∣∣∣ < ε,

which is exactly the polynomial approximation that we need. �

The polynomials Tj that appear in the proof are well known as the Tchebychev polynomials
and are easily generated (see Exercise 15:6.2).

15.6.1 Approximations in Lp(T )

As another application of these ideas let us note that the Cesàro means can also be used as ap-
proximations in other spaces.

Theorem 15.12: Let f ∈ Lp(T ) (1 ≤ p <∞). Then

lim
n→∞

‖σn(f) − f‖p = 0.
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Proof. Let

F (t) =

(
1

2π

∫ π

−π
|f(x+ t) − f(x)|p dx

)1/p

.

We know that F (t) → 0 as t→ 0, and so, by Theorem 15.4, it follows that σn(F, 0) → 0.
With this fact we can prove that the sequence σn(f) converges to f in Lp(T ). We use the

usual representation of the Cesàro means to get

|σn(f, x) − f(x)| ≤ 1

π

∫ π

−π
|f(x+ t) − f(x)|Kn(t) dt

and the version of Minkowski’s inequality for integrals obtained in Exercise 13:1.4 to get

‖σn(f) − f‖p ≤
(

1

2π

∫ π

−π

(
1

π

∫ π

−π
|f(x+ t) − f(x)|Kn(t) dt

)p

dx

)1/p

≤ 1

π

∫ π

−π

(
1

2π

∫ π

−π
|f(x+ t) − f(x)|p dx

)1/p

Kn(t) dt

=
1

π

∫ π

−π
F (t)Kn(t) dt = σn(F, 0) → 0.

Since σn(F, 0) → 0 as n→ ∞, we have our desired result. �

Exercises

15:6.1 Check that the approximating polynomial in (6) can be written in the form as stated (cf. Exer-
cise 15:1.9).
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15:6.2 Define the Tchebychev polynomials by requiring Tj to be a polynomial so that

cos jt = Tj(cos t)

identically. Show that T0(x) = 1, T1(x) = x, and

Tn(x) = 2xTn−1(x) − Tn−2(x).

Generate the first few of these polynomials.

15.7 Pointwise Convergence

The most natural question and, it might seem, the most important that we should now ask
is for situations in which sn(f) converges pointwise or uniformly to f . Indeed, much of the
nineteenth-century discussion of Fourier series centered on this convergence problem. The prob-
lem turned out to be difficult, subtle, and interesting. But its importance was overstated. In-
deed, it is important for a Fourier series to “converge” back to the function, but pointwise con-
vergence is not important for applications—maybe even it is unimportant. We know of many
ways of interpreting convergence of functions (e.g., convergence in mean, convergence in mea-
sure, Lp-convergence) that might be better suited to the problem. One of the main difficulties
with pointwise convergence we have seen many times: a representation of a function as a point-
wise convergent series does not necessarily allow further operations on the series, such as differ-
entiation and integration.

Even so, for historical reasons and for its intrinsic interest, we shall look at the situation re-
garding pointwise convergence of Fourier series in this section and the next two sections. The
ideas prove to be challenging. They may not be essential to an exclusively practical develop-
ment of the subject, but they lead us in important directions.
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First, we obtain a formal requirement for convergence of a Fourier series of an integrable
function f . We know (Exercise 15:2.2) that

sn(f, x0) − s =
1

π

∫ π

0
(f(x0 + t) + f(x0 − t) − 2s)Dn(t) dt. (7)

Split the integral into
∫ δ
0 and

∫ π
δ and consider the latter part: Exercise 15:5.4 shows that

lim
n→∞

1

π

∫ π

δ
(f(x0 + t) + f(x0 − t) − 2s)Dn(t) dt = 0,

and consequently we have just obtained a formal, but interesting, necessary and sufficient con-
dition for the convergence of the series.

Theorem 15.13: Let f ∈ L1(T ). In order that

lim
n→∞

sn(f, x0) = s

it is necessary and sufficient that for some δ > 0 it is true that

lim
n→∞

∫ δ

0
(f(x0 + t) + f(x0 − t) − 2s)Dn(t) dt = 0.

This theorem can assume another form, which may be more suggestive. (Compare with Ex-
ercise 15:4.1.)

Corollary 15.14: Let f ∈ L1(T ). In order that limn→∞ sn(f, x0) = s, it is necessary and suffi-
cient that for some δ > 0 it is true that

lim
n→∞

∫ δ

0
(f(x0 + t) + f(x0 − t) − 2s)

sin(n+ 1
2)t

t
dt = 0.
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Proof. Note first that the function

h(t) =
1

t
− 1

2
csc

(
t

2

)

is bounded on (0, δ). Fix x0, s and write

F (t) = f(x0 + t) + f(x0 − t) − 2s.

We recall that the Dirichlet kernel assumes the form

Dn(t) =
sin
(
n+ 1

2

)
t

2 sin 1
2 t

=
1

2
sin
(
(n+ 1

2)t
)
csc 1

2 t

and so we have ∫ δ

0
F (t)Dn(t) dt =

∫ δ

0
F (t)t−1 sin(n+ 1

2)t dt

+

∫ δ

0
F (t)h(t) sin(n+ 1

2)t dt.

The function F (t)h(t) is integrable on [0, δ] because h is bounded.
From Exercise 15:5.3, we see that the second integral on the right must converge to zero as

n→ ∞. This shows that the criterion of Theorem 15.13 is equivalent to that stated here. �

15.7.1 Jordan’s criterion for pointwise convergence

The criterion we now present is due to Jordan, but all the pointwise theory owes a debt first
of all to Dirichlet, who was the first to find methods that rigorously establish conditions under
which a Fourier series converges to its function. Jordan’s version includes Dirichlet’s.
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Theorem 15.15 (Jordan) Suppose that f ∈ L1(T ) is of bounded variation on some neighbor-
hood of a point x0. Then

sn(f, x0) → 1
2 (f(x0 + 0) + f(x0 − 0)) .

Proof. First, since the function f has bounded variation in some interval (x0 − δ, x0 + δ),
both its real and imaginary parts have bounded variation there, too. Thus we can reduce the
argument to the situation in which f is real valued. In that case both the right- and left-hand
limits f(x0 + 0) and f(x0 − 0) exist. Define

F (t) = f(x0 + t) + f(x0 − t) − f(x0 + 0) − f(x0 − 0).

By Corollary 15.14, our theorem is proved if we can show that

lim
n→∞

∫ δ

0
F (t)

sin(n+ 1
2)t

t
dt = 0.

But F is also of bounded variation on (0, δ) and so can be split into the sum F = G+H, where
G, H are nonnegative, nondecreasing functions with limt→0+G(t) = limt→0+H(t) = 0. Thus we
can complete the proof by showing that

lim
n→∞

∫ δ

0
G(t)

sin(n+ 1
2)t

t
dt = lim

n→∞

∫ δ

0
H(t)

sin(n+ 1
2)t

t
dt = 0.
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The argument for G will do. Let ε > 0. Since limt→0+G(t) = 0, there is a 0 < δ1 < δ so that
G(δ1) < ε. Then

∫ δ

0
G(t)

sin(n+ 1
2)t

t
dt =

∫ δ1

0
G(t)

sin(n+ 1
2)t

t
dt

+

∫ δ

δ1

G(t)
sin(n+ 1

2)t

t
dt.

We show that there is a number M (independent of ε) so that∣∣∣∣∣

∫ δ1

0
G(t)

sin(n+ 1
2)t

t
dt

∣∣∣∣∣ < Mε, (8)

and we know (from Exercise 15:5.3) that

lim
n→∞

∫ δ

δ1

G(t)
sin(n+ 1

2)t

t
dt = 0,

since G is integrable and the rest of the integrand is bounded in [δ1, δ]. Thus the proof is ob-
tained from (8) since ε is arbitrary.

This argument needed here is at the level of advanced calculus. The second mean-value the-
orem for integrals shows that there must be some point 0 < δ2 < δ1 so that

∫ δ1

0
G(t)

sin(n+ 1
2)t

t
dt = G(δ1 − 0)

∫ δ1

δ2

sin(n+ 1
2)t

t
dt,

where G(δ1 − 0) < ε. The integral on the right side of this inequality is the same as
∫ (n+1/2)δ1

(n+1/2)δ2

sin τ

τ
dτ
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with an appropriate change of variables. The well-known existence of the improper integral∫∞
0 (sin τ)/τ dτ guarantees the existence of a number M for which

∣∣∣∣
∫ b

a
(sin τ)/τ dτ

∣∣∣∣ ≤M

for all a, b. This gives us (8), and the proof is complete. �

15.7.2 Term-by-term integration of Fourier series

We have mentioned (e.g., Sections 1.18 and 5.5) that mathematicians of the early nineteenth
century often integrated series of functions term by term without justification. In Chapter 5
we provided a number of conditions under which term-by-term integration is permissible. In
our setting of Fourier series (using Lebesgue integration), term by term integration is actually
always justified, even when the series is not known to converge anywhere. We use Jordan’s the-
orem (Theorem 15.15) to prove this. The real version is given here because it is the one most
frequently used in applications and the most recognizable.
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Theorem 15.16: Let f ∈ L1(T ) be a real function with a Fourier series

f ∼ a0

2
+

∞∑

n=1

[an cosnx+ bn sinnx] . (9)

Then, for any interval [α, β],
∫ β

α
f(t) dt =

[
a0t

2

]β

α

+
∞∑

n=1

[
an sinnt− bn cosnt

n

]β

α

,

that is, the integral can be obtained by integrating (9) term by term, and this series converges.

Proof. As usual, we consider that f is extended periodically with period 2π to IR. Let

F (x) =

∫ x

0
[f(t) − a0

2
] dt. (10)

Then F is absolutely continuous (and therefore continuous and of bounded variation) on every
bounded interval. It follows directly from the periodicity of f that F is also periodic with pe-
riod 2π. By Theorem 15.15, the Fourier series of F converges to F everywhere on IR:

F (x) =
1

2
A0 +

∞∑

n=1

(An cosnx+Bn sinnx) . (11)

We first show that, for every n ≥ 1, An = −bn/n and Bn = an/n, as would be true if we
were allowed term-by-term integration of the Fourier series for f − 1

2a0. Integrating by parts

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.7. Pointwise Convergence 1043

(Exercise 7:8.2) and noting that F ′ = f a.e., we obtain

An =
1

π

∫ 2π

0
F (x) cosnx dx

=
1

π

F (x) sinnx

n

∣∣∣2π

0
− 1

nπ

∫ 2π

0
F ′(x) sinnx dx

= − 1

nπ

∫ 2π

0
f(x) sinnx dx = −bn

n
.

We find, similarly, that Bn = an/n. Thus we can write (11) as

F (x) =
1

2
A0 +

∞∑

n=1

1

n
[an sinnx− bn cosnx] . (12)

Now, from (10) we see that F (0) = 0 and, from (11), that

F (0) =
1

2
A0 −

∞∑

n=1

bn
n
.

Thus

1

2
A0 =

∞∑

n=1

bn
n
. (13)
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Substituting (13) into (12), we obtain

F (x) =
∞∑

n=1

1

n
[an sinnx+ bn(1 − cosnx)]

=
∞∑

n=1

[
an

∫ x

0
cosnt dt+ bn

∫ x

0
sinnt dt

]
. (14)

Comparing (14) with (10), we find that
∫ x

0

(
f(t) − a0

2

)
dt =

∞∑

n=1

[
an

∫ x

0
cosnt dt+ bn

∫ x

0
sinnt dt

]
.

From this, with x = β and x = α, the theorem now follows. �

Exercises

15:7.1 Deduce from Jordan’s theorem the original theorem of Dirichlet:

A function with at most finitely many simple discontinuities and only a finite number of
maxima and minima has a Fourier series that converges everywhere, to the function at
the points of continuity and to the average between the left and right limits at a discon-
tinuity.

15:7.2 The identity (13), 1
2A0 =

∑∞
1 bn/n (as well as the entire proof of Theorem 15.16) did not require

that the Fourier series of f converge. We can use this fact to provide an example of an everywhere
convergent trigonometric series that is not the Fourier series of a function in L1(T ). (See the para-
graph following Definition 15.1.)

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.8. Pointwise Convergence: Dini’s Test 1045

(a) Show that the series
∞∑

n=2

sinnx

lnn

converges everywhere.

Suppose that there exists f ∈ L1(T ) such that

f ∼
∞∑

n=2

sinnx

lnn
. (15)

(b) Use Theorem 15.16 and (13) to show that, in the notation of that theorem,

F (x) =

∞∑

n=2

1

n lnn
(1 − cosnx).

(c) Show that the series in (b) diverges at x = π.

(d) Conclude that the series in (a) is not the Fourier series of f , contradicting (15).

15:7.3 State and prove a uniform version of Jordan’s theorem, that is, conditions under which the Fourier
series of f converges to f uniformly.

15.8 Pointwise Convergence: Dini’s Test

We can continue with the theme of the pointwise convergence of Fourier series almost without
end. The literature is filled with special cases of convergence theorems, some very deep and dif-
ficult. We pause to prove just one more. This test, due to Dini, is of a different character from
that of Jordan; in fact, the two tests are incomparable in the sense that either one may give a
convergence result when the other fails (see Exercises 15:8.1 and 15:8.2).
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Theorem 15.17 (Dini) Let f ∈ L1(T ), and suppose that, at a point x0 ∈ T ,
∫ π

0

∣∣∣∣
f(x0 + t) + f(x0 − t)

2
− s

∣∣∣∣
dt

t
<∞

for some number s. Then sn(f, x0) → s.

Proof. Fix x0, s and write

F (t) =
1

2
(f(x0 + t) + f(x0 − t) − 2s) .

The function F (t)t−1 is integrable by hypothesis, and so, from Exercise 15:5.3, we see that the
integral

∫ δ

0
F (t)t−1 sin(n+ 1

2)t dt

tends to zero as n→ ∞. By Corollary 15.14, it follows that

sn(f, x0) → s,

as required. �

From Dini’s theorem we can deduce some of the earliest of the convergence theorems in the
study of Fourier series.

Corollary 15.18: Let f ∈ L1(T ), and suppose that f has a finite derivative at a point x0 ∈ T .
Then sn(f, x0) → f(x0).
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Corollary 15.19: Let f ∈ L1(T ), and suppose that f has finite one-sided derivatives at a point
x0 ∈ T in the sense that

lim
h→0+

f(x0 + h) − f(x0 + 0)

h

and

lim
h→0+

f(x0 − h) − f(x0 − 0)

−h
both exist. Then sn(f, x0) → 1

2(f(x0 + 0) + f(x0 − 0)).

Generally, if the Fourier series of a function f converges at a point x0 we expect (or rather
hope) it will converge to the value f(x0). If x0 is a point of continuity then this might occur.
If x0 is a simple discontinuity (either removable or a jump discontinuity) we normally expect
convergence to the average at the jump; that is, 1

2(f(x0+0)+f(x0−0)). This behavior is already
apparent in Dini’s theorem and its corollaries: in order for the integral there to be finite, the
value s must be taken as f(x0) in the case of a point of continuity and 1

2(f(x0 + 0) + f(x0 − 0))
at a simple discontinuity. If we relax our concerns to merely a.e. convergence, then we do not
quite need continuity to get convergence to the function values. The L1-modulus of continuity,
defined as

ω1(f, x0) =
1

2π

∫

T
|f(x0 + t) − f(x0)| dt

can be used to obtain a simple but useful criterion.
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Theorem 15.20 (Marcinkiewicz) Let f ∈ L1(T ), and suppose∫ π

0
ω1(f, t)

dt

t
<∞.

Then sn(f, x) → f(x) for almost every x ∈ T .

Proof. Let

F (x) =

∫ π

0
|f(x+ t) − f(x)| t−1 dt

and use Tonelli’s theorem to evaluate the iterated integral

1

2π

∫ π

−π
F (x) dx =

∫ π

0

(
1

2π

∫ π

−π
|f(x+ t) − f(x)| dx

)
t−1 dt

=

∫ π

0
ω1(f, t)

dt

t
,

which integral is finite, by hypothesis. It follows that the integrand F (x) must be finite for al-
most every x ∈ T . But at every point x with F (x) <∞ we have, in particular, that

∫ π

0

∣∣∣∣
f(x+ t) + f(x− t)

2
− f(x)

∣∣∣∣
dt

t
<∞,

and so, by Dini’s theorem, sn(f, x) → f(x) for almost every x ∈ T , as required. �

Exercises

15:8.1 Let f(−t) = f(t) = |log(t/2π)|−1
for 0 < t ≤ π and f(0) = 0. Check that Jordan’s test applies at

t = 0, but that Dini’s does not.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.9. Pointwise Divergence 1049

15:8.2 Let f(−t) = f(t) =
√
t sin t−1 for 0 < t ≤ π and f(0) = 0. Check that Dini’s test applies at t = 0,

but that Jordan’s test does not.

15.9 Pointwise Divergence

The progression of thought in the nineteenth century was toward the conclusion that the Fourier
series of any continuous function should converge pointwise back to the function. All results
seemed to lead in that direction as sharper and sharper criteria were developed to establish con-
vergence. Thus it must have been a shock when du Bois-Reymond in 1876 produced an exam-
ple of a continuous function whose Fourier series diverged at a point.

In this section we look at this negative result for continuous functions. We show, as did du
Bois-Reymond, that there is a continuous function with a Fourier series diverging somewhere.
By an interesting application of a category argument (using the Banach–Steinhaus theorem),
we get a lot more from this. We get a continuous function with a Fourier series diverging at
every point of a dense Gδ subset of T . Indeed, we get even more: the typical function in C(T )
has this property. (Here we are using “typical” in the sense of Section 10.2.)

Theorem 15.21: Let C(T ) denote the Banach space of continuous, 2π-periodic functions
equipped with the supremum norm. Then the typical function in C(T ) has the following prop-
erty: the Fourier series of f diverges at the points of a dense Gδ set in T .

Proof. We construct a dense Gδ set E ⊂ C(T ) so that, for each f ∈ E,

S(f, x) = sup
n

|sn(f, x)| = +∞

at the points of a dense Gδ set in T .
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Let us begin by working at just one point, taken for convenience as t = 0. Define the contin-
uous linear functionals Γn on C(T ) by

Γn(f) = sn(f, 0).

We need to compute the norms of the functionals Γn. Since

Γn(f) = sn(f, 0) =
1

π

∫

T
f(t)Dn(t) dt,

it is easy to see that

|Γn(f)| ≤ 1

π

∫

T
|f(t)||Dn(t)| dt ≤ ‖f‖∞

(
1

π

∫

T
|Dn(t)| dt

)
.

Thus ‖Γn‖ ≤ Ln, where Ln are the Lebesgue constants defined in Theorem 15.2. We wish to
show that

‖Γn‖ = Ln.

Fix n. Define a function g by g(t) = 1 at points t for which Dn(t) ≥ 0 and as g(t) = −1 at
points t for which Dn(t) < 0. While Dn is continuous, g is not. Even so, we can approximate g
uniformly on T by a continuous function and, in fact, construct a sequence of continuous func-
tions fm with |fm| ≤ 1 so that fm → g uniformly. Thus

Γn(fm) =
1

π

∫

T
fm(t)Dn(t) dt→ 1

π

∫

T
g(t)Dn(t) dt

=
1

π

∫

T
|Dn(t)| dt = Ln.

This shows that ‖Γn‖ ≥ Ln and so, from what we have already proved, we have the identity
‖Γn‖ = Ln. Recall now that in Theorem 15.2 we showed that the Ln are unbounded.
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By the uniform boundedness principle (Theorem 12.48), it follows that there is at least one
function f in C(T ) for which Γn(f) is unbounded. Thus we have obtained a function f whose
Fourier series diverges at 0; in fact, supn |sn(f, 0)| = ∞.

Let {t1, t2, t3, . . . } be any sequence of points in T (which we shall choose to be dense) and
define the functionals

Γmn(f) = sn(f, tm).

As before, since there was nothing special about the point 0, there is some function fm ∈ C(T )
for which

lim sup
n→∞

|Γmn(fm)| = ∞.

Then it follows directly from Theorem 12.50 that the set of members f ∈ C(T ) for which

lim sup
n→∞

|Γmn(f)| = ∞ (all m = 1, 2, 3, . . . ) (16)

is a dense Gδ in C(T ). Any f for which (16) holds satisfies

S(f, tm) = ∞
for every tm. But the function S(f, t), being the supremum of a sequence of continuous func-
tions, is lower semicontinuous. (See Exercise 5:5.2.) Hence the set

{t ∈ T : S(f, t) = ∞}
is a Gδ subset of T that is also dense (since it contains each of the points tm). This proves the
theorem. �

Theorem 15.21 shows that for most continuous functions the Fourier series diverges on a
large set; but a dense Gδ, while large in one sense, might also have measure zero. So this theo-
rem does not answer the question as to the almost everywhere convergence of the Fourier series
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of a continuous function. This problem from 1915 was known as Lusin’s problem and the an-
swer remained elusive for a very long time. In 1965, it was solved by L. Carleson: he showed
that the Fourier series of every function in L2(T ) does converge almost everywhere. Since then,
R. A. Hunt has extended this to all functions in Lp(T ) for p > 1. The case p = 1 must be ex-
cluded. Kolmogorov in 1926 gave a function in L1(T ) whose Fourier series diverges everywhere.

Exercises

15:9.1 Assume that there is a function in L1(T ) whose Fourier series diverges almost everywhere. Show
that the typical function in L1(T ) has a Fourier series diverging almost everywhere.

15.10 Characterizations

How can we recognize that a trigonometric series is a Fourier series and, if so, the Fourier se-
ries of what function? We know from Theorem 15.8 that a series can correspond to at most one
function (up to equivalences), but we do not know how to recognize a Fourier series at sight.
The next two theorems provide some solutions to the problem of characterizing Fourier series of
functions in certain classes.

Theorem 15.22: Let
∑

j cje
ijt be a trigonometric series. A necessary and sufficient condition

that it be the Fourier series of a continuous, 2π-periodic function f is that the sequence σn(x)
of Cesàro means converge uniformly to f .

Proof. One direction is clear by Theorem 15.4.
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Suppose that the sequence σn(x) of Cesàro means of the given series converge uniformly to
a function f . Certainly, f is continuous and 2π-periodic. We wish to show that each cj = cj(f).
As in Exercise 15:3.6, an elementary computation shows that

σn(x) =
∑

|j|≤n

(
1 − |j|

n+ 1

)
cje

ijx,

and this allows us to compute the Fourier coefficients of f . Fix j and note that for all n > |j|
this identity and the orthogonality relations show that

1

2π

∫

T
σn(t)e−ijt dt =

(
1 − |j|

n+ 1

)
cj .

Let n → ∞ in this statement. The right-hand side converges to cj , and the left-hand side con-
verges to

1

2π

∫

T
f(t)e−ijt dt = cj(f),

since σn converges uniformly to f . Thus each coefficient cj = cj(f), as required. �

We characterize, also, those trigonometric series that are Fourier series of a function f ∈
Lp(T ) (1 < p < ∞). This offers an interesting application of some of our weak compactness
ideas developed in Section 13.10. The case p = 1 requires different treatment, and the stated
result does not extend to this end of the scale.

Theorem 15.23 (Fejér) Let
∑

j cje
ijt be a trigonometric series. A necessary and sufficient

condition that it be the Fourier series of a function f ∈ Lp(T ) (1 < p < ∞) is that the sequence
σn(x) of Cesàro means is bounded in Lp(T ); that is, ‖σn‖p ≤ M for some real M and all n. In
that case, it is also true that ‖f‖p ≤M .
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Proof. Let us suppose first that σn(x) = σn(f, x) is the sequence of Cesàro means of a func-
tion in f ∈ Lp(T ). We use the usual representation of the Cesàro means to get

|σn(f, x)| ≤ 1

π

∫ π

−π
|f(x+ t)|Kn(t) dt

and Minkowski’s inequality for integrals (Exercise 13:1.4) to get

‖σn(f)‖p ≤
(

1

2π

∫ π

−π

(
1

π

∫ π

−π
|f(x+ t)|Kn(t) dt

)p

dx

)1/p

≤ 1

π

∫ π

−π

(
1

2π

∫ π

−π
|f(x+ t)|p dx

)1/p

Kn(t) dt = ‖f‖p.

This gives the inequality ‖σn‖p ≤ ‖f‖p, so that the sequence σn(x) of Cesàro means is bounded
in Lp.

In the other direction, suppose that the sequence σn is bounded in Lp(T ). By weak com-
pactness (Theorem 13.33), there must be a subsequence σnk

and an element f ∈ Lp(T ) so that
σnk

converges to f weakly. In particular, since each function e−ijt is a member of L∞(T ), each
is also in the dual space Lq(T ). It follows that

lim
k→∞

1

2π

∫

T
σnk

(t)e−ijt dt =
1

2π

∫

T
f(t)e−ijt dt = cj(f).

We can compute this integral, using the elementary identity (Exercise 15:3.6)

σnk
(x) =

∑

|s|≤nk

(
1 − |s|

nk + 1

)
cse

isx

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.11. Fourier Series in Hilbert Space 1055

and the orthogonality relations to obtain

lim
k→∞

1

2π

∫

T
σnk

(t)e−ijt dt = lim
k→∞

(
1 − |j|

nk + 1

)
cj = cj ,

so cj = cj(f). Thus the series is indeed the Fourier series of f . We know from Theorem 15.12
that ‖σn − f‖p → 0, so ‖σn‖p → ‖f‖p, and it follows that ‖f‖p ≤M since each ‖σn‖p ≤M . �

We state our final theorem of this section without proof just to indicate to the interested
reader how the situation develops at the p = 1 end of the scale.

Theorem 15.24: Let
∑

j cje
ijt be a trigonometric series. A necessary and sufficient condition

that it be the Fourier series of a function f ∈ L1(T ) is that the sequence σn(x) of Cesàro means
be Cauchy in L1(T ); that is,

‖σn − σm‖1 → 0

as n, m→ ∞.

15.11 Fourier Series in Hilbert Space

We have come far enough in our study of Fourier series to see a number of complexities and
technical difficulties. In a simpler world, we might have hoped that all functions would have
Fourier series that converge back to the function. We would have hoped to be able to recognize
immediately when a trigonometric series is a Fourier series. The geometry describing the rela-
tion between a function and its Fourier series would be transparent and familiar.

In the Hilbert space L2(T ), all these things are true and more. It is in this setting that the
most satisfying, simple, and complete theory is available. In fact, in this setting, the belief of
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many nineteenth-century mathematicians that an “arbitrary” function could be represented as
the sum of its Fourier series is realized.

Since we have already established the groundwork for this in Chapter 14 we can obtain al-
most all our results as applications of what we now know. The reader who has preferred to skip
over Chapter 14 can still prove all these statements without extracting more than a few argu-
ments from that chapter. The exercises sketch this out.

In L2(T ), we use the inner product

(f, g) =
1

2π

∫

T
f(t)g(t) dt,

which is just the usual inner product adjusted with a constant. The norm then is, as elsewhere
throughout this chapter,

‖f‖2 =
√

(f, f) =

(
1

2π

∫

T
|f(t)|2 dt

)1/2

.

We know that this is a Hilbert space, and in this setting we see that the trigonometric system
plays a special and recognizable role. Once we have established that this system is maximal (in
the formal sense required in Hilbert space), all our results follow from the simple general theory
of Chapter 14 and no further proofs are needed.

15.25 (Maximality of the trigonometric system)
The functions

t→ eijt (j = 0,±1,±2, . . . )

form a maximal orthonormal system in L2(T ).

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.11. Fourier Series in Hilbert Space 1057

Proof. Let ej denote the functions t → eijt for j ∈ Z; then the Fourier series is just the series∑
j(f, ej)ej in this notation, and it is clear from elementary computations that the system is

orthogonal and, indeed, orthonormal. The fact that the trigonometric polynomials are dense in
the separable Hilbert space L2(T ) allows us to conclude directly from Theorem 14.25 that this
is a maximal orthonormal system, as required. �

We generally expect that for a function f the trigonometric polynomial sn(f) is somehow an
approximation to f and that as n → ∞ these approximations get closer to f . That vague geo-
metric picture is not correct in all settings: in the Hilbert space setting, it is precisely correct.
Not only is the polynomial sn(f) an approximation to f , it is among all approximations of this
type the best.

15.26 (Best approximation in L2(T )) For any f ∈ L2(T ) and any integer n, the best ap-
proximation to f by a trigonometric polynomial of degree n is sn(f, x); that is,∥∥∥∥∥∥

f −
∑

|j|≤n

cj(f)eijt

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
f −

∑

|j|≤n

λje
ijt

∥∥∥∥∥∥
2

for any complex numbers λ1, λ2, . . . , λn.

The first main result is that the Fourier series of any function in L2(T ) converges back to
the function, provided that the convergence is interpreted in the L2(T ) sense itself.

15.27 (Convergence of the Fourier series) For any function f in the space L2(T ),

lim
n→∞

‖f − sn(f)‖2 = 0.
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We also obtain Parseval’s identity, which, if it is examined closely, is just a form of the Pythagorean
theorem. It is named after Marc Antoine Parseval-Deschènes who stated it in 1799, although a
full proof would not appear for a great many years.

15.28 (Parseval’s identity) For any f ∈ L2(T ),

‖f‖2
2 =

1

2π

∫

T
|f(t)|2 dt =

∞∑

j=−∞

|cj(f)|2.

There is also a more general version of Parseval’s identity, which goes under the same name
or is sometimes referred to as the polarized version.

15.29 (Parseval’s identity) For any f , g ∈ L2(T ),

(f, g) =
1

2π

∫

T
f(t)g(t) dt =

∞∑

j=−∞

cj(f)cj(g).

Finally, to complete the picture, we would hope that to any given trigonometric series of
a recognizable type there is a unique function whose Fourier series it is. Up to this point we
do not have, however, many theorems of this type. Perhaps the only moderately satisfying one
is that for uniformly convergent trigonometric series there is a unique continuous function for
which it is the Fourier series. In the Hilbert space setting, the geometry is clear.

15.30 (Riesz–Fischer theorem) Suppose that
∞∑

j=−∞

|cj |2 <∞.
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Then there is a unique f ∈ L2(T ) so that cj(f) = cj.

Exercises

15:11.1 (For readers who have skipped Chapter 14.) Give direct proofs for the material of this section
that do not depend on any general development.

(a) Establish the maximality of the trigonometric system: if g is an element of L2(T ) and g is
orthogonal to every function eijt for j ∈ Z, then g = 0. [Hint: Use the fact that σn(g) = 0
and σn → g.]

(b) Establish the best-approximation result. [Hint: Theorem 14.22 gives the pattern.]

(c) Establish the L2-convergence of the Fourier series. [Hint: Use the fact that ‖f − sn(f)‖2 ≤
‖f − σn(f)‖2, and that the latter tends to zero.]

(d) Establish Parseval’s identity. [Hint: Compute (sn(f), sn(g)) and show that it converges to
(f, g).]

(e) Prove the Riesz–Fischer theorem. [Hint: Show that the sequence

sn =
∑

|j|<n

cje
ijt

is Cauchy in L2(T ) if
∑

j |cj |2 converges.]
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15.12 Riemann’s Theorems

We turn now to some problems in the general study of trigonometric series. In Riemann’s inves-
tigation of series of the form

f(t) =
∑

j

cje
ijt (17)

where the coefficients are bounded, he was led to a study of the function

R(t) =
c0t

2

2
−
∑

j 6=0

cj
j2
eijt

obtained by formally integrating the series (17) twice. If we know that the coefficients are bounded,
then this series converges uniformly to a continuous, 2π-periodic function R called the Riemann
function for the series. The properties of the limits

lim
h→0+

R(t+ h) +R(t− h) − 2R(t)

h
(18)

and

lim
h→0+

R(t+ h) +R(t− h) − 2R(t)

h2
(19)

constitute what is commonly called the Riemann theory of trigonometric series.
The mere existence of the limit in (18) forces that limit to be zero. A function with this

property at a point t is said to be smooth at t. Riemann’s second theorem (Theorem 15.33)
says that the Riemann function is uniformly smooth. The limit in (19) is often called the second-
order symmetric derivative and we use the terminology SD2R(t) for this derivative. The second
symmetric derivative is a generalization of the ordinary second derivative.
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Theorem 15.31: If f ′′(t) exists, then so too does the second symmetric derivative, and both
have the same value.

Proof. By an application of the mean-value theorem of the calculus, the fraction

f(t+ h) + f(t− h) − 2f(t)

h2

must have the value

f ′(t+ k) − f ′(t− k)

2k

for some 0 < k < h. Letting h→ 0, k → 0, we obtain

f ′(t+ k) − f ′(t− k)

2k
→ f ′′(t),

which justifies our assertion. �

15.12.1 Riemann’s first theorem

Riemann’s first theorem (Theorem 15.32) asserts that the second symmetric derivative of the
Riemann function for a trigonometric series recovers the sum of the series at any point at which
the series converges. This should make sense: we have integrated the series twice to obtain the
Riemann function, so presumably two derivatives should return us back to where we started,
but the second derivative must be interpreted in a generalized sense.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



1062 Fourier Series Chapter 15

Theorem 15.32 (Riemann’s first theorem) Let R denote the Riemann function for the
trigonometric series

f(t) =
∑

j

cje
ijt (20)

where cj → 0 as |j| → ∞. If the series converges to a finite sum s at a point t, then SD2R(t) =
s.

Proof. Let Aj(t) = cje
ijt, and compute the second symmetric difference quotient at t using

the increment 2h:

Aj(t+ 2h) +Aj(t− 2h) − 2Aj(t)

(2h)2
=

1

h2

(
e2ijh + e−2ijh − 2

4

)
Aj(t).

The expression inside parentheses can be written as 1
2(cos(2jh) − 1) or sin2(jh). These simple

computations lead us to an expression for the second symmetric difference quotient at t of the
Riemann function,

R(t+ 2h) +R(t− 2h) − 2R(t)

4h2

= A0 +

∞∑

|j|=1

Aj(t)

(
sin jh

jh

)2

, (21)

which will prove most useful. Write

sn = A0 +
n∑

|j|=1

Aj(t)
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so that, by hypothesis, sn → s.
The proof is obtained by showing that, for any sequence hk ց 0,

lim
k→∞

R(t+ 2hk) +R(t− 2hk) − 2R(t)

4h2
k

= s,

and the theorem is proved. Let

u(θ) =

(
sin θ

θ

)2

with u(0) = 1. Then we compute, using summation by parts, that

N∑

j=0

Aju(jhk) =
N−1∑

j=0

sj (u(jhk) − u((j + 1)hk)) + sNu(Nhk).

We write

akj = u(jhk) − u((j + 1)hk)

and we let N → ∞ in this last identity; so, using (21), we have finally

R(t+ 2hk) +R(t− 2hk) − 2R(t)

4h2
k

=
∞∑

j=0

sjakj . (22)

At this stage our perspective changes, and we begin to view the problem as one of a summa-
bility method. The sequence sn converges to s, and

∑∞
j=0 sjakj is a transformation of that se-

quence using a matrix (akj). If the matrix is regular in the sense of Definition 12.51, then Theo-
rem 12.52 shows that

lim
k→∞

∞∑

j=0

sjakj = s
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and we are done. Thus we must verify each of the three conditions of that definition; that is,

1. supk

∑∞
j=0 |akj | <∞,

2. limk→∞ akj = 0 for each j = 0, 1, 2, 3, . . . , and

3. limk→∞
∑∞

j=0 akj = 1.

We recall that

akj = u(jhk) − u((j + 1)hk) =

(
sin(jhk)

jhk

)2

−
(

sin((j + 1)hk)

(j + 1)hk

)2

.

From this we see that condition (ii) must hold. Certainly, this expression tends to zero for large
k since we know that hk → 0 and that sin θ/θ → 1 as θ → 0.

We next compute the sum
N∑

j=0

akj =
N∑

j=0

u(jhk) − u((j + 1)hk) = u(0) − u((N + 1)hk).

From this we conclude that
∑∞

j=0 akj = 1 for all k, so condition (iii) holds, too.
Finally, to verify condition (i), we write

∞∑

j=0

|akj | =
∞∑

j=0

|u(jhk) − u((j + 1)hk)|

=
∞∑

j=0

∣∣∣∣∣

∫ (j+1)hk

jhk

u′(θ) dθ

∣∣∣∣∣ ≤
∫ ∞

0
|u′(θ)| dθ.
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This last integral is finite. There is no problem near 0 and, for large θ, the integrand is smaller
than 4θ−2. This checks condition (i), and the proof is complete. �

15.12.2 Riemann’s second theorem

Theorem 15.33 (Riemann’s second theorem) Let R denote the Riemann function for the
trigonometric series

f(t) =
∑

j

cje
ijt (23)

where cj → 0 as |j| → ∞. Then

lim
h→0+

R(t+ h) +R(t− h) − 2R(t)

h
= 0

uniformly in t.

Proof. This statement may be viewed as a regularity claim for a summability method as in
the proof of Theorem 15.32. We omit the proof since it introduces no new ideas. See Exer-
cise 15:12.3. �

Exercises

15:12.1 Show that the second symmetric derivative arises when one integrates a first symmetric deriva-
tive. If

lim
s→0

f(t0 + s) − f(t0 − s)

2s
= c,
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if f is integrable, and if F is an indefinite integral of f , then

SD2 F (t0) = c.

15:12.2 A sequence {sn} is said to be summable (R) to a limit s if

lim
h→0

∞∑

j=1

sj

(
sin jh

jh

)2

= s.

Show that if {sn} converges to s then {sn} is summable (R) to s. [Hint: This is a matter of inter-
preting the proof of Theorem 15.32.]

15:12.3 A sequence {sn} is said to be summable (R′) to a limit s if

lim
h→0

2

π

∞∑

j=1

sj

(
sin2 jh

j2h

)
= s.

Show that if {sn} converges to s then {sn} is summable (R) to s. [Hint: Study the proof of Theo-
rem 15.32. You may use the identity

π

2
=
θ

2
+

∞∑

j=1

sin2 jθ

j2θ

for 0 < θ < π/2.]

15.13 Cantor’s Uniqueness Theorem

One of the most interesting and immediate applications of Riemann’s theory of trigonometric
series is to the problem of uniqueness. The problem was posed by Eduard Heine (1821–1881)
and presented to Cantor in 1870 as an important, unsolved problem.
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Can a function have two different representations as the sum of convergent trigono-
metric series?

Curiously, this problem would not have been considered unsolved a few decades earlier.
Term-by-term integration of series was performed routinely without justification, and such a
method solves this problem easily. Heine had shown that for uniform convergence there was
uniqueness, but recognized that for pointwise convergence the problem was more delicate. It is
also instructive to note that this problem might not be considered important in our century:
pointwise representations of functions are not considered to have much merit. Even so, Cantor’s
solution of the uniqueness problem stands as a landmark in the history of mathematics, not so
much for the depth of the methods themselves, but for the fact that it marked the beginning of
a research program for Cantor that culminated in the development of modern set theory and
the theory of transfinite ordinals.

By subtracting two such series, we see that the problem as posed reduces to asking whether
there can exist a trigonometric series

f(t) =
∑

j

cje
ijt (24)

converging everywhere to 0, but whose coefficients are not all zero. Cantor’s solution has four
simple steps:

1. If the trigonometric series (24) converges everywhere, then the coefficients cj → 0 as |j| →
∞.

2. Take then the Riemann function R for the series; by Riemann’s first theorem (Theorem 15.32),
SD2R(t) = 0 everywhere.
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3. Prove that any continuous function F with SD2 F (t) = 0 everywhere must be linear.

4. Show that the coefficients vanish from the relation

R(t) = αt+ β =
c0t

2

2
−
∑

j 6=0

cj
j2
eijt.

The first part Cantor proved himself. (Next we shall present a version of this theorem with a
later improvement added by Lebesgue.) The second part is Riemann’s and would have been
well known at the time. The last part is easy, since the series converges uniformly. It was the
third step that blocked Cantor’s progress. In a letter, mailed to Cantor from Zurich, Hermann
Schwarz (1843–1921) supplied the proof that any continuous function F with SD2 F (t) = 0
everywhere must be linear.

We begin with the first step in the program, now known as the Cantor–Lebesgue theorem.
Cantor’s original version needed convergence on an interval, and the argument required eight
pages of very delicate arguments. We are in a position now to prove better results more easily
because of the tools of measure theory. Notice that it is Egoroff’s theorem that does much of
the work here.

Theorem 15.34 (Cantor–Lebesgue) Suppose that a trigonometric series

f(t) =
∑

j

cje
ijt

converges everywhere on a set of positive Lebesgue measure. Then the coefficients cj → 0 as
|j| → ∞.

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



Section 15.13. Cantor’s Uniqueness Theorem 1069

Proof. Let

Aj(x) = cje
ijt + c−je

−ijt.

What we show is the more general statement that if Aj(x) → 0 on a set E of positive Lebesgue
measure then cj , c−j → 0 as j → ∞. This is the version most likely described as the Cantor–
Lebesgue theorem. By Egoroff’s theorem, there is a set F ⊂ [−π, π] of positive measure on
which Aj(x) → 0 uniformly.

Write

ρj =
√
|cj |2 + |c−j |2,

and assume for the moment that ρj , and hence also cj and c−j , are bounded. One easily shows
that

|Aj(x)|2 = |cj |2 + |c−j |2 + cjc−je
2ijt + +cjc−je

−2ijt,

and multiplication by χ
F

and integration yield
∫ π

−π
χ

F
(x)|Aj(x)|2 dx

= ρ2
j

∫ π

−π
χ

F
(x) dx+ (cjc−j)

(∫ π

−π
χ

F
(x)e2ijt dx

)

+ cjc−j

(∫ π

−π
χ

F
(x)e−2ijt dx

)
.

Recall that we are assuming cj , c−j bounded. Thus the second and third expressions on the
right-hand side of this identity tend to 0 as j → ∞ by the Riemann–Lebesgue theorem (Theo-
rem 15.7)
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Thus ∫ π

−π
χ

F
(x)|Aj(x)|2 dx = ρ2

j |F | + αj

where αj → 0 as j → ∞. But |F | > 0 and

χ
F

(x)|Aj(x)|2

converges to zero uniformly. It follows that ρj tends to zero as required.
In our proof we have assumed that the sequence ρj is bounded. Exercise 15:13.1 shows how

to convert the unbounded case to this, and so the proof is complete. �

15.13.1 Schwarz’s lemma for a vanishing symmetric derivative

We now pass to the third step in Cantor’s program, the theorem mailed to him by Schwarz.
The proof uses recognizably nineteenth-century methods.

Theorem 15.35 (Schwarz) Let F be continuous on the interval [a, b] and suppose that

SD2 F (x) = 0

at every point of (a, b). Then F is linear in this interval.

Proof. Let ε > 0, and define the functions

G(x) = F (x) − F (a) − F (b) − F (a)

b− a
(x− a) + ε(x− a)(x− b) (25)

and

H(x) = F (x) − F (a) − F (b) − F (a)

b− a
(x− a) − ε(x− a)(x− b).
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We prove that G(x) ≤ 0 everywhere in [a, b]. If not, then, because G(a) = G(b) = 0, there
is a point c ∈ (a, b) at which a positive maximum is attained. At such a point the derivative
SD2G(c) cannot be positive, and yet this would contradict the fact that

SD2 F (c) ≥ 0.

An identical proof establishes that H(x) ≥ 0 everywhere in [a, b].
This gives ∣∣∣∣F (x) − F (a) − F (b) − F (a)

b− a
(x− a)

∣∣∣∣ ≤ ε(b− a)2

for all ε > 0. From this, the linearity of F follows. �

Exercises

15:13.1 Show that if there is a counterexample to Theorem 15.34 with

Aj(x) = cje
ijt + c−je

−ijt,

Aj(x) → 0 on a set E of positive Lebesgue measure, and

ρj =
√
|cj |2 + |c−j |2

not tending to zero then there is a counterexample for which ρj is bounded. [Hint: If some se-
quence jk has ρjk

≥ ε > 0, then define

Bj(x) = (ρj)−1Aj(x)

for j = jk and zero if j 6= jk.]

15:13.2 If the relation

αx+ β =
a0x

2

4
−

∞∑

n=1

(an cosnx+ bn sinnx)

n2
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holds at every point and the coefficients of the series are bounded show that all the coefficients
vanish.

15:13.3 One of Cantor’s first steps after proving the uniqueness theorem was to show that a single point
may be omitted. Show that a trigonometric series f(t) =

∑
j cje

ijt converging everywhere to 0 ex-
cept possibly at a single point must have all its coefficients zero. [Hint: Generalize the Schwarz
theorem by allowing a single exceptional point at which the function is smooth and use Theo-
rem 15.33.]

15.14 Additional Problems for Chapter 15

15:14.1 Obtain a proof of Parseval’s theorem by obtaining first the inequality

‖σn(f)‖2
2 =

∑

|j|≤n

(
1 − |j|

n+ 1

)2

|cj |2 ≤
∑

|j|≤n

|cj |2

and using Bessel’s inequality and an appropriate convergence theorem.

15:14.2 (Denjoy–Lusin) If
∑∞

j=1 |aj cos jt+ bj sin jt| < ∞ for all t in a measurable set of positive mea-
sure, then the series converges uniformly and absolutely everywhere; in fact,

∞∑

j=1

(|aj | + |bj |) <∞.

[Hint: Rewrite aj cos jt + bj sin jt as rj cos(nt − θj), where aj = rj cos θj and bj = rj sin θj . Find
a set E of positive measure on which

∑
j |rj cos(nt− θj)| converges uniformly using Egoroff’s theo-

rem. Deduce

lim inf
j→∞

∫

E

| cos(nt− θj)| dt > 0

from these facts.]
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L, 106
ℓ2, 590
ℓ∞, 591
ℓp, 590
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[unif], 297
Z, 3
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absolutely continuous function, 69, 370, 371
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accumulation point, 183, 598
additive set function, 47, 111
adjoint operator, 976
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Carathéodory, C., 143, 227, 415
cardinal arithmetic, 23
cardinal number, 21
cardinality ℵ0, 16
cardinality n, 16
Carleson, L., 1052
category argument, 31
Cauchy integrals, 74, 438, 440
Cauchy sequence, 4, 618
Cauchy’s integral, 71
Cauchy, A., 71

ClassicalRealAnalysis.com

Bruckner*Bruckner*Thomson Real Analysis, 2nd Edition (2008)



1078 Subject Index
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equicontinuous family of functions, 649
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Fourier coefficients, 961, 1006
Fourier series, 959, 961, 1006

divergence of, 1049
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uniform convergence, 1027
uniqueness of coefficients, 1029

Fourier transform, 923
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full cover, 243, 485
function

absolutely continuous, 99, 370
additive set function, 47, 111
approximately continuous, 502
Baire functions, 319
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